Algorithms and Data Structures

Sorting:
Merge Sort and Quick Sort

Ulf Leser
Summary

<table>
<thead>
<tr>
<th></th>
<th>Comparisons worst case</th>
<th>Comparisons best case</th>
<th>Additional space</th>
<th>Moves worst/best</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection Sort</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
<td>$O(1)$</td>
<td>$O(n)^*$</td>
</tr>
<tr>
<td>Insertion Sort</td>
<td>$O(n^2)$</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(n^2) / O(n)$</td>
</tr>
<tr>
<td>Bubble Sort</td>
<td>$O(n^2)$</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(n^2) / O(1)$</td>
</tr>
<tr>
<td>Merge Sort</td>
<td>$O(n \times \log(n))$</td>
<td>$O(n \times \log(n))$</td>
<td>$O(n)$</td>
<td>$O(n \times \log(n))$</td>
</tr>
<tr>
<td>Magic Sort (?)</td>
<td>$O(n)$</td>
<td></td>
<td></td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>
Content of this Lecture

- Merge Sort
- Quick Sort
Central Idea for Improvements in Sorting

• Methods we analyzed so-far did not optimally exploit transitivity of the „greater-or-equal“ relationship
• If $x \leq y$ and $y \leq z$, then $x \leq z$
• If we compared x and y and y and z, there is no need any more to compare x and z
 – But all our simple algorithms in worst case compare every element with every element – at least once
• The clue to lower complexity algorithms for sorting is finding systematic (algorithmic) ways to exploit transitivity
Merge Sort

- There are various algorithms with $O(n \cdot \log(n))$ comparisons
- (Probably) Simplest one: Merge Sort
 - Divide-and-conquer algorithm
 - Break array in two partitions of equal size
 - Sort each partition recursively if it has more than 1 elements
 - Merge sorted partitions
- Merge Sort is not in-place: $O(n)$ additional space
Illustration

Source: WikiPedia

Divide

Conquer
Illustration

Divide - Partition

Conquer - Merge
- Here we exploit transitivity
- We save comparisons during merge because both sub-lists are sorted

Source: WikiPedia
function void mergesort(S array; 1,r integer) {
 if (l<r) then
 # Sort each ~50% of array
 m := (r-l) div 2;
 mergesort(S, l, l+m);
 mergesort(S, l+m+1, r);

 # Merge both sorted lists
 merge(S, l, l+m, r);
 else
 # Nothing to do, 1-element list
 end if;
}
Merging Two Sorted Lists

- Most work is done in the **merge step**
 - Recall: Intersection of two sorted doc-lists in IR

- **Idea**
 - Move **one pointer through each list**
 - Whatever element is smaller, copy to a new list and increment this pointer
 - “New list” requires **additional space**
 - Faster: If keys are equal, move both pointers and copy both values
 - Repeat until one list is exhausted
 - Copy rest of other list to new list
 - Note: You cannot do this in-place
Example

\[\begin{array}{c}
1 & 4 & 7 & 8 & 12 \\
\vdots
\end{array} \quad \rightarrow \quad \begin{array}{c}
2 & 3 & 8 & 9 & 11 \\
\vdots
\end{array} \quad \rightarrow \quad \begin{array}{c}
1 & 4 & 7 & 8 & 12 \\
\vdots
\end{array} \quad \rightarrow \quad \begin{array}{c}
2 & 3 & 8 & 9 & 11 \\
\vdots
\end{array} \]

\[\begin{array}{c}
1 & 4 & 7 & 8 & 12 \\
\vdots
\end{array} \quad \rightarrow \quad \begin{array}{c}
2 & 3 & 8 & 9 & 11 \\
\vdots
\end{array} \quad \rightarrow \quad \begin{array}{c}
1 & 4 & 7 & 8 & 12 \\
\vdots
\end{array} \quad \rightarrow \quad \begin{array}{c}
2 & 3 & 8 & 9 & 11 \\
\vdots
\end{array} \]

