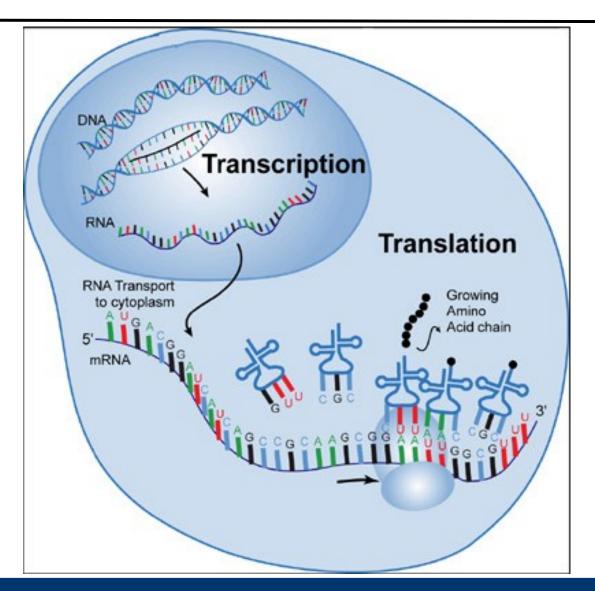
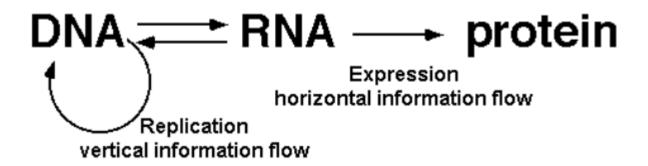


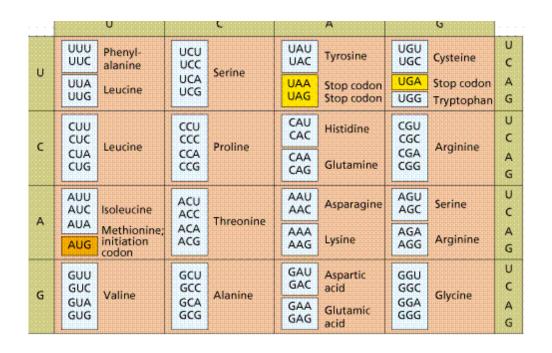
Proteins: Structure & Function

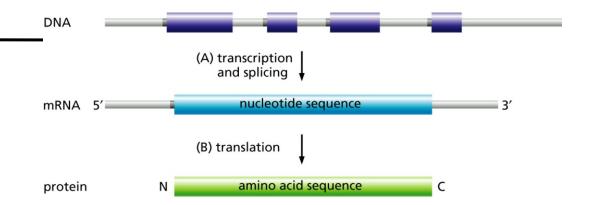

Johannes Starlinger

This Lecture

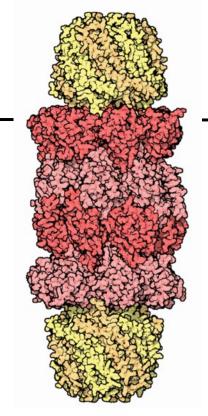
- Proteins
 - Structure
 - Function
 - Databases
- Predicting Protein Secondary Structure

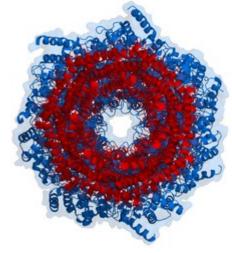

- Many figures from Zvelebil, M. and Baum, J. O. (2008). "Understanding Bioinformatics", Garland Science, Taylor & Francis Group.
- Examples often from O. Kohlbacher, Vorlesung Strukturvorhersage, WS 2004/2005, Universität Tübingen


DNA→**Transcription**→RNA→**Translation**→Protein


From: http://www.tokresource.org

Central Dogma of Molecular Biology


Details



- Alternative Splicing
 - "One gene one protein" is wrong
 - Exons may be spliced out from the mRNA
 - Human: ~6 times more different proteins than genes
- Post-translational modifications
 - (De-)Phosporylation, glycolysation, cleavage of signals, ...
 - Rough estimates: 100K proteins, 500K protein forms
- Complexes: Proteins physically group together to perform specific function

