
Algorithms and Data Structures

Ulf Leser

(Search) Trees

Ulf Leser: Algorithms and Data Structures 2

Source: whmsoft.net/

Ulf Leser: Algorithms and Data Structures 3

Content of this Lecture

• Trees
• Search Trees
• Natural Trees

Ulf Leser: Algorithms and Data Structures 4

Motivation

• In a list, (almost) every element has one predecessor /
successor

• In a tree, (almost) every element has one predecessor
but many successors

• These splits partition the set of all elements of the list
– Every node in a tree can be reached

by only one path from root
– Partitions: All nodes with the same

prefix in their access paths
– Prominent split criterion: Order

• Elements with lower rank to
left subtree, with higher
rank to the right subtree

12

5 18

13

8

24

22

21-4 6-7

9-11

- 14-17 19-20 -

23-23 25

Ulf Leser: Algorithms and Data Structures 5

Trees are everywhere in computer science

• Divide-and-conquer call
stacks
– Max-subarray
– Merge-Sort
– QuickSort
– …

• XML
– depth-first vs breadth-first

traversal

Ulf Leser: Alg&DS, Summer semester 2011 22

Example

-2 3 1 3 4 -3 -4 2

-2 3 1 3 4 -3 -4 2

-2 3 1 3 4 -3 -4 2

• Solution 11

• Solutions 7, 4
– rmax/lmax: 7, 4

• Solutions 3, 4, 4, 2
– rmax/lmax: 3, 4, 1, 0

Ulf Leser: Alg&DS, Summer semester 2011 10

Data – A Tree

• The data items of an XML database form a tree
<customers>
<customer>
<last_name>
Müller

</last_name>
<first_name>
Peter

</last_name>
<age>
25

</age>
</customer>

<customer>
<last_name>
Meier

</last_name>
<first_name>
Stefanie

</last_name>
<age>
27

</age>
</customer>

</customers>

customers

customer

last_name

first_name
age

Müller

Peter

25

customer

last_name

first_name

age
Meier

Stefanie

27

Example

		-2		3		1		3		4		-3		-4		2

		-2		3		1		3

		4		-3		-4		2

		-2		3

		1		3

		4		-3

		-4		2

Solution 11

Solutions 7, 4

rmax/lmax: 7, 4

Solutions 3, 4, 4, 2

rmax/lmax: 3, 4, 1, 0

Ulf Leser: Alg&DS, Summer semester 2011

‹Nr.›

Data – A Tree

The data items of an XML database form a tree

<customers>

 <customer>

 <last_name>

 Müller

 </last_name>

 <first_name>

 Peter

 </last_name>

 <age>

 25

 </age>

 </customer>

 <customer>

 <last_name>

 Meier

 </last_name>

 <first_name>

 Stefanie

 </last_name>

 <age>

 27

 </age>

 </customer>

</customers>

customers

customer

last_name

first_name

age

Müller

Peter

25

customer

last_name

first_name

age

Meier

Stefanie

27

Ulf Leser: Alg&DS, Summer semester 2011

‹Nr.›

Ulf Leser: Algorithms and Data Structures 6

Already Seen

• Decision trees for proving
the lower bound for sorting

• Heaps for priority queues

• …

Ulf Leser: Alg&DS, Summer semester 2011 29

Full Decision Tree

S[i1]<S[j1]?

S[i2]<S[j2]? S[i6]<S[j6]?

S[i7]<S[j7]?S[i5]<S[j5]?S[i3]<S[j3]? S[i4]<S[j4]?

6
7
1
3
5
4
8
9
5

3
1
5
6
8
9
4
1
2

7
1
6
2
5
9
4
5
3

9
3
2
6
5
8
7
4
1

1
5
9
4
7
2
3
6
8

8
3
6
4
2
7
1
5
9

… …

… …

… …

1
7
8
3
2
9
5
4
3

5
8
3
1
4
9
7
1
6

3
6
4
8
9
2
1
7
5

……

… …

Ulf Leser: Alg&DS, Summer semester 2011 32

Heaps

• Definition
A heap is a labeled binary tree for which the following
holds
– Form-constraint (FC): The tree is complete except the last layer

• I.e.: Every node has exactly two children
– Heap-constraint (HC): The value of any node is smaller than that of

its children
3

5 8

10 9 12 15

11 18

Layer 1

Layer 2

Layer 3

Layer 4 (last)

Full Decision Tree

S[i1]<S[j1]?

