

Algorithms and Data Structures

One Problem, Four Algorithms

Ulf Leser

Content of this Lecture

- The Max-Subarray Problem
- Naïve Solution
- Better Solution
- Best Solution

Where is the Sun?

Source: http://www.layoutsparks.com

How can we find the Sun Algorithmically?

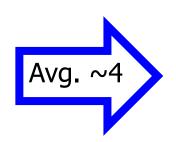
- Assume pixel (RGB) representation
- The sun obviously is bright
- RGB colors can be transformed into brightness scores
- The sun is the brightest spot
 - Compute an average brightness for the entire picture
 - Subtract this from each brightness value (will yield negative values)

 Find the shape (spot) such that the sum of its brightness values is maximal

Size of the Spot not Pre-Determined

Example (Shapes: only Rectangles)

1	6	8	6	5	3
7	9	5	4	2	2
2	7	6	3	2	1
1	3	0	0	0	1
2	4	8	8	3	2
3	7	9	8	8	3



-3	2	4	2	1	-1
3	5	1	0	-2	-2
-2	3	2	-1	-2	-3
-3	-1	-4	-4	-4	-3
-2	0	4	4	-1	-2
-1	3	5	4	4	-1

-3	2	4	2	1	-1
3	5	1	0	-2	-2
-2	3	2	-1	-2	-3
-3	-1	-4	-4	-4	-3
-2	0	4	4	-1	-2
-1	3	5	4	4	-1

-3	2	4	2	1	-1
3	5	1	0	-2	-2
-2	3	2	-1	-2	-3
-3	-4	-4	-4	-3	-3
-3 -2		-4 4	-4 4		

-3	2	4	2	1	-1
3	5	1	0	-2	-2
-2	3	2	-1	-2	-3
-3	-4	-4	-4	-3	-3
-2	0	4	4	-1	-2
-1	3	5	4	4	-1

Simpler Problem

- This is a bit complicated
 - Which shapes?
 - Shape should not be too big (sun is small compared to sky)
 - What if the sun is almost filling the picture?
 - Maximal sum of scores or maximal average score?
 - (see very last slide)
- We look at a simpler problem: Max Subarray
 - Where is the sun?

Max-Subarray Problem

Definition (Max-Subarray Problem)
 Assume an array A of integers. Find the highest sum-score s* of all subarrays A* of A, where the sum-score of an array A* is the sum of all its values. If s* is negative, return 0

Remarks

- Cells may have positive or negative values (or 0)
- We only want the maximal value, not the borders of A*
- There might be multiple A*, but only one max sum-score
- Length of the subarray A* is not fixed (shape of spot)

-2 0 4 3 4 -6 -1 12 -2 0 15

- Promising start point: Find maximal value in array A
- Greedy: Expand in both directions until sum decreases
- Complexity?

- Promising start point: Find maximal value in array A
- Greedy: Expand in both directions until sum decreases
- Complexity? (Let n=|A|)
 - O(n) to find maximal value
 - O(n) expansion steps in worst case
 - O(n) together
- Do we optimally solve our problem?

- Promising start point: Find maximal value in array A
- Greedy: Expand in both directions until sum decreases
- Complexity? (Let n=|A|)
 - O(n) together
- Do we optimally solve our problem?

-2	0	4	3	4	-3	-1	12	2	-1	1
-2	0	4	3	4	-3	-1	12	2	-1	1
-2	0	4	3	4	-3	-1	12	2	-1	1

- Promising start point: Find maximal value in array A
- Greedy: Expand in both directions until sum decreases
- Complexity? (Let n=|A|)
 - O(n) together
- Do we optimally solve our problem?

-2	0	4	3	4	-3	-1	12	2	-1	1
-2	0	4	3	4	-3	-1	12	2	-1	1
-2	0	4	3	4	-3	-1	12	2	-1	1

First step may already be wrong

-2 0 4 3 4 -6 -6 10 -6 -1 1	-2	0	4	3	4	-6	-6	10	-6	-1	1
---	----	---	---	---	---	----	----	----	----	----	---

