
Algorithms and Data Structures

Patrick Schäfer
Basierend auf den Folien von Ulf Leser

Asymptotic Complexity

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 2

Content of this Lecture

• Efficiency of Algorithms
• Machine Model
• Complexity
• Examples

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 3

Efficiency of Algorithms

• Algorithms have an input and solve a defined problem
– Sort this list of names
– Compute the running 3-month average over this table of 10 years

of daily revenues
– Find the shortest path between node X and node Y in this graph

with n nodes and m edges
• Research in algorithms focuses on efficiency

– Efficiency: Use as few resources as possible for solving the task
– Resources: CPU cycles, memory cells, (network traffic, disk IO, …)

• How can we measure efficiency for different inputs?
• How can we compare the efficiency of two algorithms

solving the same problem?

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 4

Option 1: Use a Reference Machine

• Empirical evaluation
– Chose a concrete machine (CPU, RAM, BUS, …)

• Or many different machines
– Chose a set of different input data sets (workloads)

• The more, the better
• Real, synthetic, realistic, …

– Run algorithm on all inputs and measure time (or space or …)
• Pro: Gives real runtimes and practical guidance
• Contra

– Will all potential users have this machine?
– Performance dependent on prog language and skill of engineer
– Are the datasets used typical for what we expect in an application?
– Can we extrapolate results beyond the given data sets?

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 5

Option 2: Computational Complexity

• Derive an estimate of the maximal (worst-case) number of
operations as a function of the input
– “For an input of size n, the alg. will perform “~n3“ operations”
– Abstraction: Define a (realistic) model of a machine

• Advantages
– Analyses the abstract algorithm, not its concrete implementation
– Independent of concrete hardware; future-proof

• Disadvantages
– No real runtimes, no practical guidance
– What is an operation? What do we count?
– Requires assumptions on the cost of primitive operations
– Assumes that all machines offer the same set of operations

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 6

Next steps

• In this lecture, we focus on complexity
– Note again: When it comes to practical problems, complexity is not

everything
– There can be extremely large runtime differences between

algorithms having the same complexity
– Difference between theoretical and practical computer science

• We need to define what we count: Machine model
• We need to define how we estimate: O-notation

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 7

Content of this Lecture

• Efficiency of Algorithms
• Machine Model
• Complexity
• Examples

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 8

Our Machine Model: RAM

• Very simple model: Random Access Machines (RAM)
• Work: What a traditional CPU can execute in 1 cycle

– Addition, comparison, jumps, …
– Forget multi-core, disks, ALUs, GPUs, FPGA, cache levels,

pipelining, hyper-threading, …
– Note: There are machine models for many of these variations

• Space: Infinite amount of storage cells
– Each cell holds one (possibly infinitely large) value (number)

• Separate program storage – no interference with data
• Cells are addressed by consecutive integers
• Access to each cell in one CPU cycle

– Special treatment of input and output
– One special register (switch) storing results of a comparison

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 9

Operations

• Load value into cell, move value from cell to cell
• LOADv 3, 5; Load value “5” in cell 3
• LOAD 3, 5; Copy value of cell 5 into cell 3

• Add/subtract/multiply/divide value/cell to/from/by cell and store in cell
– ADDv 3, 5, 6; Add “6” to value of cell 5 and store result in cell 3
– ADD 3, 5, 6; Add value of cell 6 to value of cell 5 and store in cell 3

• Compare values of two cells
– CMP 4, 2; If equal, set switch to TRUE, otherwise to FALSE

• Jump to position 10 if switch is TRUE: IFTRUE 10;
• Jump to position 5: GOTO 5;
• Stop

– RET 6; Returns value of cell 6 as result and stop

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 10

Example: xy (for y>0)

input
x,y: integer;

t: integer;
i: integer;
t := x;
for i := 1 … y-1 do
t := t * x;

end for;
return t;

1. LOADv 1, x; # provide input
2. LOADv 2, y;
3. LOAD 3, 1; # t := x
4. LOADv 4, 1; # i := 1
5. CMP 4, 2; # check i = y
6. IFTRUE 10;
7. MULT 3, 3, 1; # t := t*x
8. ADDv 4, 4, 1; # i := i+1
9. GOTO 5;
10.RET 3; # return t

