
Algorithms and Data Structures

Ulf Leser

Open Hashing

Ulf Leser: Algorithms and Data Structures 2

Open Hashing

• Open Hashing: Store all values inside hash table A
• Inserting values

– No collision: As usual
– Collision: Chose another index and “probe” again (is it “open”?)
– If second/third/… index is full as well, probing must be repeated

• Many suggestions on how to chose the next index to probe
• In general, we want a strategy (probe sequence) that

– … ultimately visits any index in A (and few twice before)
– … is deterministic – when searching, we must follow the same

order of indexes (probe sequence) as for inserts

Ulf Leser: Algorithms and Data Structures 3

Reaching all Indexes of A

• Definition
Let A be a hash table, |A|=a, over universe U and h a hash
function for U into A. Let I={0, …, a-1}. A probe sequence
is a deterministic, surjective function s: UxI→I

• Remarks
– We use j to denote elements of the sequence: Where to jump after

j-1 probes
– s need not be injective – a probe sequences may cross itself

• But it is better if it doesn’t
– We typically use s(k, j) = (h(k) – s’(k, j)) mod a for a properly

chosen function s’
• Example: s’(k, j) = j ,hence s(k, j) = (h(k)–j) mod a

Ulf Leser: Algorithms and Data Structures 4

Searching

• Let s’(k, 0) := 0
• We assume that s cycles

through all indexes of A
– In whatever order

• Probe sequences longer
than a-1 usually make no
sense, as they necessarily
look into indexes twice
– But beware of non-injective

functions

1. func int search(k int) {
2. j := 0;
3. first := h(k);
4. repeat
5. pos := (first-s’(k, j) mod a;
6. j := j+1;
7. until (A[pos]=k) or

(A[pos]=null) or
(j=a);

8. if (A[pos]=k) then
9. return pos;
10. else
11. return -1;
12. end if;
13.}

Ulf Leser: Algorithms and Data Structures 5

Deletions

• Deletions are a problem
– Assume h(k)= k mod 11 and s(k, j) = (h(k) + 3*j) mod a)

1 6ins(1); ins(6)

ins(23)

ins(12)

del(23)

search(12)

0 1 2 3 4 5 6 7 8 9 10

1 23 6

1 23 6 12

1 6 12

1 ? 6 12

Ulf Leser: Algorithms and Data Structures 6

Remedy

• Leave a mark (tombstone)
– During search, jump over tombstones
– During insert, tombstones may be replaced

• Creates longer sequences; ultimately, α becomes
meaningless

• Practical: Avoid open hashing when deletions are frequent

Ulf Leser: Algorithms and Data Structures 7

Open versus External collision handling

• Pro Open Hashing
– We do not need more space than reserved – more predictable
– A typically is filled more – less wasted space

• Contra
– More complicated
– Generally, we get worse WC/AC complexities for insertion/deletion

• Additional work to run along probe sequences
• Especially deletions have overhead

– A can get full; we cannot go beyond α=1

Ulf Leser: Algorithms and Data Structures 8

Content of this Lecture

• Open Hashing
– Linear Probing
– Double Hashing
– Brent’s Algorithm
– Ordered Hashing

Ulf Leser: Algorithms and Data Structures 9

Open Hashing: Overview

• We will look into three strategies in more detail
– Linear probing: s(k, j) := (h(k) – j) mod a
– Double hashing: s(k, j) := (h(k) – j*h’(k)) mod a
– Ordered hashing: Any s; values in probe sequence are kept sorted

• Others
– Quadratic hashing: s(k, j) := (h(k) – floor(j/2)2*(-1)j) mod a

• Less vulnerable to local clustering then linear hashing
– Uniform hashing: s is a random permutation of I dependent on k

• High administration overhead, guarantees shortest probe sequences
– Coalesced hashing: s arbitrary; entries are linked by add. pointers

• Like overflow hashing, but overflow chains are in A; needs additional
space for links

Ulf Leser: Algorithms and Data Structures 10

Linear Probing

• Probe sequence function: s(k, j) := (h(k) – j) mod a
– Assume h(k)= k mod 11

1 13 7

23 1 13 7

ins(1); ins(7); ins(13)

ins(23)

ins(12)

ins(10)

ins(24)

23 1 13 7 12

23 1 13 7 10 12

23 1 13 7 24 10 12

0 1 2 3 4 5 6 7 8 9 10

Ulf Leser: Algorithms and Data Structures 11

Analysis

• The longer a chain …
– the more different values of h(k) it covers
– the higher the chances to produce further collisions