...
function void merge(S array; l,m,r integer) {
 B: array[1..r-l+1];
 i := 1; # Start of 1st list
 j := m+1; # Start of 2nd list
 k := 1; # Target list
 while (i<=m) and (j<=r) do
 if S[i]<=S[j] then
 B[k] := S[i]; # From 1st list
 i := i+1;
 else
 B[k] := S[j]; # From 2nd list
 j := j+1;
 end if;
 k := k+1; # Next target
 end while;
 if i>m then # What remained?
 copy S[j..r] to B[k..k+r-j];
 else
 copy S[i..m] to B[k..k+m-i];
 end if;
 # Back to original list
 copy B[1..r-l+1] to S[l..r];
}
Complexity

• Theorem

Merge Sort requires $\Omega(n\times\log(n))$ and $O(n\times\log(n))$ comparisons

• Proof of $O(n\times\log(n))$
 - Merging two sorted lists of size n requires $O(n)$ comparisons
 • After every comp, 1 element is moved to target; there are only $2\times n$ elements; thus, there can be only $2\times n$ comparisons
 - Merge Sort calls MergeSort twice with always $\sim50\%$ of the array
 • Let $T(n)$ be the number of comparisons
 • Thus: $T(n) = T(n/2) + T(n/2) + O(n)$
 • This is $O(n\times\log(n))$
 • See recursive solution of max subarray

• $\Omega(n\times\log(n))$: # comparisons does not depend on data in S
Remarks

- Merge Sort is **worst-case optimal**: Even in the worst of all inputs of size n, it does not need more than (in the order of) the minimal number of comparisons
 - Given our lower bound for sorting
- But there are also **disadvantages**
 - $O(n)$ additional space
 - Requires $\Omega(n \log(n))$ moves
 - Sorted sub-arrays get copied to new array in any case
 - See Ottmann/Widmayer for proof
- **Note**: Basis for sorting algorithms on **external memory**
Summary

<table>
<thead>
<tr>
<th></th>
<th>Comparisons worst case</th>
<th>Comparisons best case</th>
<th>Additional space</th>
<th>Moves worst/best</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection Sort</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Insertion Sort</td>
<td>$O(n^2)$</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(n^2) / O(n)$</td>
</tr>
<tr>
<td>Bubble Sort</td>
<td>$O(n^2)$</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(n^2) / O(1)$</td>
</tr>
<tr>
<td>Merge Sort</td>
<td>$O(n \times \log(n))$</td>
<td>$O(n \times \log(n))$</td>
<td>$O(n)$</td>
<td>$O(n \times \log(n))$</td>
</tr>
</tbody>
</table>
Content of this Lecture

- Merge Sort
- **Quick Sort**
 - Algorithm
 - Average Case Analysis
 - Improving Space Complexity
Comparison Merge Sort and Quick Sort

- What can we do better than Merge Sort?
 - The $O(n)$ additional space is a problem
 - We need this space because the growing sorted subarrays have fixed sizes of up to 50% of $|S|$ (2, 4, 8, ..., ceil(n/2))
 - We cannot efficiently merge two sorted lists in-place, because we have no clue how the numbers are distributed in the two lists

- Quick-sort uses a similar yet different way
 - We also recursively generate sort-of sorted subarrays
 - Whenever we create two such subarrays, we make sure that one contains only “small” and one contains only “large” values - relative to a value that needs to be determined
 - This allows us to do a kind-of “merge” in-place
Main Idea

- Let k be an arbitrary index of S, $1 \leq k \leq |S|$
- Look at element $p = S[k]$ (pivot element)
- Modify S such that $\exists i$: $\forall j \leq i: S[j] \leq p$ and $\forall l > i: p \leq S[l]$
 - How? Wait a minute
 - S is partitioned in two subarrays S' and S''
 - S' with values smaller-or-equal than pivot element p
 - S'' with values larger-or-equal than pivot element p
 - Note that afterwards value p is at its final position in the array
 - S' and S'' are smaller than S
 - At least one element smaller
 - But we don’t know how much smaller – depends on choice of k
- Treat S' and S'' using the same method recursively
 - How often? Not clear – depends on choice of k (again)
Illustration
A Bad Case
Quick Sort Framework

