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Content of this Lecture

• Trees
• Search Trees
• Natural Trees
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Motivation

• In a list, (almost) every element has one predecessor / 
successor 

• In a tree, (almost) every element has one predecessor 
but many successors

• These splits partition the set of all elements of the list
– Every node in a tree can be reached 

by only one path from root
– Partitions: All nodes with the same 

prefix in their access paths
– Prominent split criterion: Order

• Elements with lower rank to 
left subtree, with higher 
rank to the right subtree
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Trees are everywhere in computer science

• Divide-and-conquer call
stacks
– Max-subarray
– Merge-Sort
– QuickSort
– …

• XML 
– depth-first vs breadth-first

traversal
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Example

-2 3 1 3 4 -3 -4 2

-2 3 1 3 4 -3 -4 2

-2 3 1 3 4 -3 -4 2

• Solution 11

• Solutions 7, 4
– rmax/lmax: 7, 4 

• Solutions 3, 4, 4, 2
– rmax/lmax: 3, 4, 1, 0
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Data – A Tree

• The data items of an XML database form a tree
<customers>
<customer>
<last_name>
Müller

</last_name>
<first_name>
Peter

</last_name> 
<age>
25

</age>
</customer>

<customer>
<last_name>
Meier

</last_name>
<first_name>
Stefanie

</last_name> 
<age>
27

</age>
</customer>

</customers>

customers

customer

last_name

first_name
age

Müller

Peter

25

customer

last_name

first_name

age
Meier

Stefanie

27


Example
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Solution 11





Solutions 7, 4

rmax/lmax: 7, 4 





Solutions 3, 4, 4, 2

rmax/lmax: 3, 4, 1, 0
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Data – A Tree

The data items of an XML database form a tree

<customers>

  <customer>

    <last_name>

      Müller

    </last_name>

    <first_name>

      Peter

    </last_name> 

    <age>

      25

    </age>

  </customer>

 <customer>

    <last_name>

      Meier

    </last_name>

    <first_name>

      Stefanie

    </last_name> 

    <age>

      27

    </age>

  </customer>

</customers>

customers

customer

last_name

first_name

age

Müller

Peter

25

customer

last_name

first_name

age

Meier

Stefanie

27
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Already Seen

• Decision trees for proving 
the lower bound for sorting

• Heaps for priority queues

• …
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Full Decision Tree

S[i1]<S[j1]?

S[i2]<S[j2]? S[i6]<S[j6]?

S[i7]<S[j7]?S[i5]<S[j5]?S[i3]<S[j3]? S[i4]<S[j4]?
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Heaps

• Definition
A heap is a labeled binary tree for which the following 
holds
– Form-constraint (FC): The tree is complete except the last layer

• I.e.: Every node has exactly two children
– Heap-constraint (HC): The value of any node is smaller than that of 

its children
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Full Decision Tree
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S[i2]<S[j2]?

S[i6]<S[j6]?
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Heaps

Definition
A heap is a labeled binary tree for which the following holds

Form-constraint (FC): The tree is complete except the last layer

I.e.: Every node has exactly two children

Heap-constraint (HC): The value of any node is smaller than that of its children
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Machine Learning 

• Want to go to a football game?
• Might be canceled – depends on the whether
• Let‘s learn from examples
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Decision Trees

Outlook

Temperature Temperature

Humidity

Windy

Temperature

sunny rainyovercast

hot mild

high

true

No No

false
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Many Applications

The decision tree partitions the set of 
all possible situations based on 

predefined characteristics (attributes)

Challenge: Which tree leads to the 
best decisions as soon as possible?
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Suffix-Trees

• Recall the problem to find all occurrences of a (short) 
string P in a (long) string T

• Fastest way (O(|P|)): Suffix Trees
– Loot at all suffixes of T (there are |T| many)
– Construct a tree 

• Every edge is labeled with a letter from T
• All edges emitting from a node are labeled differently 
• Every path from root to a leaf is uniquely labeled
• All suffixes of T are represented as leaves

• Every occurrence of P must be the prefix of a suffix of T
• Thus, every occurrence of P must map to a path starting at 

the root of the suffix tree
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Example

rama$8

5

4

6

7

a
ma$

10 9
ma$

$
rama$

rama$11
$

rama$

3

narama$

na

1

bananarama$

na

2

narama$

12345678901
BANANARAMA$
ANANARAMA$
NANARAMA$
ANARAMA$
NARAMA$
ARAMA$
RAMA$
AMA$
MA$
A$
$
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Searching in the Suffix Tree

rama$8
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10 9
ma$

$
rama$

rama$11 $

rama$

3

narama$
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1

bananarama$

na

2

narama$

P = „na“

rama$8
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$
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3
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1

bananarama$

na

2

narama$ P = „an“

The suffix tree for T represents all 
common prefixes of suffixes of T as a 

unique path from root.