S[i2]<S[j2]?

S[i6]<S[j6]?

S[i7]<S[j7]?

S[i5]<S[j5]?

S[i3]<S[j3]?

S[i4]<S[j4]?

6

7

1

3

5

4

8

9

5

3

1

5

6

8

9

4

1

2

7

1

6

2

5

9

4

5

3

9

3

2

6

5

8

7

4

1

1

5

9

4

7

2

3

6

8

8

3

6

4

2

7

1

5

9

…

…

…

…

…

…

1

7

8

3

2

9

5

4

3

5

8

3

1

4

9

7

1

6

3

6

4

8

9

2

1

7

5

…

…

…

…

Ulf Leser: Alg&DS, Summer semester 2011

‹Nr.›

Heaps

Definition
A heap is a labeled binary tree for which the following holds

Form-constraint (FC): The tree is complete except the last layer

I.e.: Every node has exactly two children

Heap-constraint (HC): The value of any node is smaller than that of its children

3

5

8

10

9

12

15

11

18

Layer 1

Layer 2

Layer 3

Layer 4 (last)

Ulf Leser: Alg&DS, Summer semester 2011

‹Nr.›

Ulf Leser: Algorithms and Data Structures 7

Machine Learning

• Want to go to a football game?
• Might be canceled – depends on the whether
• Let‘s learn from examples

Ulf Leser: Algorithms and Data Structures 8

Decision Trees

Outlook

Temperature Temperature

Humidity

Windy

Temperature

sunny rainyovercast

hot mild

high

true

No No

false

Ulf Leser: Algorithms and Data Structures 9

Many Applications

The decision tree partitions the set of
all possible situations based on

predefined characteristics (attributes)

Challenge: Which tree leads to the
best decisions as soon as possible?

Ulf Leser: Algorithms and Data Structures 10

Suffix-Trees

• Recall the problem to find all occurrences of a (short)
string P in a (long) string T

• Fastest way (O(|P|)): Suffix Trees
– Loot at all suffixes of T (there are |T| many)
– Construct a tree

• Every edge is labeled with a letter from T
• All edges emitting from a node are labeled differently
• Every path from root to a leaf is uniquely labeled
• All suffixes of T are represented as leaves

• Every occurrence of P must be the prefix of a suffix of T
• Thus, every occurrence of P must map to a path starting at

the root of the suffix tree

Ulf Leser: Algorithms and Data Structures 11

Example

rama$8

5

4

6

7

a
ma$

10 9
ma$

$
rama$

rama$11
$

rama$

3

narama$

na

1

bananarama$

na

2

narama$

12345678901
BANANARAMA$
ANANARAMA$
NANARAMA$
ANARAMA$
NARAMA$
ARAMA$
RAMA$
AMA$
MA$
A$
$

Ulf Leser: Algorithms and Data Structures 12

Searching in the Suffix Tree

rama$8

5

4

6

7

a
ma$

10 9
ma$

$
rama$

rama$11 $

rama$

3

narama$

na

1

bananarama$

na

2

narama$

P = „na“

rama$8

5

4

6

7

a
ma$

10 9
ma$

$
rama$

rama$11 $

rama$

3

narama$

na

1

bananarama$

na

2

narama$ P = „an“

The suffix tree for T represents all
common prefixes of suffixes of T as a

unique path from root.

Challenge: Construction of a suffix tree
in linear time.

Ulf Leser: Algorithms and Data Structures 13

Not Trees

DAG: Directed,
acyclic graph

General
(directed) graph)

Ulf Leser: Algorithms and Data Structures 14

Directed? Single-rooted?