• The faster a chain grows, the faster it merges with other
chains

• Assume an empty position p left of a chain of length n and
an empty position q with an empty cell to the right
– Also assume h is uniform
– Chances to fill q with next insert: 1/a
– Chances to fill p with the next insert: (n+1)/a

• Linear probing tends to quickly produce long full stretches
of A with high collision probabilities

Ulf Leser: Algorithms and Data Structures 12

In Numbers (Derivation of Formulas Skipped)

Source: S. Albers
/ [OW93]

• Scenario: Some inserts (leading to fill degree α), then
many searches
– Expected number of probes per search are most important

Ulf Leser: Algorithms and Data Structures 13

Quadratic Hashing

Source: S. Albers
/ [OW93]

Ulf Leser: Algorithms and Data Structures 14

Discussion

• Disadvantage of linear (and quadratic) hashing:
Problems with the original hash function h are preserved
– Probe sequence only depends on h(k), not on k

• s’(k, j) ignores k
– All synonyms k, k’ will create the same probe sequence

• Synonym: Two keys that form a collision
– Thus, if h tends to generate clusters (or inserted keys are non-

uniformly distributed in U), also s tends to generate clusters (i.e.,
sequences filled from multiple keys)

Ulf Leser: Algorithms and Data Structures 15

Content of this Lecture

• Open Hashing
– Linear Probing
– Double Hashing
– Brent’s Algorithm
– Ordered Hashing

Ulf Leser: Algorithms and Data Structures 16

Double Hashing

• Double Hashing: Use a second hash function h’
– s(k, j) := (h(k) – j*h’(k)) mod a (with h’(k)≠0)
– Further, we don’t want that h’(k)|a (done if a is prime)

• h’ should spread h-synonyms
– If h(k)=h(k’), then hopefully h’(k)≠h’(k’)

• Otherwise, we preserve problems with h
– Optimal case: h’ statistically independent of h, i.e.,

p(h(k)=h(k’)∧h’(k)=h’(k’)) = p(h(k)=h(k’)) * p(h’(k)=h’(k’))

• If both are uniform: p(h(k)=h(k’)) = p(h’(k)=h’(k’)) = 1/a

• Example: If h(k)= k mod a, chose h’(k)=1+k mod (a-2)

Ulf Leser: Algorithms and Data Structures 17

Example (Linear Probing produced 9 collisions)

h(k) = k mod 11; h‘(k)= 1+k mod 9; s(k,j) := (h(k)– j*h’(k)) mod 11

ins(23)
h(k)=1; h‘(k)=6

s(k, 1)=6

ins(12)
h(k)=1; h‘(k)=4

s(k, 1)=8

ins(10)

ins(24)
h(k)=2; h‘(k)=7

s(k, 1)=6
s(k, 2)=10
s(k, 3)=3

ins(1); ins(7); ins(13) 1 13 7

1 13 23 7

1 13 23 7 12

1 13 23 7 12 10

1 13 24 23 7 12 10

0 1 2 3 4 5 6 7 8 9 10

Ulf Leser: Algorithms and Data Structures 18

Analysis

• Please see [OW93]

Ulf Leser: Algorithms and Data Structures 19

Content of this Lecture

• Open Hashing
– Linear Probing
– Double Hashing
– Brent’s Algorithm
– Ordered Hashing

Ulf Leser: Algorithms and Data Structures 20

Another Example

ins(34)
h(k)=1; h‘(k)=8

s(k, 1)=4

ins(12)
h(k)=1; h‘(k)=4

s(k, 1)=8

ins(10)

ins(15)
h(k)=4; h‘(k)=7

s(k, 1)=8
s(k, 2)=1
s(k,3)=5

ins(23); ins(13) 23 13

23 13 34

23 13 34 12

23 13 34 12 10

23 13 34 15 12 10

0 1 2 3 4 5 6 7 8 9 10

Ulf Leser: Algorithms and Data Structures 21

Observation

• Let’s change the order of insertions (and nothing else)

ins(15)
h(k)=4; h‘(k)=6

ins(12)
h(k)=1; h‘(k)=4

s(k, 1)=8

ins(10)

ins(34)
h(k)=1; h‘(k)=8

s(k, 1)=4
s(k, 2)=7

ins(23); ins(13) 23 13

23 13 15

23 13 15 12

23 13 15 12 10

23 13 15 34 12 10

Ulf Leser: Algorithms and Data Structures 22

Observation

• The number of collisions depends on the order of inserts
– Because h’ spreads h-synonyms differently for different values of k

• We cannot change the order of inserts, but …
• Observe that when we insert k’ and there already was a k

with h(k)=h(k’), we actually have two choices
– Until now we always looked for a new place for k’ (in step j’)
– Why not: set A[h(k’)]=k’ and find a new place for k?