4 Registers:
1: x
2: y
3: t
4: i

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 11

Cost Models

• We count the number of operations (time) performed and
the number of cells (space) required

• This is called uniform cost model (UCM)
– Every operation costs time 1, every value needs space 1

• Not realistic
• Data access has non-uniform cost (cache lines)
• Comparing two real numbers costs more work than two integers
• …

• Alternative model: Machine cost (logarithmic cost)
– Consider concrete machine representation of every data element
– Cells hold 1 byte – how many bytes do I need?
– More realistic, yet more complex
– Derives identical complexity results as UCM for most sensible cases

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 12

Counting Operations in the RAM Model with UCM

• If y>1
– Startup (lines 1-4) costs 4
– Loop (line 5) is passed y times

• (y-1)-times costs 5 (lines 5-9)
• 1-time costs 2 (lines 5-6)

– Return costs 1
– Total costs: 4 + (𝑦𝑦 − 1) � 5 + 3

• If y=1
– Total costs: 7 = 4 + (𝑦𝑦 − 1) � 5 + 3

1. LOADv 1, x; # input
2. LOADv 2, y;
3. LOAD 3, 1; # t := x
4. LOADv 4, 1; # i := 1
5. CMP 4, 2; # check i=y
6. IFTRUE 10;
7. MULT 3, 3, 1; # t := t*x
8. ADDv 4, 4, 1; # i := i+1
9. GOTO 5;
10.RET 3; # return t

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 13

Selection Sort: Uniform versus Machine Cost

• With UCM, we showed f(n)~4n2-3n
– But: Every cell needs to hold a name

= string of arbitrary length
– We used a UCM including strings

• Towards machine cost
– Assume max length m for a string S[i]
– Then, line 5 costs m comps in WC
– Lines 6-8; additional cost for loops for

copying char-by-char
• We did not consider super-long

strings (n>264), or super-large
alphabets (char comp always in 1
cycle?)

1. S: array_of_names;
2. n := |S|
3. for i := 1..n-1 do
4. for j := i+1..n do
5. if S[i]>S[j] then
6. tmp := S[i];
7. S[i] := S[j];
8. S[j] := tmp;
9. end if;
10. end for;
11.end for;

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 14

Conclusions

• We usually assume RAM with uniform cost, but will not
give the RAM program itself
– Translation from pseudo code is simple and adds only constant

costs per operation – which we will (later) ignore anyways
• We assume UCM for primitive data types: numbers, strings

– We will sometimes look at strings in more detail
– More complex data type (lists, sets etc.) will be analyzed in detail

• When analyzing real programs, many more issues arise
– Performance killer in Java: Garbage collection
– Performance trick in Java: Object reuse
– Performance killer in Java: new Vector (1,1);
– ...

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 15

Content of this Lecture

• Efficiency of Algorithms
• Machine Model
• Complexity
• Examples

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 16

Complexity

• Counting the exact number of operations for an algorithm
(wrt. input size) seems overly complicated
– Linear scale-ups are often possible by using newer/more hardware
– Estimations need not be good for all cases - for small inputs, many

algorithms are lightning-fast anyway
– We don’t want long formulas – focus on the dominant factors

• Intuitive goal: Analyze the major cost drivers when the
input size gets “large”

• Asymptotic complexity – analyze algorithmic behavior if
input size goes to infinity

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 17

Examples

0

50.000

100.000

150.000

200.000

250.000

300.000

10 100 500 1.000 2.000

n
50*n

0

5.000.000

10.000.000

15.000.000

20.000.000

25.000.000

30.000.000

10 100 500 1.000 2.000

n
50*n
n^2

0

5.000.000

10.000.000

15.000.000

20.000.000

25.000.000

30.000.000

n
50*n
n^2
n^2+100*n
n^2+100*n+4000

0

10.000.000

20.000.000

30.000.000

40.000.000

50.000.000

60.000.000

10 100 500 1.000 2.000

n
50*n
n^2
n^2+100*n
n^2+100*n+4000
2*n^2

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 18

Small Values

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

10 20 30 40 50 60

n
50*n
n^2
n^2+100*n
n^2+100*n+4000
2*n^2

0

10.000.000

20.000.000

30.000.000

40.000.000

50.000.000

60.000.000

10 100 500 1.000 2.000

n
50*n
n^2
n^2+100*n
n^2+100*n+4000
2*n^2

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 19

Intuitive Observations

• Everything except the term with the highest exponent
doesn’t matter much, once n is large enough