Challenge: Construction of a suffix tree 
in linear time.
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Not Trees

DAG: Directed, 
acyclic graph

General 
(directed) graph)
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Directed? Single-rooted?

We sometimes draw undirected 
edges with root at the top and 
assume directed edges from 

root to leaves
Root: Only node without 

incoming edge

53
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This visual aid is necessary! 
Otherwise, roots/leaves are not 
defined without directed edges
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Graphs

• Definition
A graph G=(V, E) consists of a set V of vertices (nodes) 
and a set E of edges (E⊆VxV). 
– A sequence of edges e1, e2, .., en is called a path iff ∀1≤i<n-1: 

ei=(v‘, v) and ei+1=(v, v’’)
– The length of a path e1, e2, .., en is n
– A path (v1,v2), (v2,v3), …, (vn-1,vn) is acyclic iff all vi are different
– G is connected if every pair vi, vj is connected by at least one path
– G is undirected, if ∀(v,v’)∈E ⇒(v’,v)∈E. Otherwise G is directed
– G is acyclic if it contains no cyclic path

Let G=(V, E) be a directed graph and let v,v’∈V.
– Every edge (v,v’)∈E is called outgoing for v
– Every edge (v’,v)∈E is called incoming for v
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Trees as Connected Graphs

• Definition
– A undirected connected acyclic graph is called a undirected tree
– A directed connected acyclic graph in which all but one vertex of 

in-degree 1 and one  vertex has in-degree 0 is called a directed 
rooted tree

• From now on: “Tree” means “rooted directed tree”
• Lemma

– In a tree, there exists exactly one path between root and any other 
node
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Terminology

• Definition
Let T be a tree. Then … 
– A node with no outgoing edge is a 

leaf; other nodes are inner nodes
– The depth of a node p is the length 

of the path from root to p
– The height of T is the depth of its 

deepest leaf
– The order of T is the maximal 

number of children of its nodes
– “Level i” are all nodes at depth i
– T is ordered if the children of all 

inner nodes are ordered

leaves

depth=2

height=3

order=3
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More Terminology

• Definition
Let T be a tree and v a node. 
– All nodes adjacent to an outgoing 

edge of v are v’s children
– v is called the parent of all its 

children
– All nodes on the path from root to 

v without v are the ancestors of v
– All nodes reachable from v are its 

successors
– The rank of a node v is the number 

of its children

ancestors

parent

children

rank=2



Ulf Leser: Algorithms and Data Structures 19

Two More Concepts

• Definition 
Let T be a directed tree of 
order k. T is complete if all its 
inner nodes have rank k and all 
leaves have the same depth

• In this lecture, we will mostly 
consider rooted ordered trees of 
order two (binary trees)
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Recursive Definition of Trees

• Will often traverse trees using recursive functions
• Definition

A (binary) tree is a structure defined as follows:
– A single node is a tree with height 0
– If T1 and T2 are trees, then the structure formed by a new node v 

and edges from v to the root of T1 and from v to the root of T2 is a 
tree

• v is its root 
• The height of this tree is max(height(T1), height(T2))+1; 

– If T1 is a tree, then the structure formed by a new node v and an 
edge from v to the root of T1 is a tree

• v is its root 
• The height of this tree is height(T1)+1; 
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Some Properties (without proofs)

• Lemma
Let T=(V, E) be a tree of order k. 
Then 
– |V|=|E|+1
– If T is complete, T has kheight(T) leaves
– If T is a complete binary tree, T has 

2height(T)+1-1 nodes
– If T is a binary tree with n leaves, 

height(T) ∈ [floor(log(n)), n-1]
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Content of this Lecture

• Trees
• Search Trees

– Definition
– Searching
– Inserting
– Deleting

• Natural Trees
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Search Trees

• Definition
A search tree T=(V,E) is a rooted binary tree with n=|V| 
differently key-labeled nodes such that ∀v∈V:
– label(v)>max(label(left_child(v)), label(successors(left_child(v)))
– label(v)<min(label(right_child(v)), label(successors(right_child(v)))

• Remarks
– For simplicity, we use integer labels
– “node” ~ “label of a node”
– We only consider search trees without

duplicate keys (easy to change)
– Search trees are used to manage and 

search a list of keys
– Operations: search, insert, delete
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Search Trees

• Definition
A search tree T=(V,E) for a set of n unique keys is a 
labeled binary tree with |V|=n and
– label(v)>max(label(left_child(v)), label(successors(left_child(v)))
– label(v)<min(label(right_child(v)), label(successors(right_child(v)))

• Remarks
– For simplicity, we use integer labels
– “node” ~ “label of a node”
– We only consider search trees without

duplicate keys (easy to change)
– Search trees are used to manage and 

search a list of keys
– Operations: search, insert, delete
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Complete Trees

• Conceptually, we pad search trees to full rank in all nodes
– “padded” leaves are usually neither drawn nor implemented (NULL)

• A “padded” leaf represents the interval of values that 
would be below this node
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What For?

