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Who am I

• Ulf Leser 

• 1995 Diploma in Computer Science, TU München
• 1996-1997 Database developer at MPI-Molecular Genetics
• 1997-2000 Dissertation in Database Integration, TU Berlin
• 2000-2003 Developer and project manager at PSI AG
• 2003- Prof. Knowledge Management in Bioinformatics

• I do answer emails
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Wissensmanagement in der Bioinformatik

• Our topics in research
– Biomedical data management
– Text Mining
– Scientific Data Analysis

• Our topics in teaching
– Bsc: Grundlagen der Bioinformatik (5 SP)
– Bsc: Information Retrieval (5 SP)
– Msc: Algorithmische Bioinformatik (10 SP)
– Msc: Data Warehousing und Data Mining (10 SP)
– Msc: Informationsintegration (10 SP)
– Msc: Maschinelle Sprachverarbeitung (5 SP)
– Msc: Implementierung von Datenbanken (10 SP)
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Once upon a Time …

• IT company A develops software for insurance company B
– Volume: ~4M Euros

• B not happy with delivered system; doesn’t want to pay
• A and B call a referee to decide whether requirements 

were fulfilled or not
– Volume: ~500K Euros

• Job of referee is to understand requirements (~60 pages) 
and specification (~300 pages), survey software and 
manuals, judge whether the contract was fulfilled or not
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One Issue

• Requirement: „Allows for smooth operations in daily 
routine“

This is hardly testable
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One Issue

• Requirement: „Allows for smooth operations in daily 
routine“

• Claim from B
– I search a specific 

contract
– I select a region and a

contract type
– I get a list of all 

contracts sorted by name
in a drop-down box

– This sometimes takes
minutes! A simple drop-
down box! This performance 
is inacceptable for our call centre! 
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Discussion

• A: We tried and it worked fined
• B: OK, most of the times it works fine, but sometimes it is 

too slow
• A: We cannot reproduce the error; please be more specific 

in what you are doing before the problem occurs
• B: Come on, you cannot expect I log all my clicks and take 

notes on what is happening
• A: Then we conclude that there is no error
• B: Of course there is an error
• A: Please pay as there is no reproducible error
• …
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A Closer Look

• System has classical two-tier architecture

• Upon selecting a region and a contract, a query is 
constructed and send to the database

• Procedure for “query construction” is used a lot
– All contracts in a region, … running out this year, … by first letter 

of customer, … sum of all contract revenues per year, …
– “Meta” coding: very complex, hard to understand

Clients                Database
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Query Construction

SELECT CU.name, CO.type, CO.start, CO.end, CO.volume, …
FROM customer CU, contracts CO, c_c CC, region R, …
WHERE CU.ID=CC.CU_ID AND

CO.ID=CC.CO_ID AND
CU.regionID = R.ID AND
…
CU.ID=4711 AND CO.type=„Hausrat“
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Query Construction

SELECT CU.name, CU.street, CU.status, CU.contact, …
FROM customer CU, contracts CO, c_c CC, region R, …
WHERE CU.ID=CC.CU_ID AND

CO.ID=CC.CO_ID AND
CU.regionID = R.ID AND
…
R=„Berlin“ AND CO.type=„Leben“
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Requirement

• Recall

• After retrieving the list of customers, it has to be sorted

Ulf Leser: Alg&DS, Summer semester 2011 5

One Issue

• Requirement: „Allows for smooth operations in daily 
routine“

• Observation from A
– I search a specific 

contract
– I select a region and a

contract type
– I get a list of all 

contracts sorted by name
in a drop-down box

– „This sometimes takes
minutes! A simple drop-
down box!“


One Issue

Requirement: „Allows for smooth operations in daily routine“

Observation from A

I search a specific 
contract

I select a region and a
contract type

I get a list of all 
contracts sorted by name
in a drop-down box

„This sometimes takes
minutes! A simple drop-
down box!“
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Code used for Sorting the List of Customer Names

• S: array of Strings, |S|=n
• Sort S alphabetically

– Take the first string and compare to 
all others

– Swap whenever a later string is 
alphabetically smaller

– Repeat for 2nd, 3rd, … string
– After 1st iteration of outer loop:

S[1] contains smallest string from S
– After 2nd iteration of outer loop: S[2] 

contains 2nd smallest string from S
– etc.