• This term can have a factor, but the effect of this factor
usually can be outweighed by newer/more machines
– Therefore, we do not consider it

• Assume we have developed a polynomial 𝑓𝑓(𝑛𝑛) capturing
the exact cost of an algorithm A for input size n

• Intuitively, the complexity of A is the term in 𝑓𝑓 with the
highest exponent after stripping linear factors

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 20

Overview

• Assume 𝑓𝑓(𝑛𝑛) gives the number of operations performed by
alg. A in worst case for an input of size n

• We are interested in the essence of 𝑓𝑓, i.e., the dominating
factors when n grows large

• We do this by defining a hierarchy of classes of functions
– For a function 𝑔𝑔, define the set 𝑂𝑂(𝑔𝑔) as the class of functions that

is asymptotically smaller than or equal to 𝑔𝑔
• We want a simple 𝑔𝑔; simpler than 𝑓𝑓

– If 𝑓𝑓 ∈ 𝑂𝑂(𝑔𝑔), then 𝑓𝑓 will be asymptotically smaller than or equal to 𝑔𝑔
• I.e.: for large input sizes, the number of ops counted by 𝑓𝑓 will be

smaller than or equal to the one estimated through 𝑔𝑔
– Asymptotically, 𝑔𝑔 is an upper bound for 𝑓𝑓

• Not necessarily the lowest

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 21

Formally: O-Notation

• Definition
Let 𝑔𝑔: ℕ0+→ℝ0

+, 𝑂𝑂(𝑔𝑔) is the class of functions defined as
𝑂𝑂 𝑔𝑔 = 𝑓𝑓:ℕ0+→ℝ0

+ ∃𝑐𝑐 > 0, ∃𝑛𝑛0 ≥ 0,∀𝑛𝑛 ≥ 𝑛𝑛0: 𝑓𝑓(𝑛𝑛) ≤ 𝑐𝑐 � 𝑔𝑔(𝑛𝑛)}
• Explanation

– 𝑂𝑂(𝑔𝑔) is the class of all functions which compute lower or equal
values than 𝑔𝑔 for any sufficiently large 𝑛𝑛, ignoring linear factors

– 𝑂𝑂(𝑔𝑔) is the class of functions that are asymptotically smaller than
or equal 𝑔𝑔

• If 𝑓𝑓∈𝑂𝑂(𝑔𝑔), we say that
“𝑓𝑓 is in 𝑂𝑂(𝑔𝑔)” or “𝑓𝑓 is 𝑂𝑂(𝑔𝑔)” or
“𝑓𝑓 has complexity 𝑂𝑂(𝑔𝑔)”

𝑓𝑓

c � 𝑔𝑔

n0

𝑔𝑔

n

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 22

More Examples

• Proof-Example: First 𝑓𝑓(n)
– We need to show:
𝑓𝑓 𝑛𝑛 ∈ 𝑂𝑂 𝑛𝑛2 ⇒ ∃𝑐𝑐 ∃𝑛𝑛0:𝑓𝑓(𝑛𝑛) ≤ 𝑐𝑐𝑛𝑛2

– Choose 𝑐𝑐 = 16 and 𝑛𝑛0 = 1
– Now, for n>1=n0:

⇒ 3𝑛𝑛2 + 6𝑛𝑛 + 7
≤ 3𝑛𝑛2 + 6𝑛𝑛2 + 7𝑛𝑛2

= 16𝑛𝑛2 = 𝑐𝑐𝑛𝑛2

– Would also work for c=17,18, …
• Concrete choice of values of c

and n0 don’t matter
– Especially: No need to search for smallest

values for proving complexity

1. 𝑓𝑓(𝑛𝑛) = 3𝑛𝑛2 + 6𝑛𝑛 + 7 is 𝑂𝑂(𝑛𝑛2)

2. 𝑓𝑓(𝑛𝑛) = 𝑛𝑛3 + 7000𝑛𝑛 − 300 is 𝑂𝑂(𝑛𝑛3)