• Start with $\text{qsort}(S, 1, |S|)$
• “Sort” S around the pivot element p (divide)
 – Problem 1: Choose k (i.e. p)
 – Problem 2: Do this in-place
• Recursively sort values smaller-or equal than pivot element
• Recursively sort values larger-or-equal than pivot element
• Problem 3: How often do we need to do this?

```c
1. func void qsort(S array;
2.       l,r integer) {
3.     if $r \leq l$ then
4.         return;
5.     end if;
6.     pos := divide( S, l, r);
7.     qsort( S, l, pos-1);
8.     qsort( S, pos+1, r);
9. }
```
Addressing Problem P1

- **P1:** We need to choose k ($p = S[k]$)
- p determines the sizes of S' and S''

- **Best:** p is the *middle value of S (median)*
 - S' and S'' are of equal size ($\sim |S|/2$)
 - Creates a shallow search tree

- **Worst:** p at the *border of the values of S*
 - $|S'| \sim 0$ and $|S''| \sim |S|-1$ or vice versa
 - Creates a deep search tree

- **Hint to P3:** Somewhere in $[\log(n), n]$ times
 - Depending on choice of p
Intermezzo: Mean and Median

- In statistics, one often tries to capture the “essence” of a (potentially large) set of values
- One essence: **Mean**
 - Average temperature per month, average income per year, average height of males at age of 18, average duration of study, ...
- Less **sensitive to outliers**: **Median**
 - The middle value
 - Assume temps in June 25 24 24 23 25 25 24 4 -1 9 18 24
 - Which temperature do you expect for an average day in June?
 - Mean: 18.6
 - Median: 24 – more realistic
 - How long will you need for your Bachelor? 6,35 semesters?
 - German median net income (2010) was 24.152€ – but on average?
P1: Choosing k

- In the best case, p is the median of S
- Computing a mean of n values is in O(n)
- But there is no efficient way to find the median of n values
- One option: Approximations
 - If S is an array of people’s income in Germany, we call the “Statistische Bundesamt” to ask for the mean of all incomes in Germany, and scan the array until we find a value that is 10% or less different, and use this value as pivot
 - If S is large and randomly drawn from a set of incomes, this scan will be very short
 - If S is an array of family names in Berlin, we take the Berlin telephone book and open it roughly in the middle
P1: Choosing k - Again

- Option 1: Find min/max in S; search k with $p \sim \frac{\text{max-min}}{2}$
 - Why should the values in S be equally distributed in this range?
 - For instance: Incomes are not equally distributed at all
- Option 2: Choose a (small) set of values X from S at random and determine k with $p=\text{median}(X)$
 - X follows the same distribution as S, but $|X| << |S|$
 - Since this procedure would have to be performed for each qSort, only very small X (with constant size) do not influence runtime a lot
 - Beware: If $|X| = c*|S|$ for any c, we are still in $O(|S|)$
 - But: Small X will lead to bad median estimations
- Option 3: Choose k (and thus p) at random
 - For instance, simply use the last value in the array
 - We’ll see that this already produces good result on average
Recall: Quick Sort Framework

1. func void qsort(S array;
2. l,r integer) {
3. if r≤l then
4. return;
5. end if;
6. pos := divide(S, l, r);
7. qsort(S, l, pos-1);
8. qsort(S, pos+1, r);
9. }

- Start with qsort(S, 1, |S|)
- “Sort” S around the pivot element (divide)
 - Problem 1: Choose k
 - Problem 2: Do this in-place
- Recursively sort values smaller-or equal than pivot element
- Recursively sort values larger-or-equal than pivot element
- Problem 3: How often do we need to do this?
Problem P2: Do this in-place