Content of this Lecture

- The Max-Subarray Problem
- Naïve Solution
- Better Solution
- Best Solution

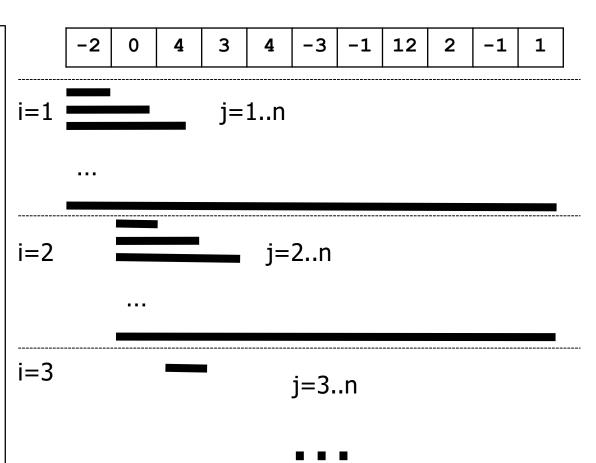
Naive Solution: Look at all Subarrays

```
A: array of integer;
n := |A|;
m := 0;
for i := 1 \dots n do
  for j := i \dots n do
    s := 0;
    for k := i ... j do
      s := s + A[k]:
    end for:
    if s>m then
     m := s;
    end if:
  end for;
end for;
return m;
```

- i: Every start point of an array
- j: Every end point of an array
- k: Compute the sum of the values between start and end

Illustration

```
A: array_of_integer;
n := |A|;
m := 0;
for i := 1 \dots n do
  for j := i \dots n do
    s := 0;
    for k := i ... j do
     s := s + A[k];
    end for;
    if s>m then
     m := s;
    end if;
  end for;
end for;
return m;
```

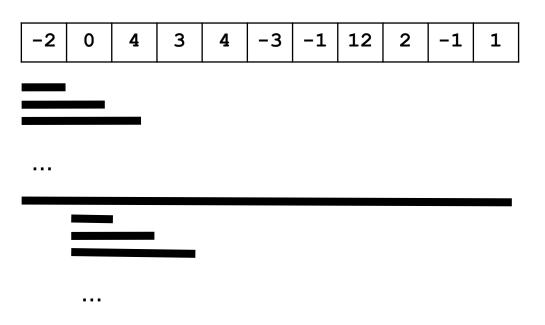


```
A: array of integer;
n := |A|;
m := 0;
for i := 1 \dots n do
  for j := i \dots n do
    s := 0;
    for k := i ... j do
      s := s + A[k];
    end for:
    if s>m then
      m := s;
    end if;
  end for;
end for;
return m;
```

- Complexity?
- i-loop: n times
- j-loop: n times (worst-case)
 - Together $\sim n^2/2$, which is in O(n^2)
- Inner loop: n times
- Together: O(n³)
- But: We are summing up the same numbers again and again
- We perform redundant work
- More clever ways?

Exhaustive Solution

- First sum: A[1]
- Second: A[1]+A[2]
- 3rd: A[1]+A[2]+A[3]
- 4th: ...
- Every next sum (k) is the previous sum plus the next cell (j)
- How can we reuse the previous sum?



Exhaustive Solution, Improved

- Every next sum is the previous sum plus the next cell
- Complexity: O(n²)

```
A: array of integer;
n := |A|;
m := 0;
for i := 1 ... n do
  s := 0;
  for j := i ... n do
    s := s + A[j];
    if s>m then
      m := s;
    end if;
  end for;
end for;
return m;
```

Content of this Lecture

- The Max-Subarray Problem
- Naïve Solution
- Better Solution
- Best Solution

Observation

- We optimized computation of sums in the j/k looks
- We still compute many sums multiple times across i's