Example: Proteasome

- Very large complexes present in all eukaryotes (and more species)
 - >2000 kDa, made of dozens of single protein chains
 - Formation of the complex is a complex process only partly understood yet
- Breaks (mis-folded, broken, superfluous, ...) proteins into small peptides for reuse

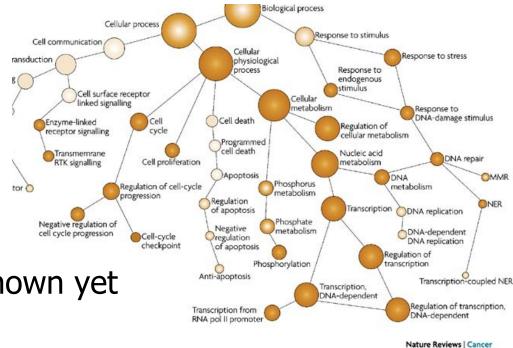
Protein Function

Proteins perform essentially everything that makes an

organism alive

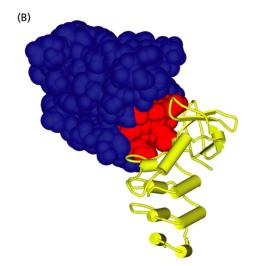
Metabolism

Signal processing

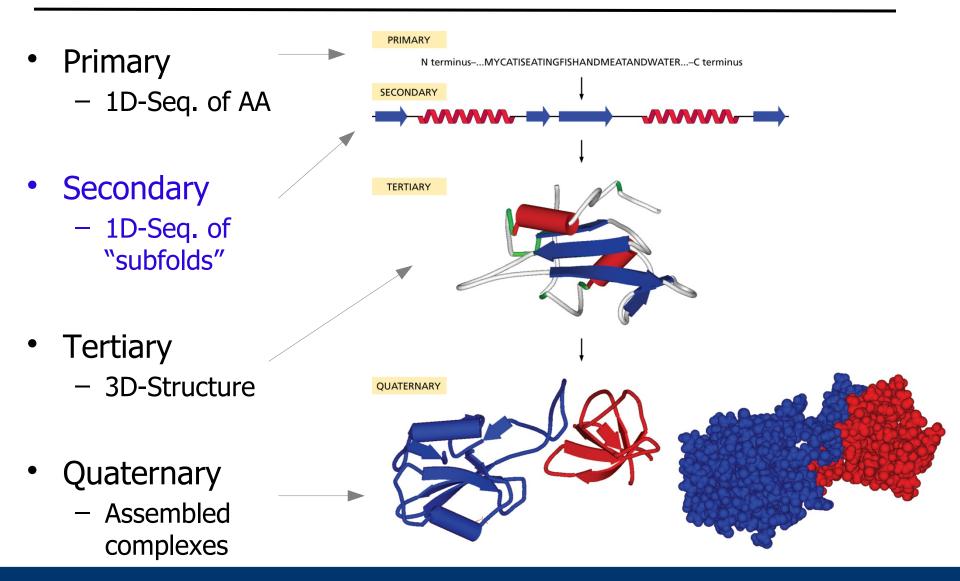

- Gene regulation
- Cell cycle

- ..