- We use k=r (random choice of p)
- Simple idea
 - Search from l towards r until first value greater-or-equal p
 - Search from r towards l until first value smaller-or-equal p
 - Swap these two values
 - Repeat if i has not reached j yet
 - Result: Values left from i are smaller than p and values right from j are larger than p
 - Move p into the middle

```cpp
1. func int divide(S array;
2. l,r integer) {
3. p := S[r];
4. i := l;
5. j := r-1;
6. repeat
7. while (S[i]<=p and i<r)  
8. i := i+1;
9. end while;
10. while (S[j]>=p and j>l)  
11. j := j-1;
12. end while;
13. if i<j then
14. swap( S[i], S[j]);
15. end if;
16. until i>=j;
17. swap( S[i], S[r]);
18. return i;
19. }
```
Example
P2: Complexity of divide()

- **# of comparisons: O(r-l)**
 - Whenever we perform a comparison, either i or j are incremented / decremented
 - i starts from l, j starts from r, and the algorithm stops once they meet
 - This is **worst, average and best case**

- **# of swaps: O(r-l) in worst case**
 - Example: 8,7,8,6,1,3,2,3,5
 - Requires ~ (r-l)/2 swaps

```plaintext
1. func int divide(S array; l,r integer) {
2.  p := S[r];
3.  i := l;
4.  j := r-1;
5.  repeat
6.    while (S[i]<=p and i<r)
7.      i := i+1;
8.  end while;
9.  end repeat
10.   while (S[j]>=p and j>l)
11.     j := j-1;
12.   end while;
13.   if i<j then
14.     swap( S[i], S[j]);
15.   end if;
16.   until i>=j;
17.   swap( S[i], S[r]);
18.   return i;
19. }
```
Recall: Quick Sort Framework

- Start with $\text{qsort}(S, 1, |S|)$
- “Sort” S around the pivot element (divide)
 - Problem 1: Choose k
 - Problem 2: Do this in-place
- Recursively sort values smaller-or equal than pivot element
- Recursively sort values larger-or-equal than pivot element
- Problem 3: How often do we need to do this?

```c
1. func void qsort(S array;
2.      l,r integer) {
3.      if $r \leq l$ then
4.         return;
5.      end if;
6.      pos := divide( S, l, r);
7.      qsort( S, l, pos-1);
8.      qsort( S, pos+1, r);
9.  }
```
Worst-Case Complexity of Quick Sort (Problem 3)

• Worst case: A reverse-sorted list and k=|S|=r
 – S[r] in first iteration is the smallest element, later always the smallest or the largest
 – Requires r-l comparisons in every call of divide()
 – Every pair of qSort’s has |S’|=0 and |S”|=n-1
 – This gives (n-1)+((n-1)-1)+...+1 = O(n^2) comparisons in the divide steps
Intermediate Summary

- Great disappointment
- We are in $O(1)$ additional space, but as slow as our basic sorting algorithms in worst case
- Nevertheless, Quick Sort is a very fast sorting algorithm in practice
- Why? Let’s look at the average case
Content of this Lecture

- Merge Sort
- Quick Sort
 - Algorithm
 - Average Case Analysis
 - Improving Space Complexity
Average Case

- Without loss of generality, we assume that \(S \) contains all values \(1 \ldots |S| \) in arbitrary order
 - If \(S \) had duplicates, we would at best save swaps
 - Sorting \(n \) different values is the same problem as sorting the values \(1 \ldots n \) – replace each value by its rank
- For \(p \), we choose any value in \(S \) with equal probability \(1/n \)
- This choice divides \(S \) such that \(|S'|=p-1 \) and \(|S''|=n-p \)
- Let \(T(n) \) be the average # of comparisons. Then:
 \[
 T(n) = \frac{1}{n} \sum_{k=1}^{n} \left(T(k-1) + T(n-k) \right) + bn = \frac{2}{n} \sum_{k=1}^{n-1} T(k) + bn
 \]
 - Where \(b*n \) is the time to divide the array and \(T(0)=0 \)
\textbf{Induction}

- We need to show that, for some c and some $n \geq n_0$:
 \[T(n) \leq c \cdot n \cdot \log(n) \]