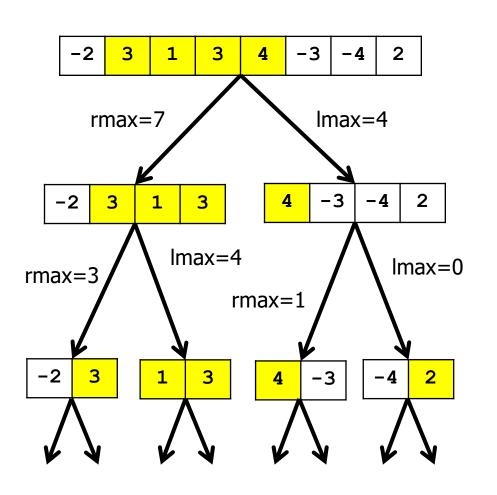
Divide and Conquer

- We can break up our problem into smaller ones by looking only at parts of the array
- One scheme: Assume A=A₁|A₂
 - With "|" meaning array concatenation and $|A_1| = |A_2|(+0/1) = |A|/2$
- The max-subarray (msa) of A ...
 - either lies in A_1 can be found by solving msa(A_1)
 - or in A_2 can be found by solving msa(A_2)
 - or partly in A₁ and partly in A₂
 - Can be solved by summing-up the msa's in A_1/A_2 that align with the right/left end of A_1/A_2
- We divide the problem into smaller ones and create the "bigger" solution from the "smaller" solutions

Algorithm (for simplicity, assume $|A|=2^x$ for some x)

```
function msa (A: array of int)
 n := |A|;
 if (n=1) then
    if A[1]>0 then
      return A[1]
    else
      return 0;
 end if;
 m := n/2;
 A1 := A[1...m];
 A2 := A[m+1...n]
 11 := rmax(A1);
 12 := lmax(A2)
 m := max(msa(A1))
           11+12,
           msa(A2));
  return m;
```

Example



• Solution: max(7,7+4,4)

- Left array: max(3,3+4,4)
- Right array: max(4,1+0,2)

- Left-most: max(0,0+3,3)
- ...

- This time it is not so easy ...
- Complexity of Imax / rmax?

```
function rmax (A: array_of_int) {
    n := |A|;
    s := 0;
    m := 0;
    for i := n .. 1 do
        s := s + A[i];
    if s>m then
        m := s;
    end if;
    end for;
    return m;
}
```

- This time it is not so easy ...
- Complexity of lmax / rmax?
 - O(n)
- Function msa
 - Let T(n) be the number of steps necessary to execute the algorithm for |A|=n
 - In each level, n'=n/2
 - The two sub-solutions require T(n') each

```
- This yields: T(n) \sim O(1) + O(n) + T(n/2) + T(n/2)
```

```
function msa (A: array of int) {
  n := |A|;
  if (n=1) then
    if A[1]>0 then
      return A[1]
    else
      return 0;
  end if;
  m := n/2; # ...
  A1 := A[1...m];
  A2 := A[m+1...n];
  11 := rmax(A1);
  12 := lmax(A2);
  m := max(msa(A1), 11+12, msa(A2));
  return m;
```

- This time it is not so easy ...
- Complexity of lmax / rmax?
 - O(n)
- Function msa
 - Let T(n) be the number of steps necessary to execute the algorithm for |A|=n
 - In each level, n'=n/2
 - The two sub-solutions require T(n') each

```
function msa (A: array of int) {
  n := |A|;
  if (n=1) then
    if A[1]>0 then
      return A[1]
    else
      return 0;
  end if;
  m := n/2; # ...
  A1 := A[1...m];
  A2 := A[m+1...n];
  11 := rmax(A1);
  12 /4 lmax (A2);
    := \max(\max(A1), 11+12, \max(A2));
  return m
```

- This yields: $T(n) \sim O(1)+O(n)+T(n/2)+T(n/2)$

- For constants c₁, c₂
- $T(n) = (2*T(n/2))(c_1*n)$
- Further: $T(1) = c_2$

```
function msa (A: array_of_integer) {
  n := |A|;
  if (n=1) then
    if A[1]>0 then
      return A[1]
    else
      return 0;
  end if;
  m := n/2; # Assume even sizes
  A1 := X[1...m];
  A2 := A[m-1, n];
     = rmax (A1);
 m := max(msa(A1), 11+12, msa(A2))
  return m,
```

- For constants c₁, c₂
- $T(n) = 2*T(n/2)+c_1*n$
- Further: $T(1) = c_2$
- Iterative substitution:

```
T(n) = 2*T(n/2) + c_1 n =
= 2(2T(n/4) + c_1 n/2) + c_1 n = 4T(n/4) + 2c_1 n =
= 4(2T(n/8) + c_1 n/4) + 2c_1 n = 8T(n/8) + 3c_1 n = ...
2^{\log(n)*} c_2 + c_1 n*\log(n) =
c_2 n + c_1 n*\log(n) = O(n*\log(n))
```

```
function msa (A: array of integer) {
  n := |A|;
  if (n=1) then
    if A[1]>0 then
      return A[1]
    else
      return 0:
  end if;
 m := n/2; # Assume even sizes
 A1 := A[1...m];
 A2 := A[m+1...n];
  11 := rmax(A1);
  12 := lmax(A2);
 m := max(msa(A1), 11+12, msa(A2));
  return m;
```