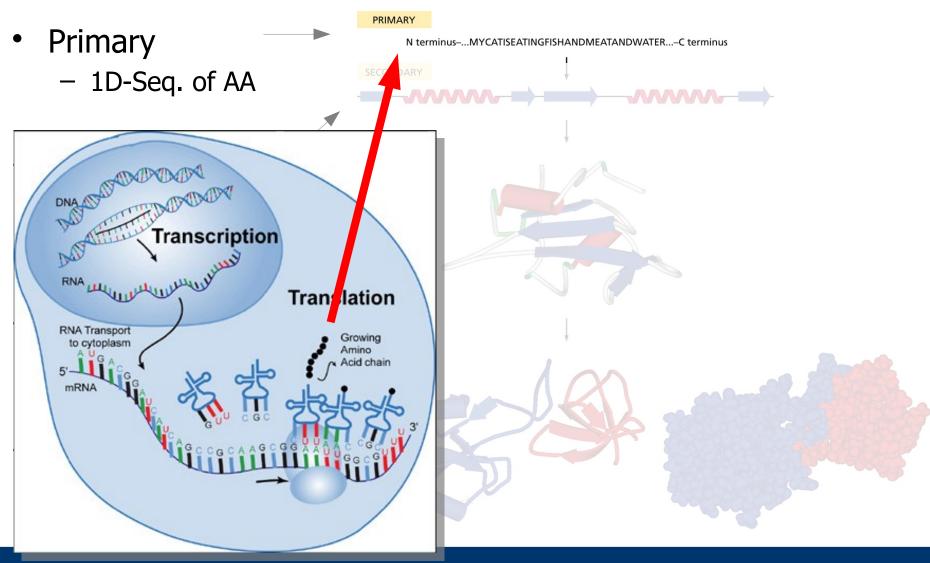
• For ~1/3 of all human genes, no function is known yet


Describing function

- Gene Ontology: 3 branches, >30.000 concepts
 - Cellular component, biological process, molecular function
- Used world-wide to describe gene/protein function

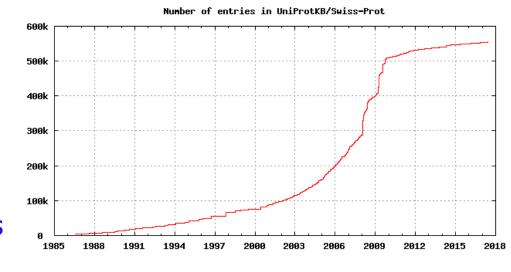

Function and Motifs

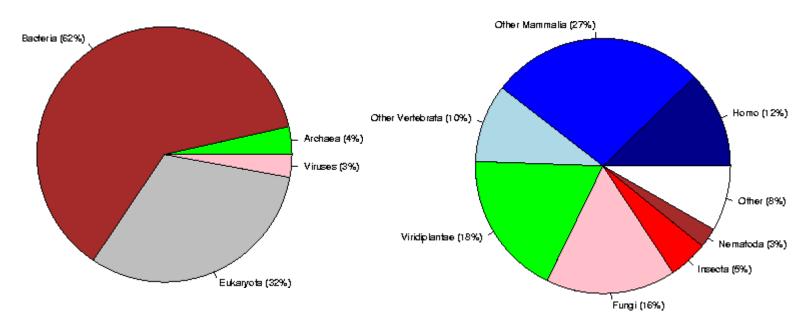
(A)



- Proteins often have multiple functions
 - Avg. no. of GO terms
 assigned to a human protein: ~6
- Functions are associated to motifs or domains
- There probably exist only 4000-5000 motifs
 - Proteins as assemblies of functional motifs
- Performing a function often requires binding to another protein or molecule
 - The binding requires a certain constellation of the protein structure
 - Major target of pharmacological research

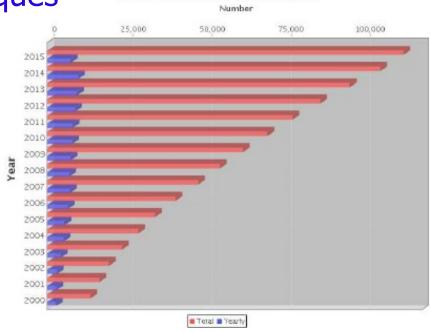
Protein Structure


Protein Structure


UniProt

- "Standard" database for protein sequences and annotation
 - Original name: SwissProt
 - Started at the Swiss Institute of Bioinformatics, now mostly EBI
 - Other: PIR, HPRD
- Continuous growth and curation
 - >30 "Scientific Database Curators"
 - Quarterly releases
 - Very rich set of annotations
- Actually two databases
 - SwissProt: Curated, high quality, versioned
 - TrEMBL: Automatic generation from (putative) coding genomic sequences, low quality, redundant, much larger

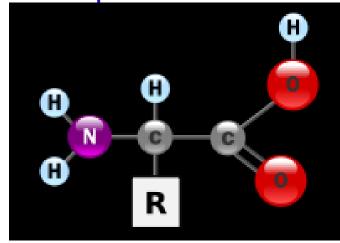
UniProt: Species [http://www.expasy.org/sprot/relnotes/relstat.html]


Number	Frequency	Species
1	20205	Homo sapiens (Human)
2	16894	Mus musculus (Mouse)
3	15383	Arabidopsis thaliana (Mouse-ear cress)
4	7991	Rattus norvegicus (Rat)
5	6721	Saccharomyces cerevisiae (Baker's yeast)
6	5999	Bos taurus (Bovine)

...