3. 𝑓𝑓(𝑛𝑛) = 4𝑛𝑛2 + 200𝑛𝑛2 − 100 is 𝑂𝑂(𝑛𝑛2)

4. 𝑓𝑓(𝑛𝑛) = 𝑙𝑙𝑙𝑙𝑔𝑔(𝑛𝑛) + 300 is 𝑂𝑂(𝑙𝑙𝑙𝑙𝑔𝑔(𝑛𝑛))

5. 𝑓𝑓(𝑛𝑛) = 𝑙𝑙𝑙𝑙𝑔𝑔(𝑛𝑛) + 𝑛𝑛 is 𝑂𝑂(𝑛𝑛)

6. 𝑓𝑓(𝑛𝑛) = 𝑛𝑛 � 𝑙𝑙𝑙𝑙𝑔𝑔(𝑛𝑛) is 𝑂𝑂(𝑛𝑛 � 𝑙𝑙𝑙𝑙𝑔𝑔(𝑛𝑛))

7. 𝑓𝑓(𝑛𝑛) = 10 is 𝑂𝑂 1

8. 𝑓𝑓(𝑛𝑛) = 𝑛𝑛2 is 𝑂𝑂(𝑛𝑛3) but also 𝑂𝑂 𝑛𝑛2

or 𝑂𝑂 𝑛𝑛4 , 𝑂𝑂 𝑛𝑛2𝑙𝑙𝑙𝑙𝑔𝑔𝑛𝑛 , …

𝑂𝑂 𝑔𝑔 = 𝑓𝑓:ℕ0+→ℝ0
+ ∃𝑐𝑐 > 0, ∃𝑛𝑛0 ≥ 0,∀𝑛𝑛 ≥ 𝑛𝑛0: 𝑓𝑓(𝑛𝑛) ≤ 𝑐𝑐 � 𝑔𝑔(𝑛𝑛)}

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 23

Common Complexity Classes

• O(1): constant (Array Access)
• O(log n): logarithmic (Binary Search)
• O(n): linear (Sequential Search)
• O(n log n): linear logarithmic (MergeSort)
• O(n2): quadratic (Selection Sort, BubbleSort, QuickSort)
• O(nk): polynomial (Floyd-Warshall)
• O(2n): exponential (Knapsack Problem)

• Much research is focused on finding good solutions for difficult problems

23

logarithmic linear
logarithmic

polynomial exponentialconstant linear

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 24

General Result

• Lemma: All constant functions are in 𝑂𝑂(1)
– Let 𝑓𝑓(𝑛𝑛) = 𝑘𝑘 for some constant 𝑘𝑘 > 0
– Let 𝑔𝑔(𝑛𝑛) = 1
– We need to show that 𝑓𝑓∈𝑂𝑂(𝑔𝑔) ⇔ 𝑘𝑘 ∈ 𝑂𝑂 1 ⇒ ∃𝑐𝑐 ∃𝑛𝑛0:𝑘𝑘 ≤ 𝑐𝑐 � 1

• Examples:
– 𝑓𝑓(𝑛𝑛) = 106 is 𝑂𝑂 1
– 𝑓𝑓(𝑛𝑛) = 3 is 𝑂𝑂 1

• Proof:
– Chose 𝑐𝑐 = 𝑘𝑘 and 𝑛𝑛0 = 0
– Clearly: ∀𝑛𝑛 ≥ 𝑛𝑛0, we now have 𝑓𝑓 𝑛𝑛 = 𝑘𝑘 ≤ 𝑐𝑐 � 𝑔𝑔(𝑛𝑛) = 𝑘𝑘 � 1

• Any part of an algorithm whose extend of work is
independent of input size 𝑛𝑛 can be summarized as 𝑂𝑂(1)

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 25

Calculating with Complexities

• Usually, we want to derive the
complexity of a program without
calculating its exact cost
– Estimate a tight 𝑔𝑔 without knowing 𝑓𝑓

• Some observations
– Having many ops with cost 1 yields

the same complexity as having only 1
• Lines 5-8 cost 4 times 1∈𝑂𝑂(1)

– If we see a polynomial, we can forget
terms except the largest

• As we certainly need 𝑂𝑂(𝑛𝑛) for the
outer loop (line 3), we can forget the
startup which is 𝑂𝑂(1)

