Introduction to Bioinformatics
Finish

Johannes Starlinger
This Lecture

Genomics
- Sequencing
- Gene prediction
- Evolutionary relationships
- Motifs - TFBS
- Transcriptomics
- Alignment

Proteomics
- Structure prediction
- ... comparison
- Motives, active sites
- Docking
- Protein-Protein Interaction
- Proteomics

Systems Biology
- Pathway analysis
- Gene regulation
- Signaling
- Metabolism
- Quantitative models
- Network reconstruction

Medicine
- Phenotype – genotype
- Mutations and risk
- Population genetics
- Adverse effects
- ...
Central Dogma of Molecular Biology
Bioinformatics / Computational Biology

• Computer Science methods for
 – Solving biologically relevant problems
 – Analyzing and managing experimental data sets
• **Empirical**: Data from high throughput experiments
• Mostly focused on developing algorithms
• Problem are typically complex, data full of errors – importance of heuristics and approximate methods
• **Reductionist** – Strings, graphs, sequences, signals
• **Interdisciplinary**: Biology, Computer Science, Physics, Mathematics, Genetics, …
Typical Approach

1. Observe and learn about biological background
2. Abstract
3. Formalize (Definitions + Formulas)
4. Create algorithms
 - Based on observations
 - Using formalization
5. Learn from outcome
6. Reiterate
Searching Sequences (Strings)

- A chromosome is a string
- A sequencing machine generates strings
- Substrings may represent biologically important areas
 - Genes on a chromosome
 - Transcription factor binding sites
 - Same gene in a different species
 - Similar gene in a different species
 - …
- Exact or approximate string search
 - Naive and Boyer-Moore algorithm
 - PSWM: Approximate gap-free matching
 - Local and global alignment
Example

\[
d(i, j) = \min \begin{cases}
 d(i, j - 1) + 1 \\
 d(i - 1, j) + 1 \\
 d(i - 1, j - 1) + t(i, j)
\end{cases}
\]

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>T</th>
<th>G</th>
<th>C</th>
<th>G</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>T</th>
<th>G</th>
<th>C</th>
<th>G</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>A</td>
<td>1 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>T</th>
<th>G</th>
<th>C</th>
<th>G</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>A</td>
<td>1 0 1 2 3 4 5 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>T</th>
<th>G</th>
<th>C</th>
<th>G</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>A</td>
<td>1 0 1 2 3 4 5 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>2 1 0 1 2 3 4 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>3 2 1 0 1 2 3 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>T</th>
<th>G</th>
<th>C</th>
<th>G</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>A</td>
<td>1 0 1 2 3 4 5 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>2 1 0 1 2 3 4 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>3 2 1 0 1 2 3 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>4 3 2 1 1 1 2 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PAM as Distance Measure

• Definition
Let S_1, S_2 be two protein sequences with $|S_1| = |S_2|$. We say S_1 and S_2 are x PAM distant, iff S_1 most probably was produced from S_2 with x mutations per 100 AAs.

• Remarks
 - PAM is motivated by evolution.
 - Assumptions: Mutations happen with the same rate at every position of a sequence.
 - If mutation rate is high, mutations will occur again and again at the same position.
 - PAM \neq %-sequence-identity.

![Graph showing observed substitutions versus true number of mutations](https://via.placeholder.com/150)
Example

Relative frequencies

\[
\begin{array}{l}
A: 10/38 \\
C: 6/38 \\
G: 11/38 \\
T: 11/38 \\
\end{array}
\]

Mutation rates

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4/19</td>
<td>1/19</td>
<td>1/19</td>
<td>0/19</td>
</tr>
<tr>
<td>C</td>
<td>2/19</td>
<td>1/19</td>
<td>0/19</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>4/19</td>
<td>1/19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>5/19</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Matrix

\[
\begin{array}{l}
A: 0,48 \\
C: 0,63 \\
G: 0,40 \\
T: 0,50 \\
\end{array}
\]

\[
M_x(i, j) = \log \left(\frac{f(i, j)}{f(i) \times f(j)} \right)
\]
Searching a Database of Strings

- Comparing two sequences is costly
- Given s, assume we want to find the most similar s’ in a database of all known sequences
 - Naïve: Compare s with all strings in DB
 - Will take years and years
- **BLAST**: Basic local alignment search tool
 - Ranks all strings in DB according to similarity to s
 - Similarity: High is s, s’ contain substrings that are highly similar
 - Heuristic: Might miss certain similar sequences
 - Extremely popular: You can “blast a sequence”
Multiple Sequence Alignment

- Given a set S of sequences: Find an arrangement of all strings in S in columns such that there are (a) few columns and (b) columns are maximally homogeneous
 - Additional spaces allowed

- Goal: Find commonality between a set of functionally related sequences
 - Proteins are composed of different functional domains
 - Which domain performs a certain function?

