

Network Reconstruction

J ohannes Starlinger

Content

- Network reconstruction
- Boolean models
- Correlation-Based Approaches: REVEAL / ARACNE
- Example

Networks

How do we know? What does the network tell us?

Approaches to Network Reconstruction

- By many, many small-scale experiments
- By mathematical modeling from high-throughput data sets
- By evolutionary inference from model organisms
- By curation from the literature (see first bullet)

Reconstruction from Indirect High-Throughput Data

- Network reconstruction, re-engineering, inference, ...
- Idea: Derive network from indirect observations
- Network: Links and their effect (strength, activation, ...)
- We usually assume the players (genes, metabolites, ...) to be given
- Observation: High-throughput measurements
- Here: Transcriptome, microarrays, RNA-Seq
- Indirect: We try to infer mechanistic causality by correlation
- Dynamic networks
- Nodes get states (active / passive)
- Current states determine future states of nodes
- Leads to dynamic behavior
- Warning: All current methods are highly reductionist

Boolean Network Models

- Definition

A Boolean Network is a digraph $G=(V, E)$ where

- Every node has an associated Boolean state (on/off)
- Every node is labeled with a Boolean function over the states of all incoming nodes
- Usage
- Vertices = genes
- Edge (v, w) models an effect of v on w
- The state of a node v is determined by its Boolean function over all "incoming" states

$f_{A}(B)=B$
$f_{B}(A, C)=A$ and C
$f_{C}(A)=\operatorname{not} A$
Boolean Network
- Simplistic: No cofactors, no cellular context, no binding affinity, no time, no kinetics, ...

Network Dynamics

- Definition

A Dynamic Boolean Network (DBN) is a Boolean network where every node v is assigned a sequence of states $v_{0}, v_{1}, v_{2}, \ldots$ such that the state of v_{t} is defined over the Boolean function of v applied to the states w_{t-1} of all incoming nodes w

- Remarks
- Models the state of every gene (on / off) over time
- States at time point t (only) depend on states at time point t-1
- No buffering, synchronized time, ...
- Deterministic: Given all states at any time point t and the Boolean functions, any state at any later time point can be uniquely determined

Example

Boolean Network Wiring Diagram

| State | INPUT | | | OUTPUT | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | A | B | C | A^{\prime} | B^{\prime} | C^{\prime} |
| 1 | 0 | 0 | 0 | 0 | 0 | 1 |
| 2 | 0 | 0 | 1 | 0 | 0 | 1 |
| 3 | 0 | 1 | 0 | 1 | 0 | 1 |
| 4 | 0 | 1 | 1 | 1 | 0 | 1 |
| 5 | 1 | 0 | 0 | 0 | 0 | 0 |
| 6 | 1 | 0 | 1 | 0 | 1 | 0 |
| 7 | 1 | 1 | 0 | 1 | 0 | 0 |
| 8 | 1 | 1 | 1 | 1 | 1 | 0 |

Transition table
Source: Filkov, „Modeling Gene Regulation", 2003

Example

Boolean Network

genes time	\mathbf{A}	\mathbf{B}	\mathbf{C}
$\mathbf{0}$	1	1	0
$\mathbf{1}$	1	0	0
$\mathbf{2}$	0	0	0
$\mathbf{3}$	0	0	1
$\mathbf{4}$	0	0	1
$\mathbf{5}$	\ldots	\ldots	\ldots

Network Analysis

- Many things can be analyzed using DBN
- For instance, an attractor is a (set of) states towards which the network state converges
- Point attractor: State which cannot be left any more
- Cyclic attractor: A series of states which will repeat forever
- Probability of attractors depend largely on size of network and complexity of Boolean functions
- Skipped - we want to reconstruct networks

Network Reconstruction

- Assume we know all genes, but not their relationships
- Assume we observe the states of n genes over m time points (a matrix S ; the observations)
- Can we re-engineer the Boolean function of every gene given a sequence of states?

genes time	\mathbf{A}	\mathbf{B}	\mathbf{C}
$\mathbf{0}$	1	1	0
$\mathbf{1}$	0	0	1
$\mathbf{2}$	1	0	0
$\mathbf{3}$	1	1	0
$\mathbf{4}$	0	0	1
$\mathbf{5}$	\ldots	\ldots	\ldots

Network Reconstruction

- Assume we know all genes, but not their relationships
- Assume we observe the states of n genes over m time points (a matrix S ; the observations)
- Can we re-engineer the Boolean function of every gene given a sequence of states?