• For a search tree T=(V,E), we eventually will reach 
O(log(|V|)) for testing whether k∈T and for inserting and 
deleting a key
– First: Average Case of natural trees
– Next: Worst Case for AVL-Trees

• Compared to binsearch on arrays, search trees are a 
dynamically growing / shrinking data structure
– But need to store pointers
– Complete trees can be easily managed in arrays
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Searching

• Searching a key k
– Comparing k to a node 

determines whether we have 
to look further down the left 
or the right subtree

• We stop if label(node)=k
– If there is no child left, k∉T

• Complexity
– In the worst case we need to 

traverse the longest path in T 
to show k∉T

– Thus: O(|V|)
– Wait a bit …

func node search( T search_tree,
k integer) {

v := root(T);
while v!=null do
if label(v)>k then
v := v.left_child();

else if label(v)<k then
v := v.right_child();

else
return v;

end while;
return null;

}
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Insertion

• First search the new key k
– If k∈T, we do nothing
– If k∉T, the search must finish 

at a null pointer in a node p
• A “right pointer” if 

label(p)<k, otherwise a “left 
pointer”

• We replace the null with a 
pointer to a new node k

• Complexity: Same as 
search

func bool insert( T search_tree,
k integer) {

v := root(T);
while v!=null do
p := v;
if label(v)>k then
v := v.left_child();

else if label(v)<k then
v := v.right_child();

else
return false;

end while;
if label(p)>k then
p.left_child := new node(k);

else
p.right_child := new node(k);

end if;
return true;

}
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Example
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Deletion

• Again, we first search k
• If k∉T, we are done
• Assume k∈T. The following situations are possible

– k is stored in a leaf. Then simply remove this leaf
– k is stored in an inner node q with only one child. Then remove q 

and connect parent(q) to child(q)
– k is stored in an inner node q with two children. Then …
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Observations

• We cannot remove q, but we 
can replace the label of q with 
another label - and remove 
this node

• We need a node q’ which can 
be removed and whose label 
k’ can replace k without 
hurting the search tree constraints
– label(k’)>max(label(left_child(k’)), label(successors(left_child(k’)))
– label(k’)<min(label(right_child(k’)), label(successors(right_child(k’)))
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Observations

• Two candidates
– Largest value in the left subtree 

(symmetric predecessor of k)
– Smallest value in the right subtree 

(symmetric successor of k)
• We can choose any of those

– Let’s use the symmetric predecessor
– This is either a leaf – no problem
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Observations

• Two candidates
– Largest value in the left subtree 

(symmetric predecessor of k)
– Smallest value in the right subtree 

(symmetric successor of k)
• We can choose any of those

– Let’s use the symmetric predecessor
– This is either a leaf
– Or an inner node; but since its label is larger than that of all 

other labels in the left subtree of q, it can only have a left child
– Thus it is a node with one child  - and can be removed easily
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Example
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Content of this Lecture

• Trees
• Search Trees

– Definition
– Searching
– Inserting
– Deleting

• Natural Trees
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Natural Trees

• A search tree T created by inserting and deleting n keys in 
random order is called a natural tree

• As any binary tree, it has height(T)∈[n-1, log(n)]
• Height depends on the order in which keys were inserted
• Example

11,9,10,5,21,13,24,18                      5,9,10,11,13,18,21,24

5 13 24

11
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18
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5

9

11
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Average Case

• A natural tree with n nodes has maximal height of n-1
• Thus, searching will need O(n) comparisons in worst-case

– Same for inserting and deleting
• But: Natural trees are not bad on average

– The average case is O(log(n))
– More precisely, a natural tree is on average only ~1.4 times deeper 

than the optimal search tree (with height h~log(n))
– We skip the proof (argue over all possible orders of inserting n 

keys), because balanced search trees (AVL trees) are O(log(n)) 
also in worst-case and are not much harder to implement 
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Example 

Source: cg.scs.carleton.ca/
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Exemplary Questions

• Construct a natural search tree from the following input, 
showing all intermediate steps (I: insert; D: delete): I5, I7, 
I3, I10, D7, I7, I13, I12, D5

• The worst case complexity for inserting/deleting a key into 
a search tree with n=|V| nodes is O(n). Give an order of 
the following operations such that this worst case happens 
for every operation: I5, I7, I3, I10, D7, I7, I13, I12, D5

• For deleting a given key k in a natural search tree, one 
may need to find the symmetric predecessor (SP) of a key. 
Define what a SP is, give an algorithm for finding it 
(starting from k), and analyze its complexity
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