• Use open hashing scheme where next offset is independent of j
• Linear / quadratic hashing, double hashing as we defined it

– If s(k’,j’) is filled but s(k,j+1) is free, then the second choice is
better

Ulf Leser: Algorithms and Data Structures 23

Brent’s Algorithm

• Brent’s algorithm:
Upon collision, propagate key for which the next index in
probe sequence is free; if both are occupied, propagate k’
– Brent, R. P. (1973). "Reducing the Retrieval Time of Scatter Storage Techniques.“.

Communications of the ACM

• Insert is faster, searches will be faster on average
– Improves only successful searches - otherwise we have to follow

the chain to its end anyway
– Average-case probe length for successful searches becomes almost

constant (~2.5 accesses) even for high fill degrees

Ulf Leser: Algorithms and Data Structures 24

Content of this Lecture

• Open Hashing
– Linear Probing
– Double Hashing
– Brent’s Algorithm
– Ordered Hashing

Ulf Leser: Algorithms and Data Structures 25

Idea

• Can we also improve unsuccessful searches?
– Recall overflow hashing: If we keep the overflow chain sorted, we

can stop searching after α/2 comparisons on average
• Transferring this idea: Keep keys sorted in probe sequence

– We have seen with Brent’s algorithm that we have the choice
which key to propagate whenever we have a collision

– Thus, we can also choose to always propagate the larger of both
keys – which generates a sorted probe sequence

• Result: Unsuccessful searchers become as fast as
successful searches - α/2 on average

Ulf Leser: Algorithms and Data Structures 26

Details

• In Brent‘s algorithm, we replace a key if we can insert the
replaced key directly into A

• Now, we must replace keys even if the next slot in the
probe sequence is occupied
– We run through probe sequence until we meet a key that is smaller
– We insert the new key here
– All subsequent keys must be replaced (moved in probe sequence)

• Note that this doesn’t make inserts slower than before
– Without replacement, we would have to search the first free slot
– Now we replace until the first free slot

Ulf Leser: Algorithms and Data Structures 27

Correctness

• Asume linear hashing (j doesn’t matter)
• Invariant: Let s(k,j) be the position in A where k is stored.

Searching k returns the correct answer iff ∀i<j: A[s(k,i)] <
A[s(k,j)]

• Proof by induction
– Invariant holds for the empty array
– Imagine invariant holds before inserting a key k’
– We insert k’ in position s(k’,j) (for some j)

• Either A[s(k’,j)] was free
– then invariant still holds

• Or the old A[s(k’,j)]<k’ (otherwise we wouldn’t have inserted k’ here)
– Then the old A[s(k’,j)] was replaced by a smaller value
– Invariant must still hold

Ulf Leser: Algorithms and Data Structures 28

Wrap-Up

• Open hashing can be a good alternative to overflow
hashing even if the fill grade approaches 1
– Very little average-case cost for look-ups with double hashing and

Brent’s algorithm or using ordered hashing
• Depending which types of searches are more frequent

• Open hashing suffers from having only static place, but
guarantees to not request more space once A is allocated
– Less memory fragmentation

Ulf Leser: Algorithms and Data Structures 29

Exemplary Questions

• Create a hashtable step-by-step using open hashing with
double probing and hash functions h(k)=k mod 13 and
h’(k)=3+k mod 9 when inserting keys 17,12,4,1,36,25,6

• Use the same list for creating a hash table with double
hashing and Brent’s algorithm

• Use the same list for creating a hash table with ordered
linear probing (linear probing such that the probe
sequences are ordered).

• Analyze the WC complexity of searching key k in a hash
table with direct chaining using a sorted linked list when
(a) k is in A; (b) k is not in A.

	Foliennummer 1
	Open Hashing
	Reaching all Indexes of A
	Searching
	Deletions
	Remedy
	Open versus External collision handling
	Content of this Lecture
	Open Hashing: Overview
	Linear Probing
	Analysis
	In Numbers (Derivation of Formulas Skipped)
	Quadratic Hashing
	Discussion
	Content of this Lecture
	Double Hashing
	Example (Linear Probing produced 9 collisions)
	Analysis
	Content of this Lecture
	Another Example
	Observation
	Observation
	Brent’s Algorithm
	Content of this Lecture
	Idea
	Details
	Correctness	
	Wrap-Up
	Exemplary Questions