- \textbf{Proof by induction}
 - $T(1) = b$, which is not $\leq c \cdot 1 \cdot \log(1) = 0$
 - Thus, we set $n_0 = 2$; we have $T(2) = 3b \leq c \cdot 2 \cdot \log(2)$ if $c \geq 3b/2$
 - We assume the above assumption holds for all $2 \leq k < n$
 - We start with (for simplicity, assume $n = 2^x$ for some x):
 \[T(n) = \frac{2}{n} \sum_{k=1}^{n-1} T(k) + bn \]
Induction

\[
T(n) = \frac{2}{n} \sum_{k=1}^{n-1} T(k) + bn
\]

\[
= \frac{2}{n} \sum_{k=2}^{n-1} T(k) + bn + \frac{2}{n} T(1)
\]

\[
= \frac{2}{n} \sum_{k=2}^{n-1} T(k) + bn + \frac{2}{n} b
\]

\[
\leq \frac{2}{n} \sum_{k=2}^{n-1} T(k) + bn + b
\]

\[
\leq \frac{2c}{n} \sum_{k=1}^{n-1} k \log(k) + bn + b
\]

\[
= \frac{2c}{n} \left[\sum_{k=1}^{n/2} k \log(k) + \sum_{k=n/2+1}^{n-1} k \log(k) \right] + bn + b
\]
Continued

\[T(n) \leq \frac{2c}{n} \left[\sum_{k=1}^{n/2} k \cdot \log(k) + \sum_{k=n/2+1}^{n-1} k \cdot \log(k) \right] + bn + b \]

\[\leq \frac{2c}{n} \left[\sum_{k=1}^{n/2} k \cdot \log(n/2) + \sum_{k=n/2+1}^{n-1} k \cdot \log(n) \right] + bn + b \]

\[= \frac{2c}{n} \left[\sum_{k=1}^{n/2} k \cdot \log(n) - n^2/8 - n/4 + \sum_{k=n/2+1}^{n-1} k \cdot \log(n) \right] + bn + b \]

\[= \frac{2c}{n} \left[\left(\frac{n^2}{2} - \frac{n}{2} \right) \cdot \log(n) - \frac{n^2}{8} - \frac{n}{4} \right] + bn + b \]

\[= c \cdot n \cdot \log(n) - c \cdot \log(n) - \frac{cn}{4} - \frac{c}{2} + bn + b \]

\[\leq c \cdot n \cdot \log(n) - \frac{cn}{4} - \frac{c}{2} + bn + b \]

\[\leq c \cdot n \cdot \log(n) \]

Set \(c \geq 4b \)
Conclusion

- Although there are cases where we need $O(n^2)$ comparisons, these are so rare in the set of all possible permutations that we do not need more than $O(n \cdot \log(n))$ comparisons on average.

- In other words: If we average over the runtimes of Quick Sort over many (all) different orders of n values (for different n), then this average will grow with $n \cdot \log(n)$, not with n^2.

- One can show the same for the number of swaps.

- Quick Sort is a fast general-purpose sorting algorithm.
Content of this Lecture

- Merge Sort
- Quick Sort
 - Algorithm
 - Average Case Analysis
 - Improving Space Complexity
Looking at Space Again

- We were quite sloppy
- Quick Sort as described here actually does need extra space – every recursive call puts some data on the stack
 - Array can be implemented as a global variable
 - But we always need to pass l and r
- Our current version has worst-case space complexity O(n)
 - Consider the worst-case of the time complexity
 - Reverse-sorted array
 - Creates 2*n recursive calls
 - This requires n times 2 integers on the stack
Improving Space Complexity

- Idea: In the recursive decent, always treat the smaller of the two sub-arrays first
 - \(S' \) or \(S'' \), whatever is smaller
- This branch can generate at most \(O(\log(n)) \) calls, because the smaller array is always smaller than \(n/2 \)
- Use iteration to sort the bigger array afterwards
 - No recursion, no stack
- Space complexity: \(O(\log(n)) \)
Implementation

1. func integer qSort(S array; l,r int) {
2. if r≤l then
3. return;
4. end if;
5. val := S[r];
6. i := l-1;
7. j := r;
8. repeat
9. while (S[i]<=val and i<r)
10. i := i+1;
11. end while;
12. while (S[j]>=val and j>l)
13. j := j-1;
14. end while;
15. if i<j then
16. swap(S[i], S[j]);
17. end if;
18. until i>=j;
19. swap(S[i], S[r]);
20. qsort(S, l, i-1);
21. qSort(S, i+1, r);
22. }