S: array_of_names;
n := |S|;
for i = 1..n-1 do
for j = i+1..n do
if S[i]>S[j] then
tmp := S[i];
S[i] := S[j];
S[j] := tmp;

end if;
end for;

end for;
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Example
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S: array_of_names;
n := |S|;
for i = 1..n-1 do
for j = i+1..n do
if S[i]>S[j] then
tmp := S[i];
S[i] := S[j];
S[j] := tmp;

end if;
end for;

end for;
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Example continued
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• Seems to work
• This algorithm is called “selection sort”

– Select smallest element and move to front, select second-smallest 
and move to 2nd position, …
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Analysis

• How long will it take (depending on |S|=n)?
• Which parts of the program take CPU time?

1. Probably very little, constant time
2. Probably very little, constant time
3. n-1 assignments

4. n-i assignments
5. One comparison

6. One assignment
7. One assignment
8. One assignment

9. No time
10. One increment (j+1); one test

11. One increment (i+1); one test

1. S: array_of_names;
2. n := |S|;
3. for i = 1..n-1 do
4. for j = i+1..n do
5. if S[i]>S[j] then
6. tmp := S[i];
7. S[i] := S[j];
8. S[j] := tmp;
9. end if;
10. end for;
11.end for;
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Slightly More Abstract

• Assume one assignment/test costs c, one addition d
• Which parts of the program take time?

1. 0
2. c
3. (n-1)*c

4. (n-i)*c (hmmm …)
5. c

6. c (hmmm …)
7. c
8. c

9. 0
10. c+d

11. c+d

1. S: array_of_names;
2. n := |S|;
3. for i = 1..n-1 do
4. for j = i+1..n do
5. if S[i]>S[j] then
6. tmp := S[i];
7. S[i] := S[j];
8. S[j] := tmp
9. end if;
10. end for;
11.end for;
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Slightly More Compact

• Assume one assignment/test costs c, one addition d
• Which parts of the program take time?

– Let’s be pessimistic: We 
always swap

– How would the list have 
to look like in first place?

• c
• (n-1)*c* (

• n-i* (
• 5*c

• c+d) +
• c+d)

1. S: array_of_names;
2. n := |S|;
3. for i = 1..n-1 do
4. for j = i+1..n do
5. if S[i]>S[j] then
6. tmp := S[i];
7. S[i] := S[j];
8. S[j] := tmp;
9. end if;
10. end for;
11.end for;

This is not yet clear
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Even More Compact

• Assume one assignment/test costs c, one addition d
• Which parts of the program take time?

– We have some cost outside
the loops (out_loops)

– And some cost inside the 
loops (in_loops)

– How often do we need to 
perform in_loops?

– Total:
c+(n-1)*c* ((n-i)*…)=
out_loops+(n-1)*c*?*in_loops

1. S: array_of_names;
2. n := |S|;
3. for i = 1..n-1 do
4. for j = i+1..n do
5. if S[i]>S[j] then
6. tmp := S[i];
7. S[i] := S[j];
8. S[j] := tmp;
9. end if;
10. end for;
11.end for;

out_loops

in_loops
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Observations

• The number of comparisons is 
independent of the number of 
swaps
– We always compare, but we do 

not always swap
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Observations

• The number of comparisons is 
independent of the number of 
swaps
– We always compare, but we do 

not always swap
• How many comparisons do we 

perform in total?
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Observations

• The number of comparisons is 
independent of the number of 
swaps
– We always compare, but we do 

not always swap
• How many comparisons do we 

perform in total?
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Observations

• First string is compared to n-1 
other strings 
– First row

• Second is compared to n-2
• Second row

• Third is compared to n-3
• …
• n-1’th is compared to 1
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Together
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• This leads to the following estimation for the total cost 
out_loops+(n2-n)*in_loops/2

• Let’s assume c=d=1
n+1+(n2-n)*8/2

out_loops in_loops total
10 11 360 371

100 11 39.600 39.611
500 11 998.000 998.011

1.000 11 3.996.000 3.996.011
2.000 11 15.992.000 15.992.011

0
2.000.000
4.000.000
6.000.000
8.000.000

10.000.000
12.000.000
14.000.000
16.000.000
18.000.000

10 100 500 1.000 2.000

out_loops
in_loops

11
101
501

1001
2001
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What Happened?