We sometimes draw undirected
edges with root at the top and
assume directed edges from

root to leaves
Root: Only node without

incoming edge

53

2

1

4
5

3

2

1

4

This visual aid is necessary!
Otherwise, roots/leaves are not
defined without directed edges

Ulf Leser: Algorithms and Data Structures 15

Graphs

• Definition
A graph G=(V, E) consists of a set V of vertices (nodes)
and a set E of edges (E⊆VxV).
– A sequence of edges e1, e2, .., en is called a path iff ∀1≤i<n-1:

ei=(v‘, v) and ei+1=(v, v’’)
– The length of a path e1, e2, .., en is n
– A path (v1,v2), (v2,v3), …, (vn-1,vn) is acyclic iff all vi are different
– G is connected if every pair vi, vj is connected by at least one path
– G is undirected, if ∀(v,v’)∈E ⇒(v’,v)∈E. Otherwise G is directed
– G is acyclic if it contains no cyclic path

Let G=(V, E) be a directed graph and let v,v’∈V.
– Every edge (v,v’)∈E is called outgoing for v
– Every edge (v’,v)∈E is called incoming for v

Ulf Leser: Algorithms and Data Structures 16

Trees as Connected Graphs

• Definition
– A undirected connected acyclic graph is called a undirected tree
– A directed connected acyclic graph in which all but one vertex of

in-degree 1 and one vertex has in-degree 0 is called a directed
rooted tree

• From now on: “Tree” means “rooted directed tree”
• Lemma

– In a tree, there exists exactly one path between root and any other
node

5

8

6

7

1

3
2

4

5 8

6

7

1
3

2

4

Ulf Leser: Algorithms and Data Structures 17

Terminology

• Definition
Let T be a tree. Then …
– A node with no outgoing edge is a

leaf; other nodes are inner nodes
– The depth of a node p is the length

of the path from root to p
– The height of T is the depth of its

deepest leaf
– The order of T is the maximal

number of children of its nodes
– “Level i” are all nodes at depth i
– T is ordered if the children of all

inner nodes are ordered

leaves

depth=2

height=3

order=3

Ulf Leser: Algorithms and Data Structures 18

More Terminology

• Definition
Let T be a tree and v a node.
– All nodes adjacent to an outgoing

edge of v are v’s children
– v is called the parent of all its

children
– All nodes on the path from root to

v without v are the ancestors of v
– All nodes reachable from v are its

successors
– The rank of a node v is the number

of its children

ancestors

parent

children

rank=2

Ulf Leser: Algorithms and Data Structures 19

Two More Concepts

• Definition
Let T be a directed tree of
order k. T is complete if all its
inner nodes have rank k and all
leaves have the same depth

• In this lecture, we will mostly
consider rooted ordered trees of
order two (binary trees)

Ulf Leser: Algorithms and Data Structures 20

Recursive Definition of Trees

• Will often traverse trees using recursive functions
• Definition

A (binary) tree is a structure defined as follows:
– A single node is a tree with height 0
– If T1 and T2 are trees, then the structure formed by a new node v

and edges from v to the root of T1 and from v to the root of T2 is a
tree

• v is its root
• The height of this tree is max(height(T1), height(T2))+1;

– If T1 is a tree, then the structure formed by a new node v and an
edge from v to the root of T1 is a tree

• v is its root
• The height of this tree is height(T1)+1;

Ulf Leser: Algorithms and Data Structures 21

Some Properties (without proofs)

• Lemma
Let T=(V, E) be a tree of order k.
Then
– |V|=|E|+1
– If T is complete, T has kheight(T) leaves
– If T is a complete binary tree, T has

2height(T)+1-1 nodes
– If T is a binary tree with n leaves,

height(T) ∈ [floor(log(n)), n-1]

Ulf Leser: Algorithms and Data Structures 22

Content of this Lecture

• Trees
• Search Trees

– Definition
– Searching
– Inserting
– Deleting

• Natural Trees

Ulf Leser: Algorithms and Data Structures 23

Search Trees

• Definition
A search tree T=(V,E) is a rooted binary tree with n=|V|
differently key-labeled nodes such that ∀v∈V:
– label(v)>max(label(left_child(v)), label(successors(left_child(v)))
– label(v)<min(label(right_child(v)), label(successors(right_child(v)))