$f(A)=$ not B
$f(B)=A$ and not B
$f(C)=B$

genes time	\mathbf{A}	\mathbf{B}	\mathbf{C}
$\mathbf{0}$	1	1	0
$\mathbf{1}$	0	0	1
$\mathbf{2}$	1	0	0
$\mathbf{3}$	1	1	0
$\mathbf{4}$	0	0	1
$\mathbf{5}$	\ldots	\ldots	\ldots

Formal Problem

- Definition

Let $S_{t} 0 \leq t \leq m$, be the vector of all observed states of all genes V at time point t. A $D B N G=(V, E)$ with functions $f_{1}, \ldots f_{r} n=/ V /$, is called

- consistent with S_{t} iff $S_{t}=\left[f_{1}\left(S_{t-1}\right), f_{2}\left(S_{t-1}\right), \ldots f_{n}\left(S_{t-1}\right)\right]$
- consistent with S iff it is consistent for all $S_{t} 1 \leq t \leq m$
- The Boolean network reconstruction problem Given an observation S over a set V, find a DBN G=(V,E) that is consistent with S.
- Remark
- Reconstruction means finding the functions $f_{1}, \ldots f_{n}$
- This also determines network topology (nodes appearing in a f_{i})

Solutions

- Clearly, there are many observations S for which no consistent G exists
- Recall that DBN are deterministic
- Imagine $\mathrm{S}_{\mathrm{t}}, \mathrm{S}_{\mathrm{t}+1}$ and $\mathrm{S}_{\mathrm{u}}, \mathrm{S}_{\mathrm{u}+1}$ with $\mathrm{S}_{\mathrm{t}}=\mathrm{S}_{\mathrm{u}}$ but $\mathrm{S}_{\mathrm{t}+1} \neq \mathrm{S}_{\mathrm{u}+1}$
- Also, there are many observation S for which more than one consistent G exists
- Every time point narrows the options for G - the longer S, the less (or no) consistent G's exist

Optimal Networks

- Definition
- For a DBN G, let size(G) be the total number of variables (edges) appearing in the Boolean functions of G
- A DBN G is minimal for observation S, if G is consistent with S and there is no G^{\prime} which is also consistent with S and size $\left(G^{\prime}\right)<\operatorname{size}(G)$
- Remark
- Parsimony assumption: Small models are better
- Thus, the smallest network is the best - functions are as simple as possible, nothing is inferred that is not enforced by the data
- Not necessarily unique

Naïve Algorithm

```
N = V;
for k=1..n # length of functions
    for every n in N # all unexplained nodes
        test all functions f of size k for n on S;
        if f is consistent for n on S
            N := N \ n; # n is explained
            Add f to network;
        end if;
    end for;
end for;
```

- Exhaustive algorithm for finding minimal networks
- Very complex (AND, OR, NOT, no paranthesis)
- $k=1$: $2 n$ functions
- $k=2: 2 * 2 n * 2 n=O\left(n^{2}\right)$ functions
-"•
- General: $O\left(2^{2 k-1 *} n^{k}\right)$ functions

Pros and Cons

- Application (transcriptome data)
- Perform time-series gene expression experiments
- Brutally discretize each measurement: Genes are on or off
- Reconstruct DBN
- Pros: Simple
- Cons
- Binary values are not capturing reality
- Synchronized, clocked time is nonsense
- No quantification (It needs 2*A and one B to regulate C)
- Only small networks are computable
- ...