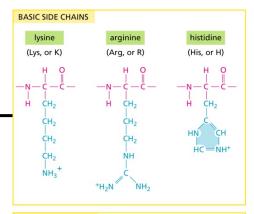
PDB – Protein Structure Database

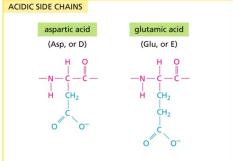
- Oldest protein database, evolved from a book
- Contains experimentally obtained protein 3D-structures
 - Plus some DNA, protein-ligand, complexes, ...
 - X-Ray (~75%), NMR (nuclear magnetic resonance, ~23%)
- Costly and rather slow techniques
 - Growth much smaller than that of sequence-related DBs
- Many problems with legacy data and data formats

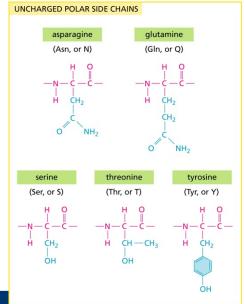

Yearly Growth of Total Structures

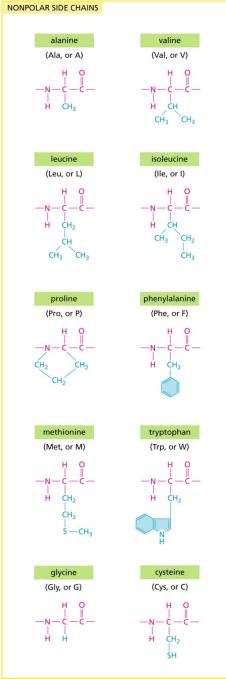
This Lecture

- Introduction
- Predicting Protein Secondary Structure
 - Secondary structure elements
 - Chou-Fasman
 - Other methods

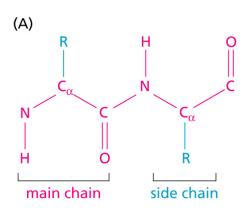

Amino Acids


- AA consist of a common core and a specific residue
 - Amino group NH₂
 - Central C_α Carbon CH
 - Carboxyl group COOH

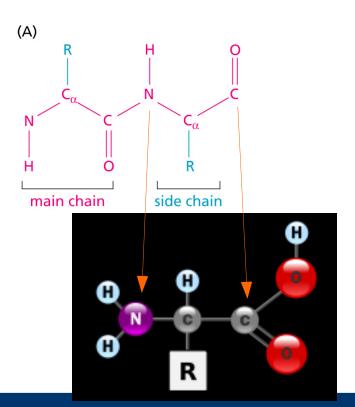



- Residues (side chains) vary greatly between AA
- Residues determine the specific properties of a AA