Same Problem, Different Algorithms

• Naive: O(n³)

Less naive, still redundant: O(n²)

Divide & Conquer: O(n*log(n))

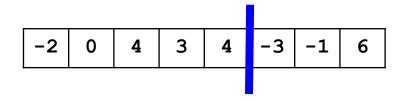
• The problem: O(n)

Content of this Lecture

- The Max-Subarray Problem
- Naïve Solution
- Better Solution
- Linear Solution

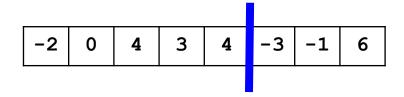
Let's Think again – More Carefully

- Let's use another strategy for dividing the problem
- Let's look at the solutions for A[1], A[1..2], A[1...3], ...
- What can we say about the msa for Aⁱ⁺¹=A[1...i+1], given the msa of Aⁱ=A[1...i]?



Let's Think again – More Carefully

- Let's use another strategy for dividing the problem
- Let's look at the solutions for A[1], A[1..2], A[1...3], ...
- What can we say about the msa for Aⁱ⁺¹=A[1...i+1], given the msa of Aⁱ=A[1...i]?



- msa(Aⁱ⁺¹) is ...
 - either somewhere within Aⁱ, which means the same as msa(Aⁱ)
 - or formed by rmax(Aⁱ)+A[i+1]
- Idea: Keep msa and rmax while scanning once through A

Algorithm & Complexity

- Obviously: O(n)
- Asymptotically optimal
 - We only look a constant number of times at every element of A
 - But we need to look at least once at every element of A
 - Thus, the problem is $\Omega(n)$
- Example of dynamic programming: Build larger solutions from smaller ones

Example

									rmax	c m
-2	3	1	3	4	-3	-4	2		0	0
		-		-	-	-		-	-	
-2	3	1	3	4	-3	-4	2		3	3
		-								_
-2	3	1	3	4	-3	-4	2		4	4
		-		-	-			-	-	-
-2	3	1	3	4	-3	-4	2		7	7
										_
-2	3	1	3	4	-3	-4	2		11	11
-2	3	1	3	4	-3	-4	2		8	11
-2	3	1	3	4	-3	-4	2		4	11
<u>- </u>										
-2	3	1	3	4	-3	-4	2		6	11

Optimization Problems

- Optimization find the best among all possible solutions
- Issues
 - Find solutions: Simple here, but sometimes hard
 - Score solutions: Simple here, but sometimes hard
 - Search space pruning: Do we need to look at all possible solutions?
- Typical pattern
 - Enumerate solutions in a systematic manner
 - Often generates a tree of partial and finally complete solutions
 - Prune parts of the search space where no optimal solution can be
 - If possible, stop early

Types of Algorithms

- Different fundamental patterns (non exhaustive list)
 - Greedy: Find some promising start point and expand aggressively until a complete solution is found
 - Usually fast, but usually doesn't find the optimal solution
 - Exhaustive: Test all possible solutions and find the one that is best
 - Sometimes the only choice if optimality is asked for
 - Divide & Conquer: Break your problem into smaller ones until these are so easy that they can be solved directly; construct solutions for "bigger" problems from these small solutions
 - Dynamic programming
 - Backtracking

— ...

Types of Algorithms

For the max subarray problem

Greedy: O(n), but wrong

Exhaustive: O(n³)

• With pruning O(n²)

Divide & Conquer: O(n*log(n))

– Dynamic programming: O(n)

Backtracking

— ...

Notes

- No sharp way to differentiate algorithmic patterns
- Usually there are different greedy, exhaustive, ... solutions

Exemplary Questions

- Give an optimal algorithm for the max-subarray problem and prove its optimality
- Assume the max-subarray problem with the additional restriction that the length of sub-array must be short-orequal a constant k. Give a linear algorithm solving this problem.
- Give an algorithm for the max-subarray problem in 2D, where |A| is quadratic and the subarray must be a square.
 Analyze its worst-case complexity.
 - Hint: For improvements, store intermediate results