Content

- Network reconstruction
- Boolean models
- Correlation-Based Approaches: REVEAL / ARACNE
- Example

Towards Reality

- There are less complex \& more robust algorithms
- REVEAL replaces Boolean functions by mutual information; correlations rather than deterministic switching
- Liang, S., S. Fuhrman and R. Somogyi (1998). Reveal, a general reverse engineering algorithm for inference of genetic network architectures. Pacific Symposium on Biocomputing., Hawaii, US.
- ARACNE is even simpler: Only removal of some (presumably indirect) correlations
- Margolin, A. A., I. Nemenman, K. Basso, C. Wiggins, G. Stolovitzky, R. D. Favera and A. Califano (2006). "ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context." BMC Bioinformatics 7((Suppl 1), S7).

Foundations

- Definition

Let X, Y be two discrete random variables. The mutual information $M I(X, Y)$ is defined as

$$
M I(X, Y)=\sum_{x \in X} \sum_{y \in Y} p(x, y) * \log \left(\frac{p(x, y)}{p(x) * p(y)}\right)
$$

- Remark
- Measure the variable's mutual dependency
- Dependency: Deviation of $p(X, Y)$ from $p(X) * p(Y)$
- How much does the state of X determines the state of Y ?
- Many similar measures (information gain, conditional entropy, cross entropy, ...)

Example

$$
M I(X, Y)=\sum_{x \in X} \sum_{y \in Y} p(x, y) * \log \left(\frac{p(x, y)}{p(x) * p(y)}\right)
$$

$\mathbf{p}(\mathbf{x}, \mathbf{y})$	$\mathbf{y}=\mathbf{0}$ $\mathbf{p}(\mathbf{y}=\mathbf{0})=\mathbf{0} .6$	$\mathbf{y}=\mathbf{1}$ $\mathbf{p}(\mathbf{y}=\mathbf{1})=\mathbf{0 . 4}$
$\mathbf{x}=\mathbf{0} ; \mathbf{p}(\mathbf{x}=\mathbf{0})=\mathbf{0 . 2}$	0,12	0,08
$\mathbf{x}=\mathbf{1} ; \mathbf{p}(\mathbf{x}=\mathbf{1})=\mathbf{0 . 8}$	0,48	0,32

$\mathrm{Ml}(\mathrm{X}, \mathrm{Y})=0$

$\mathbf{p}(x, y)$	$\mathbf{y}=\mathbf{0}$ $\mathbf{p}(\mathbf{y}=\mathbf{0})=\mathbf{0 . 6}$	$\mathbf{y}=\mathbf{1}$ $\mathbf{p}(\mathbf{y}=\mathbf{1})=\mathbf{0 . 4}$
$\mathbf{x}=\mathbf{0} ; \mathbf{p}(\mathbf{x}=\mathbf{0})=\mathbf{0 . 2}$	0,18	0,03
$\mathbf{x}=\mathbf{1} ; \mathbf{p}(\mathbf{x}=\mathbf{1})=\mathbf{0 . 8}$	0,05	0,74

$\mathrm{Ml}(X, Y)=0,53$

Two more Facts

- With a little math, we find

$$
M I(X, Y)=H(X)-H(X \mid Y)=H(Y)-H(Y \mid X)
$$

- $H(X)$: Entropy of X
- $\mathrm{H}(\mathrm{X} \mid \mathrm{Y})$: Conditional entropy of X given Y
- It follows that the maximal value of $\mathrm{MI}(\mathrm{X}, \mathrm{Y})=\mathrm{H}(\mathrm{X})(\mathrm{H}(\mathrm{Y}))$
- $H(X \mid Y)=0$, which means that $X(Y)$ completely determines $Y(X)$
- MI can be extended to sets of three, four, ... variables
- Like Boolean functions over three, four, ... variables
- Multivariate mutual information

REVEAL

```
N = V;
for k=1...n # number of nodes/variables
    for every X in N # all unexplained nodes
        find subset T=(Y , ...Y ( ) with MI(X, Y , ...Y ( ) = H(X);
        if T exists
        N := N \ X; # n is explained
    end for;
end for;
```