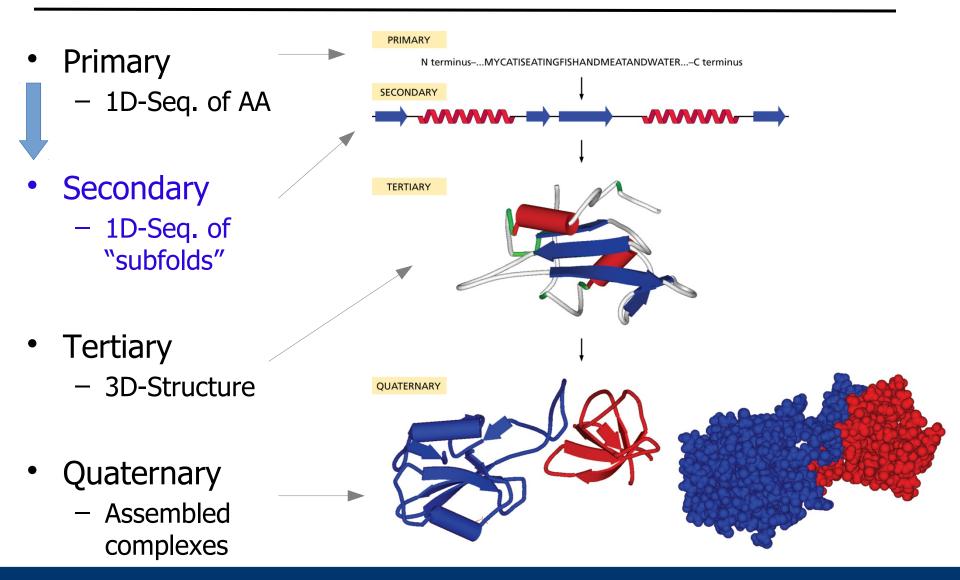
Side Chains



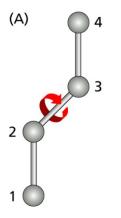
Structure of a Protein

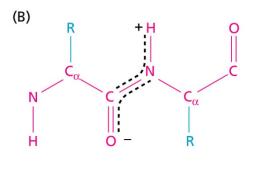

- Concatenation of cores: Backbone of AA chain (a protein)
- Covalent peptide bonds between carboxyl and amino group (with loss of H₂O)

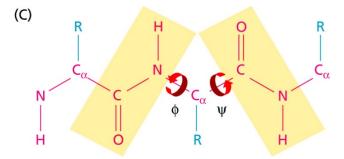
Peptide Bond Formation


Structure of a Protein

- Concatenation of cores: Backbone of AA chain (a protein)
- Covalent peptide bonds between carboxyl and amino group (with loss of H₂O)

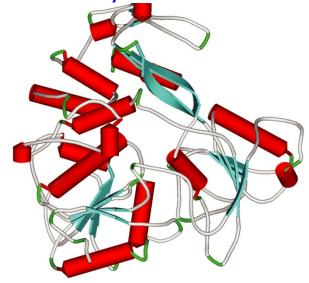

Peptide Bond Formation

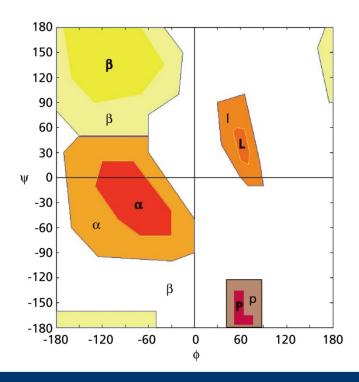

Protein Structure

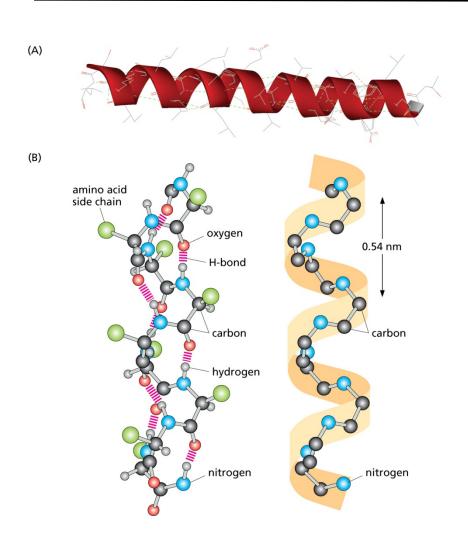


Flexibility

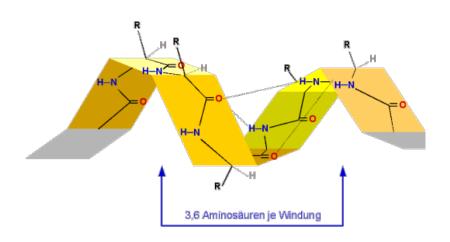
- In principle, every chemical bond can rotate freely
- Would allow arbitrary backbone structures
- In proteins things are more restricted
 - Peptide bound is "flat" almost no torsion possible
 - Flexibility only in the C_{α} -flanking bonds ϕ and ψ