Source: Pfam, Zinc finger domain
Example

C PADKTNVKAAWGBKVGAGHAGEYGA
D AADKTNVKAAWSKVGGHAGEYGA
A PEEKSAVTALWGKVNVDEYGG
B GEEKAAVLALWDKVNEEEYGG

C PADKTNVKAAWG_KVGAHAGEYGA
D AADKTNVKAAWS_KVGGHAGEYGA
E AA__TNVKTAWSSKVGGHAPA__A

A PEEKSAVTALWGKVN__VDEYGG
B GEEKAAVLALWDKV__EEEYGG
C PADKTNVKAAWG_KVGAHAGEYGA
D AADKTNVKAAWS_KVGGHAGEYGA
E AA__TNVKTAWSSKVGGHAPA__A
Read Mapping

• A sequencing machine outputs short sequence reads
 – Not whole genome or chromosome as one long sequence
• Need to reconstruct to whole sequence from the reads
• General Approach:
 – Given a reference build of the whole genome
 – Given the reads from the sequencing machine
 • With a certain depth of coverage of each base
 – Find the best alignment for each read within the reference sequence
 – Together with information about matches, mismatches indels
 • Similar to an edit script
Variant Calling: Problem definition

• Input for each position
 - A column of bases (cmp coverage)
 - Mapping quality score for each read
 - Base call quality for each position in the read (from sequencing)

• Output for each position:
 - Whether the genomic position is
 • Homozygous wildtype (as per reference)
 • Heterozygous
 • Homozygous variant
Microarrays / Transcriptomics

Referenzarray (Probe) → Hybridisierung → Arrayaufbereitung → Scanning → TIFF Bild → Bilderkennung → Rohdaten

Zellprobe (Sample)
Protein Structure

- **Primary**
 - 1D-Seq. of AA

- **Secondary**
 - 1D-Seq. of “subfolds”

- **Tertiary**
 - 3D-Structure

- **Quaternary**
 - Assembled complexes
Predicting Secondary Structure

- SSP: Given a protein sequence, assign each AA in the sequence to one of the three classes Helix (H), Strand (E), or Coil (_)
Protein-Protein-Interactions

- Proteins do not work in isolation but interact with each other
 - Metabolism, complex formation, signal transduction, transport, …

- PPI networks
 - Neighbors tend to have similar functions
 - Interactions tend to be evolutionary conserved
 - Dense subgraphs (cliques) tend to perform distinct functions
 - Are not random at all
Regulatory Network Reconstruction

Source: Filkov, „Modeling Gene Regulation“, 2003
Topics Not Covered

- Phylogenetic algorithms
- Gene prediction
- Protein 3D-structure prediction
- Docking
- RNA Seq
- Genotype / Phenotype association studies (GWAS)
- Biological Databases
- Machine Learning in Life Science Data
- ...

Johannes Starlinger: Bioinformatics, Summer Semester 2017
Evaluation
Klausur

- Zulassung
- Bücher versus Folien
- Lerngruppen
- Ablauf Klausur
- Ergebnisse
- Klausureinsicht
- Wiederholungen
Klausurtermin

- Raum: 3.001
- Keine Hilfsmittel erlaubt

- Anmelden
- Übungsschein
Wiederholungstermine

- Mündliche Wiederholungsprüfungen
- Termine: 18. / 19. / 20.9.2017
- Anmeldung ab 21.8.
Wissensmanagement in der Bioinformatik

- **Research**: Scientific database systems, Biomedical Text Mining, Statistical analysis, Scientific Workflows

- **Our topics in teaching**
 - **Bachelor**
 - Grundlagen der Bioinformatik
 - Information Retrieval
 - Seminare, Semesterprojekte
 - **Master**
 - Algorithmische Bioinformatik
 - Data Warehousing und Data Mining
 - Informationsintegration
 - Maschinelle Sprachverarbeitung
 - Implementierung von Datenbanksystemen
 - Seminare
• Wenn Sie beim Lernen Fragen haben – Mail
• Wenn Sie beim Lernen Fehler in den Folien finden – Mail

• Viel Erfolg bei der Klausur