1. S: array_of_names;
2. n := |S|
3. for i := 1..n-1 do
4. for j := i+1..n do
5. if S[i]>S[j] then
6. tmp := S[i];
7. S[i] := S[j];
8. S[j] := tmp;
9. end if;
10. end for;
11.end for;

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 26

Formally: O-Calculus

• Such observations can be cast into a set of rules
• Lemma

Let k be a constant. The following equivalences are true
– 𝑂𝑂(𝑘𝑘 + 𝑓𝑓) = 𝑂𝑂(𝑓𝑓);
– 𝑂𝑂(𝑘𝑘 � 𝑓𝑓) = 𝑂𝑂(𝑓𝑓);
– 𝑂𝑂(𝑓𝑓) + 𝑂𝑂(𝑔𝑔) = 𝑂𝑂(max(𝑓𝑓,𝑔𝑔))
– 𝑂𝑂(𝑓𝑓) � 𝑂𝑂(𝑔𝑔) = 𝑂𝑂(𝑓𝑓 � 𝑔𝑔)

• Explanations
– Rule 3 (4) actually implies rule 1 (2), as 𝑘𝑘∈𝑂𝑂(1)
– Rule 3 is used for sequentially executed parts of a program
– Rule 4 is used for nested parts of a program (loops)

with “slight misuse of notations”:
Let 𝑓𝑓0 ∈ 𝑂𝑂 𝑓𝑓 𝑎𝑎𝑛𝑛𝑎𝑎 𝑔𝑔0 ∈ 𝑂𝑂 𝑔𝑔 then
• 𝑓𝑓0 + 𝑔𝑔0 𝜖𝜖 𝑂𝑂(max 𝑓𝑓,𝑔𝑔)

• 𝑓𝑓0 � 𝑔𝑔0 𝜖𝜖 𝑂𝑂(𝑓𝑓 � 𝑔𝑔)

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 27

Example

• There is a typo in this slide: Somewhere, I typed “und”
instead of “and”. Where?

• Abstract problem: Given a
string T (template) und a
pattern P (pattern), find all
occurrences of P in T
– Exact substring search

• The following algorithm
solves this problem
– Note: There are more

efficient ones

1. for i := 1..|T|-|P|+1 do
2. match := true;
3. j := 1;
4. while match
5. if T[i+j-1]=P[j] then
6. if j=|P| then
7. print i;
8. match := false;
9. end if;
10. j := j+1;
11. else
12. match := false;
13. end if;
14. end while;
15.end for;

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 28

Example

• The straight-forward way (naïve algorithm)
– We use two counters: i, j
– One (outer, i) runs through T
– One (inner, j) runs through P

1. for i := 1..|T|-|P|+1 do
2. match := true;
3. j := 1;
4. while match
5. if T[i+j-1]=P[j] then
6. if j=|P| then
7. print i;
8. match := false;
9. end if;
10. j := j+1;
11. else
12. match := false;
13. end if;
14. end while;
15.end for;

ctgagatcgcgta
gagatc
gagatc
gagatc
gagatc
gagatc
gatatc

gatatc

T
P

gatatc

123456789…

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 29

Complexity Analysis (n=|T|, m=|P|)

1. for i := 1..|T|-|P|+1 do
2. match := true;
3. j := 1;
4. while match
5. if T[i+j-1]=P[j] then
6. if j=|P| then
7. print i;
8. match := false;
9. end if;
10. j := j+1;
11. else
12. match := false;
13. end if;
14. end while;
15.end for;

1. O(n-m)
2. O(1)
3. O(m)

O(1) � O(m)=O(m)

1. O(n-m)
2. O(m)

O(1)+O(m)=O(m)

1. O((n-m)*m)

O(n-m) � O(m)=
O((n-m) �m)

1. O(n-m)
2. O(1)
3. O(1)
4. O(m)
5. O(1)
6. O(1)
7. O(1)
8. O(1)
9. -
10. O(1)
11. -
12. O(1)
13. -
14. -
15.-

1. O(n-m)
2. O(1)
3. O(m)
4. O(1)

O(1)+O(1)=O(1)