• Remarks
– For simplicity, we use integer labels
– “node” ~ “label of a node”
– We only consider search trees without

duplicate keys (easy to change)
– Search trees are used to manage and

search a list of keys
– Operations: search, insert, delete

12

5 18

13

8

24

22

21

Ulf Leser: Algorithms and Data Structures 24

Search Trees

• Definition
A search tree T=(V,E) for a set of n unique keys is a
labeled binary tree with |V|=n and
– label(v)>max(label(left_child(v)), label(successors(left_child(v)))
– label(v)<min(label(right_child(v)), label(successors(right_child(v)))

• Remarks
– For simplicity, we use integer labels
– “node” ~ “label of a node”
– We only consider search trees without

duplicate keys (easy to change)
– Search trees are used to manage and

search a list of keys
– Operations: search, insert, delete

12

5 18

13

8

24

22

21

Ulf Leser: Algorithms and Data Structures 25

Complete Trees

• Conceptually, we pad search trees to full rank in all nodes
– “padded” leaves are usually neither drawn nor implemented (NULL)

• A “padded” leaf represents the interval of values that
would be below this node

12

5 18

13

8

24

22

21

12

5 18

13

8

24

22

21-4 6-7

9-11

- 14-17 19-20 -

23-23 25-

Ulf Leser: Algorithms and Data Structures 26

What For?

• For a search tree T=(V,E), we eventually will reach
O(log(|V|)) for testing whether k∈T and for inserting and
deleting a key
– First: Average Case of natural trees
– Next: Worst Case for AVL-Trees

• Compared to binsearch on arrays, search trees are a
dynamically growing / shrinking data structure
– But need to store pointers
– Complete trees can be easily managed in arrays

Ulf Leser: Algorithms and Data Structures 27

Searching

• Searching a key k
– Comparing k to a node

determines whether we have
to look further down the left
or the right subtree

• We stop if label(node)=k
– If there is no child left, k∉T

• Complexity
– In the worst case we need to

traverse the longest path in T
to show k∉T

– Thus: O(|V|)
– Wait a bit …

func node search(T search_tree,
k integer) {

v := root(T);
while v!=null do
if label(v)>k then
v := v.left_child();

else if label(v)<k then
v := v.right_child();

else
return v;

end while;
return null;

}

12

5 18

13

8

24

22

21

Ulf Leser: Algorithms and Data Structures 28

Insertion

• First search the new key k
– If k∈T, we do nothing
– If k∉T, the search must finish

at a null pointer in a node p
• A “right pointer” if

label(p)<k, otherwise a “left
pointer”

• We replace the null with a
pointer to a new node k

• Complexity: Same as
search

func bool insert(T search_tree,
k integer) {

v := root(T);
while v!=null do
p := v;
if label(v)>k then
v := v.left_child();

else if label(v)<k then
v := v.right_child();

else
return false;

end while;
if label(p)>k then
p.left_child := new node(k);

else
p.right_child := new node(k);

end if;
return true;

}

Ulf Leser: Algorithms and Data Structures 29

Example

5

13

24

21

Insert 19

19

12

5 18

13

8

24

22

21

12

18

8 22

5

13

24

21

19

12

18

8 22

11

Ulf Leser: Algorithms and Data Structures 30

Deletion

• Again, we first search k
• If k∉T, we are done
• Assume k∈T. The following situations are possible

– k is stored in a leaf. Then simply remove this leaf
– k is stored in an inner node q with only one child. Then remove q

and connect parent(q) to child(q)
– k is stored in an inner node q with two children. Then …

Ulf Leser: Algorithms and Data Structures 31

Observations

• We cannot remove q, but we
can replace the label of q with
another label - and remove
this node

• We need a node q’ which can
be removed and whose label
k’ can replace k without
hurting the search tree constraints
– label(k’)>max(label(left_child(k’)), label(successors(left_child(k’)))
– label(k’)<min(label(right_child(k’)), label(successors(right_child(k’)))