- Again, we have observations of n genes at m time points
- Or m different conditions, treatments, ...
- Again, we discretize expression values to 0 or 1
- More bins are possible
- MI (X, Y) means looking at pairs $\left(x_{1}, y_{0}\right),\left(x_{2}, y_{1}\right), \ldots$

REVEAL in Practice

- In the formulation given, REVEAL would be as strict as Boolean functions
- Dependencies must be perfect
- In the presence of noise, one must be satisfied with almost maximal MI
- l.e., $|\mathrm{MI}(\mathrm{X}, \mathrm{Y})-\mathrm{H}(\mathrm{X})|<\varepsilon$
- Can be extended to more than two possible states
- Less strict discretization, more realistic model
- Most other restrictions of DBN remain

ARACNE

- Fast variation of REVEAL which (a) considers each pair in isolation and (b) gives up model minimality
- Idea
- Compute mutual information between all pairs of genes
- This gives a complete network
- Remove edges where $|\mathrm{Ml}(\mathrm{X}, \mathrm{Y})-\mathrm{H}(\mathrm{X})|>\varepsilon$
- ε can be estimated from the distribution of Ml - created at random?
- Remove certain indirect effects ("data processing inequalities")
- Under certain assumptions, ARACNE provably converges to the true network
- Given unlimited input, no loops
- "True": Under all networks obeying our simplifying assumptions

Data Processing Inequalities

- Assumption: If $\operatorname{MI}(X, Z) \leq \min (M I(X, Y), M I(Y, Z))$, then the correlation between $X-Z$ is an indirect effect and removed
- Procedural: In every triangle, remove the smallest edge
- But in which order should triangles be visited?

Content

- Network reconstruction
- Boolean models
- Correlation-Based Approaches: REVEALI ARACNE
- Example

Reconstructing the Mammalian Clock

Abbildung 2: Zentrale Gene der zirkadianen Uhr und deren wechselseitiger Einfluss. [UHC ${ }^{+}$05] (Kīsten: Cis-Elemente/Grüne Ovale: Positiv regulierende Gene/Rate Ovale: Negativ regulierende Gene/Regulationsrichtung 1: Von Gen über farbige Kante xu Cis-Element/Regulationsrichtung 2: Von Cis-Element über graue Kante zut Gen)

- DA Sven Lund, 2015
- Data
- ~630 rather unspecific arrays from GEO
- Compared to two timeresolved clock-specific experiments
- Reconstruction quality of three algorithms
- Aracne, Bayes Networks, Time-Delay Aracne

Results

Kemmzat	Verfihren	Tए	TN	FP	FN	Recall	Precision
I	Parson	59.75	20.00	41.00	21.25	0.72	0.57
3	Penrson	4.979	5.718	8.718	4.979	0.065	0.070
$\overline{\text { I }}$	Buyes	5.00	39.50	27.50	39.00	0.48	0.57
3	Buyes	12.789	10.282	10.282	12.789	0.170	0.020
$\underline{\text { I }}$	APACNE	18.63	48.00	13.00	56.19	0.25	0.59
3	APACNE	5.515	3207	3.207	5.515	0.072	0.091

Kennzahl	Datenqualle	TP	TN	FP	FN	Recrall	Precision
$\underline{\underline{x}}$	GEO	45.00	26.00	35.00	50.00	0.60	0.57
5	GEO	17.550	16.450	16.480	17.550	0.235	0.004
$\underline{\text { I }}$	Korencis	45.67	36.22	24.78	99.39	0.48	0.60
3	Komencis	16.462	12940	12.940	16.462	0.219	0.097
$\underline{\text { I }}$	Hogenesch	40.89	36.67	24.35	44.11	0.41	0.55
5	Hagenexch	15.645	12.708	12.708	15.648	0.208	0.094

- Filtering of ARACNE reduces recall a lot, while precision increases only marginally
- Data set size outweighs specificity - reconstruction about as good using many untargeted arrays or using fewer targeted arrays