• Most combinations (region, contract type) select only a 
handful of contracts

• A few combinations select many contracts (2000-5000)
• Time it takes to fill the drop-down list is not proportional to 

the number of contracts (n), but proportional to n2/2
– Required time is ”quadratic in n”
– Assume one operation takes 10 nanoseconds (0.000001 sec)
– A handful of contracts (~10): ~500 operations => 0,0005 sec
– Many contracts (~5000) => ~125M operations => 125 sec
– Humans always expect linear time …

• Question: Could they have done it better?
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Of course

• Efficient sorting algorithms need ~n*log(n)*x operations
– Quick sort, merge sort, … see later
– For comparability, let’s assume x=8

0

2.000.000

4.000.000

6.000.000

8.000.000

10.000.000

12.000.000

14.000.000

16.000.000

18.000.000

10 100 500 1.000 2.000

out_loops
in_loops
log

“log-linear”, 
“Almost” linearn*log(n)
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So there is an End to Research in Sorting?

• We didn‘t consider how long it takes to compare 2 strings
– We used c=d=1, but we need to compare strings char-by-char
– Time of every comparison is proportional to the length of the 

shorter string
• We want algorithms requiring less operations per inner 

loop (smaller x)
• We want algorithms that are fast even if we want to sort 

1.000.000.000 strings 
– Which might not fit into main memory

• We made a pessimistic estimate – what is a realistic 
estimate (how often do we swap in the inner loop?)?

• …
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Terasort Benchmark

• 2009: 100 TB in 173 minutes 
– Amounts to 0.578 TB/min
– 3452 nodes x (2 Quadcore, 8 GB memory)
– Owen O'Malley and Arun Murthy, Yahoo Inc. 

• 2010: 1,000,000,000,000 records in 10,318 seconds 
– Amounts to 0.582 TB/min
– 47 nodes x (2 Quadcore, 24 GB memory), Nexus 5020 switch
– Rasmussen, Mysore, Madhyastha, Conley, Porter, Vahdat, Pucher

• Other goals
– PennySort: Amount of data sorted for a penny's worth of system 

time
– JouleSort: Minimize amount of energy required during sorting
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Content of this Lecture

• This lecture
• Algorithms and …
• Data Structures
• Concluding Remarks
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Algorithms and Data Structures

• Slides are English
• Vorlesung wird auf Deutsch gehalten
• Lecture: 4 SWS; exercises 2 SWS
• Contact

– Ulf Leser, 
– Raum IV.401
– Tel: 2093 – 3902
– eMail: leser (..) informatik . hu…berlin . de



Ulf Leser: Algorithmen und Datenstrukturen 30

Schedule

• Lectures: Monday 11-13, Wednesday 11-13, EZ 0115
• Exercises: See webpage / AGNES
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Exercises

• Start only next week, but first assignment is today
• You will build teams of two students
• There will be an assignment about every two weeks
• You need to work on every assignment
• Each assignment gives 40 points max
• Only groups having >50% of the maximal number of 

points over the entire semester are admitted to the exam



Ulf Leser: Algorithmen und Datenstrukturen 32

Literature 

• Ottmann, Widmayer: Algorithmen und Datenstrukturen, 
Spektrum Verlag, 2002-2012
– 20 copies in library

• Other
– Saake / Sattler: Algorithmen und Datenstrukturen (mit Java), 

dpunkt.Verlag, 2006
– Sedgewick: Algorithmen in Java: Teil 1 - 4, Pearson Studium, 2003

• 20 copies in library
– Güting, Dieker: Datenstrukturen und Algorithmen, Teubner, 2004
– Cormen, Leiserson, Rivest, Stein: Introduction to Algorithms, MIT 

Press, 2003
• 10 copies in library
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Web 
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Pseudo Code