Worst-Case

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 30

Deriving new Rules: Transitivity of O-Membership

• Lemma: If 𝑓𝑓 ∈ 𝑂𝑂(𝑔𝑔) and 𝑔𝑔 ∈ 𝑂𝑂(ℎ), then 𝑓𝑓 ∈ 𝑂𝑂(ℎ)
• Proof

– We know by def.: ∃𝑐𝑐,𝑛𝑛0: ∀𝑛𝑛 ≥ 𝑛𝑛0: 𝑓𝑓(𝑛𝑛) ≤ 𝑐𝑐 � 𝑔𝑔(𝑛𝑛)
– We know by def.: ∃𝑐𝑐𝑐,𝑛𝑛𝑐0: ∀𝑛𝑛 ≥ 𝑛𝑛𝑐0: 𝑔𝑔(𝑛𝑛) ≤ 𝑐𝑐𝑐 � ℎ(𝑛𝑛)
– We need to show: ∃𝑐𝑐𝑐𝑐,𝑛𝑛𝑐𝑐0: ∀𝑛𝑛 ≥ 𝑛𝑛𝑐𝑐0: 𝑓𝑓(𝑛𝑛) ≤ 𝑐𝑐𝑐𝑐 � ℎ(𝑛𝑛)
– We chose: 𝑛𝑛𝑐𝑐0 = max(𝑛𝑛0,𝑛𝑛𝑐0); 𝑐𝑐𝑐𝑐 = 𝑐𝑐 � 𝑐𝑐𝑐
– This gives:

∀𝑛𝑛 ≥ 𝑛𝑛𝑐𝑐0: 𝑓𝑓(𝑛𝑛) ≤ 𝑐𝑐 � 𝑔𝑔(𝑛𝑛) ≤ 𝑐𝑐 � 𝑐𝑐𝑐 � ℎ(𝑛𝑛) ≤ 𝑐𝑐𝑐𝑐 � ℎ(𝑛𝑛)
– q.e.d.

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 31

Ω-Notation

• O-Notation denotes an upper bound for the amount of
computations necessary to run an algorithm for
asymptotically large inputs
– “f will always be faster than g”

• Sometimes, we also want lower bounds
– “f can never be faster than g”

• Definition
Let g: N→R+. Ω(g) is the class of functions defined as
Ω 𝑔𝑔 = 𝑓𝑓:ℕ0+→ℝ0

+ ∃𝑐𝑐 > 0, ∃𝑛𝑛0 ≥ 0,∀𝑛𝑛 ≥ 𝑛𝑛0: 𝑓𝑓(𝑛𝑛) ≥ 𝑐𝑐 ∗ 𝑔𝑔(𝑛𝑛)}
• Explanation

– Ω(𝑔𝑔) is the class of functions that are asymptotically larger than g
– Again: Not necessarily the largest smaller one

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 32

Examples

𝑓𝑓(𝑛𝑛) = 3𝑛𝑛2 + 6𝑛𝑛 + 7 is Ω(𝑛𝑛2) but also Ω 𝑛𝑛 , Ω 1 , …

𝑓𝑓(𝑛𝑛) = 𝑛𝑛3 + 7000𝑛𝑛 − 300 is Ω(𝑛𝑛3) but also Ω 𝑛𝑛2 ,Ω 𝑛𝑛 , …

𝑓𝑓(𝑛𝑛) = 𝑙𝑙𝑙𝑙𝑔𝑔(𝑛𝑛) + 300 is Ω(𝑙𝑙𝑙𝑙𝑔𝑔(𝑛𝑛)) but also Ω 1 , …

𝑓𝑓(𝑛𝑛) = 10 is Ω 1

𝑓𝑓(𝑛𝑛) = 𝑛𝑛2 is Ω(𝑛𝑛2) but also Ω 𝑛𝑛 , Ω log𝑛𝑛 , …

Ω 𝑔𝑔 = 𝑓𝑓:ℕ0+→ℝ0
+ ∃𝑐𝑐 > 0, ∃𝑛𝑛0 ≥ 0,∀𝑛𝑛 ≥ 𝑛𝑛0: 𝑓𝑓(𝑛𝑛) ≥ 𝑐𝑐 ∗ 𝑔𝑔(𝑛𝑛)}

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 33

Further Notation

Reads:
• Big O
• Big Omega
• Theta
• Small O
• Small Omega

• Interpretation: „f“ is asymptotically...
1. 𝑓𝑓 ∈ 𝑂𝑂 𝑔𝑔 : smaller than or equal to „g“
2. 𝑓𝑓 ∈ Ω 𝑔𝑔 : larger than or equal to „g“
3. 𝑓𝑓 ∈ 𝜃𝜃 𝑔𝑔 : exactly like „g“
4. 𝑓𝑓 ∈ 𝑙𝑙 𝑔𝑔 : much slower than „g“
5. 𝑓𝑓 ∈ 𝜔𝜔 𝑔𝑔 : much faster than„g“