1. func integer qSort++(S array; l,r int) {
2. if r≤l then
3. return;
4. end if;
5. while r > l do
6. val := S[r];
7. i := l-1;
8. j := r;
9. repeat
10. while (S[i]<=val and i<r)
11. i := i+1;
12. end while;
13. while (S[j]>=val and j>l)
14. j := j-1;
15. end while;
16. if i<j then
17. swap(S[i], S[j]);
18. end if;
19. until i>=j;
20. swap(S[i], S[r]);
21. if (i-1-l) < (r-i-1) then
22. qsort(S, l, i-1);
23. l := i+1;
24. else
25. qSort(S, i+1, r);
26. r := i-1;
27. end if;
28. end while;
29. }

Ulf Leser: Algorithms and Data Structures
Implementation

- **14-20**: Choose the smaller and sort it recursively
 - Note: **Only one call** is made for each division
- **We adjust l/r and sort the larger sub-array directly**
 - New loop (6-21) applies the same procedure performing the next sort
- We turned a **linear tail recursion** into an iteration (without stack)

```plaintext
1. func integer qSort++(S array; l,r int) {
2.   if r≤l then
3.     return;
4.   end if;
5.   while r > l do
6.     val := S[r];
7.     i := l-1;
8.     j := r;
9.     repeat
10.    ... # as before
11.    until i>=j;
12.    swap( S[i], S[r]);
13.    if (i-1-1) < (r-i-1) then
14.       qsort(S, l, i-1);
15.       l := i+1;
16.    else
17.       outSort(S, i+1, r);
18.       r := i-1;
19.    end if;
20.   end while;
21. }
```
Improving Space Complexity Further

• Even $O(1)$ space is possible
 – Do not store l/r, but search them at runtime within the array
 – Requires extra work in terms of runtime, but within the same complexity
 – See Ottmann/Widmayer for details
 – Is it worth it in practice?
 • log(n) usually is not a lot of space
Summary

<table>
<thead>
<tr>
<th></th>
<th>Comps worst case</th>
<th>avg. case</th>
<th>best case</th>
<th>Additional space</th>
<th>Moves (wc / ac)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection Sort</td>
<td>O(n²)</td>
<td></td>
<td>O(n²)</td>
<td>O(1)</td>
<td>O(n)</td>
</tr>
<tr>
<td>Insertion Sort</td>
<td>O(n²)</td>
<td></td>
<td>O(n)</td>
<td>O(1)</td>
<td>O(n²)</td>
</tr>
<tr>
<td>Bubble Sort</td>
<td>O(n²)</td>
<td></td>
<td>O(n)</td>
<td>O(1)</td>
<td>O(n²)</td>
</tr>
<tr>
<td>Merge Sort</td>
<td>O(n*\log(n))</td>
<td>O(n*\log(n))</td>
<td>O(n*\log(n))</td>
<td>O(n)</td>
<td>O(n*\log(n))</td>
</tr>
<tr>
<td>QuickSort</td>
<td>O(n²)</td>
<td>O(n*\log(n))</td>
<td>O(n*\log(n))</td>
<td>O(log(n))</td>
<td>O(n²) / O(n*\log(n))</td>
</tr>
</tbody>
</table>
Exemplary Questions

- Proof that any sort algorithm using only value comparisons needs $\Omega(n \cdot \log(n))$ comparisons in worst case.
- Proof or refute: For every n, there exists a list with n elements which is a best case for quick sort (choosing first element as pivot) and for bubble sort.
- Give pseudo code for QuickSort with $O(\log(n))$ additional space.
- Imagine your main memory can use only $n/16$ values. Recall that access disk is much more expensive than accessing memory. Which of the sorting algorithms can be used to keep disk IO low? Describe the algorithm in pseudo code and argue about the number of blocks read.