• You need to program exercises in Java
• I will use informal pseudo code

– Much more concise than Java
– Goal: You should understand what I mean
– Syntax is not important; don’t try to execute programs from slides

• Translation into Java should be simple
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Topics of the Course

• Machine models and complexity (~2)
• Abstract data types (~2)
• Lists  (~3)
• Sorting (~5)
• Selection (~3)
• Hashing (~3)
• Trees (~4)
• Graphs (~4)

April

Mai

June

July
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113 Evaluation Forms

• Very good scores
• Materials could (always) be 

better
• Discerning BA, KB, INFOMIT 

impossible
• Many liked it a lot, a few 

strongly disliked it
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Freitexthinweise
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Highlights

• Danke für MERGESORT, half beim Sortieren von 
Blumentöpfen in der Gärtnerei meiner Oma

• Prof. Leser ist vertrauenswürdig. Wenn er sagt, dass etwas 
stimmt, glaube ich es auch ohne Beweis. Beweise 
weglassen und Zeit sinnvoller nutzen



Ulf Leser: Algorithmen und Datenstrukturen 39

Zusammenfassung

• Hochschulpolitik: 12 gut, 11 schlecht
• Alg der Woche: 19 gut, 1 schlecht
• Englische Folien: 2 gut, 11 schlecht
• Tempo: 3 gut, 4 zu langsam, 6 zu schnell
• Formale Beweise: 8 bitte formaler, 7 bitte weniger formal
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Questions?
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Questions

• Diplominformatiker? 
• Bachelor?
• Semester?
• Kombibachelor?
• INFOMIT? Biophysics? Beifach?
• Who heard this course before?
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Content of this Lecture

• This lecture
• Algorithms and …
• … Data Structures
• Concluding Remarks
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What is an Algorithm?

• An algorithm is a recipe for doing something
– Washing a car, sorting a set of strings, preparing a pancake, 

employing a student, …
• The recipe is given in a (formal, clearly defined) language
• The recipe consists of atomic steps

– Someone (the machine) must know what to do
• The recipe must be precise

– After every step, it is unambiguously decidable what to do next
– Does not imply that every run has the same sequence of steps

• There can be randomized steps; there is input

• The recipe must not be infinitely long
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More Formal

• Definition (general)
An algorithm is a precise and finite description of a process 
consisting of elementary steps.

• Definition (Computer Science)
An algorithm is a precise and finite description of a process 
that is (a) given in a formal language and (b) consists of 
elementary and machine-executable steps.

• Usually we also want: “and (c) solves a given problem”
– But algorithms can be wrong …
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Almost Synonyms

• Rezept
• Ausführungsvorschrift
• Prozessbeschreibung
• Verwaltungsanweisung
• Regelwerk
• Bedienungsanleitung

– Well …
• …
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History

• Word presumably dates back to “Muhammed ibn Musa abu
Djafar alChoresmi”,
– Published a book on calculating in the 8th century in Persia
– See Wikipedia for details

• Given the general meaning of the term, there have been 
algorithms since ever
– “To hunt a mammoth, you should …”

• One of the first non-trivial ones: Euclidian algorithm for 
finding the greatest common divisor (gcd) of two integers
– Assume a,b≥0; define gcd(a,0)=a=gcd(0,a)
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Euclidian Algorithm

• Recipe: Given two integers a, b. As long as neither a nor b 
is 0, take the smaller of both and subtract it from the 
greater. If this yields 0, return the other number

• Example: (28, 92) (a0, b0)
– (28, 64)  (a1, b1)
– (28, 36) (a2, b2)
– (28, 8) …
– (20, 8)
– (12, 8)
– (4, 8)
– (4, 4)
– (4, 0)

• Will this always work?