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 34

Not Every Problem is Simple

• Definition
We call an algorithm A with cost function 𝑓𝑓
– polynomial, if there exists a polynomial 𝑝𝑝 with 𝑓𝑓∈𝑂𝑂(𝑝𝑝)
– exponential, if ∃ 𝜀𝜀 > 0 with 𝑓𝑓∈Ω(2𝑛𝑛𝜀𝜀)

• General assumption: If A is exponential, it cannot be
executed in reasonable time for non-trivial input
– But: If A is exponential, this does not imply that the problem solved

by A cannot be solved in polynomial time
– Of course: If A is bounded by a polynomial, then also the problem

solved by A can be solved in polynomial time (by A)
– Much research in finding good solutions for difficult problems

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 35

Content of this Lecture

• Efficiency of Algorithms
• Machine Model
• Complexity
• Examples

– Exact substring search (average-case versus worst-case)
– Knapsack problem (exponential problem)

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 36

Exact Substring Search: Average Case

• We showed that the algorithm’s
WC is 𝑂𝑂((𝑛𝑛 −𝑚𝑚) � 𝑚𝑚)~𝑂𝑂(𝑛𝑛 � 𝑚𝑚)
– Since 𝑚𝑚 ≪ 𝑛𝑛

• What does a worst case look like?

1. for i := 1..|T|-|P|+1 do
2. match := true;
3. j := 1;
4. while match
5. if T[i+j-1]=P[j] then
6. if j=|P| then
7. print i;
8. match := false;
9. end if;
10. j := j+1;
11. else
12. match := false;
13. end if;
14. end while;
15.end for;

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 37

Exact Substring Search: Beyond Worst Case

• We showed that the algorithm’s WC
is 𝑂𝑂((𝑛𝑛 −𝑚𝑚) � 𝑚𝑚)~𝑂𝑂(𝑛𝑛 � 𝑚𝑚)
– Since 𝑚𝑚 ≪ 𝑛𝑛

• What does a worst case look like?
– 𝑇𝑇 = 𝑎𝑎𝑛𝑛;

𝑃𝑃 = 𝑎𝑎𝑚𝑚

• What about the average case?
– The outer loop is passed by n-m+1

times, no matter what T/P look like
– This already is in Ω(𝑛𝑛 −𝑚𝑚) in all cases

• Worst, best, average, …

1. for i := 1..|T|-|P|+1 do
2. match := true;
3. j := 1;
4. while match
5. if T[i+j-1]=P[j] then
6. if j=|P| then
7. print i;
8. match := false;
9. end if;
10. j := j+1;
11. else
12. match := false;
13. end if;
14. end while;
15.end for;

aaaaaaaaaaaaaa…
aaaaaa
aaaaaa
aaaaaa
aaaaaa
...

T
P

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 38

Exact Substring Search: Average Case

• How often do we pass by the
inner loop?

• Needs a model of “average strings”
• Simplest model:

T and P are randomly generated from the same alphabet ∑
– Every character appears with equal probability at every position

• Gives a chance of 𝑝𝑝 = 1/|∑| for every test “T[i+j-1]=P[j]”
• Derive the expected number of comparisons in line 3