5

13

24

21

12

18

10 22

11

9

7

28

Ulf Leser: Algorithms and Data Structures 32

Observations

• Two candidates
– Largest value in the left subtree

(symmetric predecessor of k)
– Smallest value in the right subtree

(symmetric successor of k)
• We can choose any of those

– Let’s use the symmetric predecessor
– This is either a leaf – no problem

5

13

24

21

12

18

10 22

11

9

7

28

Ulf Leser: Algorithms and Data Structures 33

Observations

• Two candidates
– Largest value in the left subtree

(symmetric predecessor of k)
– Smallest value in the right subtree

(symmetric successor of k)
• We can choose any of those

– Let’s use the symmetric predecessor
– This is either a leaf
– Or an inner node; but since its label is larger than that of all

other labels in the left subtree of q, it can only have a left child
– Thus it is a node with one child - and can be removed easily

5

13

24

21

12

18

10 22

11

289

7

Ulf Leser: Algorithms and Data Structures 34

Example

Remove 10
Rem

ove 22
5

13

24

21

12

18

9 22

11

7

5

13

12

18

9 21

11

7

Remove 12

5

13

24

21

12

18

10 22

11

289

7

28

24

28

5

13

11

18

9 21

7

24

28

Ulf Leser: Algorithms and Data Structures 35

Content of this Lecture

• Trees
• Search Trees

– Definition
– Searching
– Inserting
– Deleting

• Natural Trees

Ulf Leser: Algorithms and Data Structures 36

Natural Trees

• A search tree T created by inserting and deleting n keys in
random order is called a natural tree

• As any binary tree, it has height(T)∈[n-1, log(n)]
• Height depends on the order in which keys were inserted
• Example

11,9,10,5,21,13,24,18 5,9,10,11,13,18,21,24

5 13 24

11

219

10

18

10

5

9

11

…

Ulf Leser: Algorithms and Data Structures 37

Average Case

• A natural tree with n nodes has maximal height of n-1
• Thus, searching will need O(n) comparisons in worst-case

– Same for inserting and deleting
• But: Natural trees are not bad on average

– The average case is O(log(n))
– More precisely, a natural tree is on average only ~1.4 times deeper

than the optimal search tree (with height h~log(n))
– We skip the proof (argue over all possible orders of inserting n

keys), because balanced search trees (AVL trees) are O(log(n))
also in worst-case and are not much harder to implement

Ulf Leser: Algorithms and Data Structures 38

Example

Source: cg.scs.carleton.ca/

Ulf Leser: Algorithms and Data Structures 39

Exemplary Questions

• Construct a natural search tree from the following input,
showing all intermediate steps (I: insert; D: delete): I5, I7,
I3, I10, D7, I7, I13, I12, D5

• The worst case complexity for inserting/deleting a key into
a search tree with n=|V| nodes is O(n). Give an order of
the following operations such that this worst case happens
for every operation: I5, I7, I3, I10, D7, I7, I13, I12, D5

• For deleting a given key k in a natural search tree, one
may need to find the symmetric predecessor (SP) of a key.
Define what a SP is, give an algorithm for finding it
(starting from k), and analyze its complexity

	Foliennummer 1
	Foliennummer 2
	Content of this Lecture
	Motivation
	Trees are everywhere in computer science
	Already Seen
	Machine Learning
	Decision Trees
	Many Applications
	Suffix-Trees
	Example
	Searching in the Suffix Tree
	Not Trees
	Directed? Single-rooted?
	Graphs
	Trees as Connected Graphs
	Terminology
	More Terminology
	Two More Concepts
	Recursive Definition of Trees
	Some Properties (without proofs)
	Content of this Lecture
	Search Trees
	Search Trees
	Complete Trees
	What For?
	Searching
	Insertion
	Example
	Deletion
	Observations
	Observations
	Observations
	Example
	Content of this Lecture
	Natural Trees
	Average Case
	Example
	Exemplary Questions