1. a,b: integer;
2. if a=0 return b;
3. while b≠0
4. if a>b
5. a := a-b;
6. else
7. b := b-a;
8. end if;
9. end while;
10.return a;

Actually not really precise
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Proof (sketch) that an Algorithm is Correct

• Assume our function “euclid” returns x
• We write “b|a” if (a mod b)=0

– We say: “b teilt a”
• Note: if c|a and c|b and a>b ⇒ c|(a-b)
• 1st step: We prove that x is a common 

divisor of a and b
– Assume we required k loops
– k’th step: bk=0 and x=ak≠0 ⇒ x|ak, x|bk
– k-1: It must hold: ak-1=bk-1 ⇒ x|ak-1, x|bk-1
– k-2: Either ak-2=2x or bk-2=2x ⇒ x|ak-2, x|bk-2
– k-3: Either (ak-3,bk-3)=(3x,x) or (ak-3,bk-3)= 

(2x,3x) or … ⇒ x|ak-3, x|bk-3
– …

1. func euclid(a,b: int)
2. if a=0 return b;
3. while b≠0
4. if a>b
5. a := a-b;
6. else
7. b := b-a;
8. end if;
9. end while;
10. return a;
11.end func;
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Proof (sketch) that an Algorithm is Correct

• 2nd step: We prove that x is the 
greatest common divisor
– Assume any y with y|a and y|b
– It follows that y|(a-b) (or y|(b-a))
– It follows that y|((a-b)-b) (or y|((b-a)-b) …)
– …
– It follows that y|x
– Thus, y≤x

1. func euclid(a,b: int)
2. if a=0 return b;
3. while b≠0
4. if a>b
5. a := a-b;
6. else
7. b := b-a;
8. end if;
9. end while;
10. return a;
11.end func;
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Properties of Algorithms

• Definition
An algorithm is called terminating if it stops after a finite 
number of steps for every finite input

• Definition
An algorithm is called deterministic if it always performs 
the same series of steps given the same input

• We only study terminating and mostly deterministic algs
– Operating systems are “algorithms” that do not terminate
– Algs which at some point randomly decide about the next step are 

not deterministic
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Algorithms and Runtimes

• Usually, one seeks efficient (read for now: fast) algorithms
• We will analyze the efficiency of an algorithm as a function 

of the size of its input; this is called its (time-)complexity 
– Selection-sort has time-complexity “O(n2)”

• The real runtime of an algorithm on a real machine 
depends on many additional factors we gracefully ignore
– Clock rate, processor, programming language, representation of 

primitive data types, available main memory, cache lines, …
• But: Complexity in some sense correlates with runtime

– It should correlate well in most cases, but there may be exceptions
– Precise definition follows 
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Algorithms, Complexity and Problems

• An (correct) algorithm solves a given problem
• An algorithm has a certain complexity

– Which is a statement about the amount of work it will take to finish 
as a function on the size of its input

• Also problems have complexities
– The provably minimal amount of work necessary for solving it
– The complexity of a problem is a lower bound on the complexity of 

any algorithm that solves it
– If an algorithm for a problem P has the same complexity as P, it is 

optimal for P – no algorithm can solve P faster
• Proving the complexity of a problem usually is much harder 

than proving the complexity of an algorithm
– Needs to make a statement on any algorithm for this problem
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Relationships

• There are problems for which we know their complexity, but no 
optimal algorithm is known

• There are problems for which we do not know the complexity yet more 
and more efficient algorithms are discovered over time

• There are problems for which we only know lower bounds on their 
complexity, but not the precise complexity

• There are problems of 
which we know that no 
algorithm exists 
– Undecidable problems
– Example: “Halteproblem”
– Implies that we cannot 

check in general if an 
algorithm is terminating

Source: S. Albers, Alg&DS; SoSe 2010
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Properties of Algorithms

1. Time consumption – how long will it take?
– Time complexity
– Worst-case, average-case, best-case

2. Space consumption – how much memory will it need?
– Space complexity
– Worst-case, average-case, best-case
– Can be decisive for large inputs

3. Correctness – does the algorithm solve the problem?

Often, one can 
trade space for 

time – look at both
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Formal Analysis versus Empirical Analysis

• In this lecture, we usually perform a complexity analysis of 
the algorithms we study
– Goal: Derive a simple formula which helps to compare the general 

runtime behavior of different algorithms
– Should correlate with the true runtime on any machine 

• In some yet-to-be-defined sense
– However, this doesn’t help to decide which of 10 sorting algorithms 

with complexity O(n*log(n)) are actually the fastest for your setting
• Machine, nature and amount of data to be sorted, …