= 1 1 − 𝑝𝑝 + 2 � 𝑝𝑝 1 − 𝑝𝑝 + 3 � 𝑝𝑝2 1 − 𝑝𝑝 + ⋯+ 𝑚𝑚 � 𝑝𝑝𝑚𝑚−1

= 1–𝑝𝑝 + 2𝑝𝑝 − 2𝑝𝑝2 + 3𝑝𝑝2 − 3𝑝𝑝3 + ⋯+ 𝑚𝑚 � 𝑝𝑝𝑚𝑚−1

= 1 + 𝑝𝑝 + 𝑝𝑝2 + 𝑝𝑝3 + … + 𝑝𝑝𝑚𝑚−1 = �
𝑖𝑖=1

𝑚𝑚−1

𝑝𝑝𝑖𝑖

1. O(n)
2. while match
3. if T[i+j-1]=P[j] then
4. O(1)
5. else
6. O(1); # end loop
7. -

Cost 1 for missmatch at first position

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 39

Differences On Real Data

• Assume |T|=50.000 and |P|=8 and |∑|=29
– German text, including Umlaute, excluding upper/lower case letters
– Worst-case estimate: 400.000 comparisons

• Note: Here, 𝑂𝑂(𝑚𝑚 � 𝑛𝑛) is quite tight, no linear factors ignored
– Average-case estimate: ~51.851 comparisons

• We expect a mismatch after every 1,03 comparisons

• Assume |T|=50.000, |P|=8, |∑|=4 (e.g., DNA)
– Worst-case: 400.000 comparisons
– Average-case: 65.740

• Best algorithms are 𝑂𝑂(𝑚𝑚 + 𝑛𝑛) ~ 50.008 comparisons
• Much better WC result, but not much better AC result
• But: Are German texts random strings?

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 40

• Given a set S of items with weights w[i] and value v[i] and
a maximal weight m; find the subset T⊆S such that:

and is maximal

Source: Wikipedia.de

Example 2: Knapsack Problem

�
𝑖𝑖∈𝑇𝑇

𝑤𝑤 𝑖𝑖 ≤ 𝑚𝑚 �
𝑖𝑖∈𝑇𝑇

𝑣𝑣 𝑖𝑖

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 41

Algorithm and its Complexity

• Imagine an algorithm which enumerates all possible
subsets T

• For each T, computing its value and its weight is in O(|S|)
– Testing for maximum is O(1)

• But how many different T exist?

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 42

Algorithm and its Complexity

• Imagine an algorithm which enumerates all possible
subsets T

• For each T, computing its value and its weight is in O(|S|)
– Testing for maximum is O(1)

• But how many different T exist?
– Every item from S can be part of T or not
– This gives 2 � 2 � 2 � ⋯ � 2 = 2 𝑆𝑆 different options

• Together: This algorithm is in 𝑂𝑂(2 𝑆𝑆)

• Actually, the knapsack problem is NP-hard
• Thus, very likely no polynomial algorithm exists

Patrick Schäfer, Ulf Leser: Algorithms and Data Structures, Summer Semester 2019 43

Exemplary Questions for Examination

• Given the following algorithm: … Analyze its worst case
and average case complexity

• Prove that O(f*g) = O(f)*O(g)
• Order the following functions by their complexity class: n2,

100n, n*log(n), n*2log(n), sqrt(n), n!
• Let f∈Ω(g) and g∈Ω(h). Show that f∈Ω(h)
• Find a function f such that: f∈Ω(n) and f∉O(n3*log(n))

	Foliennummer 1
	Content of this Lecture
	Efficiency of Algorithms
	Option 1: Use a Reference Machine
	Option 2: Computational Complexity
	Next steps
	Content of this Lecture
	Our Machine Model: RAM
	Operations
	Example: xy (for y>0)
	Cost Models
	Counting Operations in the RAM Model with UCM
	Selection Sort: Uniform versus Machine Cost
	Conclusions
	Content of this Lecture
	Complexity
	Examples
	Small Values
	Intuitive Observations
	Overview
	Formally: O-Notation
	More Examples
	Common Complexity Classes
	General Result
	Calculating with Complexities
	Formally: O-Calculus
	Example
	Example
	Complexity Analysis (n=|T|, m=|P|)
	Deriving new Rules: Transitivity of O-Membership
	-Notation
	Examples
	Further Notation
	Not Every Problem is Simple
	Content of this Lecture
	Exact Substring Search: Average Case
	Exact Substring Search: Beyond Worst Case
	Exact Substring Search: Average Case
	Differences On Real Data
	Example 2: Knapsack Problem
	Algorithm and its Complexity
	Algorithm and its Complexity
	Exemplary Questions for Examination