• Alternative: Implement carefully and run on reference 
machine using reference data set
– Done a lot in practical algorithm engineering
– Not so much in this introductory course
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In This Module

• We will mostly focus on worst-case time complexity
– Best-case is not very interesting
– Average-case often is hard to determine

• What is an „average string list“? 
• What is average number of twisted sorts in an arbitrary string list? 
• What is the average length of an arbitrary string?
• May depend in the semantic of the input (person names, DNA 

sequences, job descriptions, book titles, language, …)

• Keep in mind: Worst-case often is overly pessimistic
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Content of this Lecture

• This lecture
• Algorithms and …
• Data Structures
• Concluding Remarks
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What is a Data Structure?

• Algorithms work on input data, generate intermediate data, 
and finally produce result data

• A data structure is a way how data is represented inside 
the machine
– In memory or on disc (see Database course)

• Data structures determine what algs may do at what cost
– More precisely: … what a specific step of an algorithm costs

• Complexity of algs is tightly bound to the data structures 
they use
– So tightly that one often subsumes both concepts under the term 

“algorithm”
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Example: Selection Sort (again)

• We assumed that S is 
– a list of strings (abstract), represented 
– as an array (concrete data structure)

• Arrays allow us to access the i’th
element with a cost that is
independent of i (and |S|)
– Constant cost, “O(1)”

• Let’s use a linked list for storing S
– Create a class C holding a string and a pointer to an object of C
– Put first s∈S into first object and point to second object, put 

second s into second object and point to third object, …
– Keep a pointer p0 to the first object

1. S: array_of_names;
2. n := |S|;
3. for i = 1..n-1 do
4. for j = i+1..n do
5. if S[i]>S[j] then
6. tmp := S[i];
7. S[i] := S[j];
8. S[j] := tmp;
9. end if;
10. end for;
11.end for;
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Selection Sort with Linked Lists 

• How much do the algorithm’s steps 
cost now?
– Assume following a pointer costs c
1. One assignment
2. Nothing
3. One assignment, n-1 times
4. Nothing
5. One comparison, … times
6. …

• Apparently no change in 
complexity
– Why? Only sequential access

1. i := p0;
2. repeat
3. j := i.next;
4. repeat
5. if i.val > j.val then
6. tmp := i.val;
7. i.val := j.val;
8. j.val := tmp;
9. end if;
10. j = j.next;
11. unil j.next = null;
12. i := i.next;
13.until i.next.next = null;
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Example Continued

• No change in complexity, but
– Previously, we accessed array 

elements, performed additions of 
integers and comparisons of strings, 
and assigned values to integers

– Now, we assign pointers, follow 
pointers, compare strings and follow 
pointers again

• These differences are not 
reflected in our “cost model”, but 
may have a big impact in practice

1. i := p0;
2. repeat
3. j := i.next;
4. repeat
5. if i.val > j.val then
6. tmp := i.val;
7. i.val := j.val;
8. j.val := tmp;
9. end if;
10. j = j.next;
11. unil j.next = null;
12. i := i.next;
13.until i.next.next = null;
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Content of this Lecture

• This lecture
• Algorithms and Data Structures
• Concluding Remarks 
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Why do you need this?

• You will learn things you will need a lot through all of your 
professional life

• Searching, sorting, hashing – cannot Java do this for us?
– Java libraries contain efficient implementations for most of the 

(basic) problems we will discuss 
– But: Choose the right algorithm / data structure for your problem

• TreeMap? HashMap? Set? Map? Array? …
• “Right” means: Most efficient (space and time) for the expected 

operations: Many inserts? Many searches? Biased searches? …

• Few of you will design new algorithms, but all of you often 
will need to decide which algorithm to use when

• To prevent problems like the ones we have seen earlier
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Exemplary Questions

• Give a definition of the concept “algorithm”
• What different types of complexity exist?
• Given the following algorithm …, analyze its worst-case 

time complexity
• The following algorithm … uses a double-linked list as basic 

set data structure. Replace this with an array
• When do we say an algorithm is optimal for a given 

problem?
• How does the complexity of an algorithm depend on (a) 

the data structures it uses and (b) the complexity of the 
problem it solves?
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