Ramachandran Plots

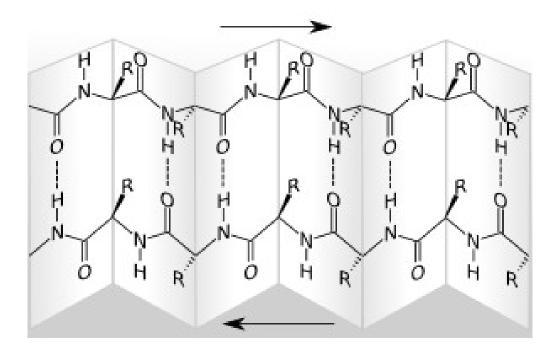
- Combinations of φ and ψ are highly constrained
 - Due to chemical properties of the backbone / side chains
- Two combinations are favored:
 - α -helixes and β -sheets
 - More detailed classifications exist
 - Angles lead to specific structures
 - Secondary structure



α -Helix

- Sequence of angles forming a regularly structured helix
- Additional bonds between amino and carboxyl groups
 - Very stable structure
- May have two orientations
 - Most are right-handed
- 3.4 AA per twist
- Often short, sometimes very long

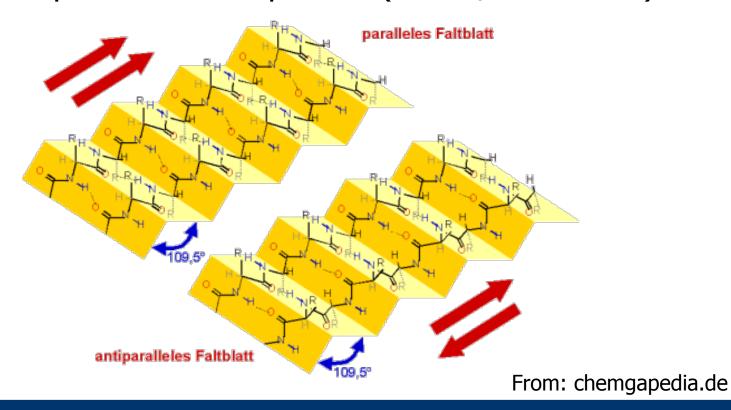
α -Helix


- Sequence of angles forming a regularly structured helix
- Additional bonds between amino and carboxyl groups
 - Very stable structure
- May have two orientations
 - Most are right-handed
- 3.4 AA per twist
- Often short, sometimes very long

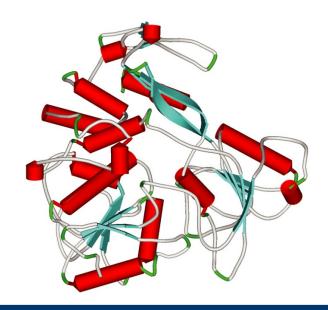
From:

www2.chemie.uni-erlangen.de

β-Sheet


- Two linear and parallel stretches (β-strands)
- Strands are bound together by hydrogen bounds
- Can be parallel or anti-parallel (wrt. N/C terminus)

Quelle: Wikipedia


β-Sheet

- Two linear and parallel stretches (β-strands)
- Strands are bound together by hydrogen bounds
- Can be parallel or anti-parallel (wrt. N/C terminus)

Other Substructures

- α -helixes and β -sheets form around 50-80% of a protein
- Other parts are called loops or coils
 - Usually not very important for the structure of the protein
 - But very important for its function
 - Often exposed on the surface; important for binding to other molecules

Importance

- Secondary structure elements (SSE) are vital for the overall structure of a protein
- Often evolutionarily well conserved
- SSE can be used to classify proteins
 - Such classes are highly associated to function
- Knowing the SSE gives important clues to protein function
- Secondary structure prediction (SSP) is much simpler than
 3D structure prediction
 - And 3D structure prediction can benefit a lot from a good SSP

Predicting Secondary Structure

 SSP: Given a protein sequence, assign each AA in the sequence to one of the three classes Helix (H), Strand (E), or Coil (-)

KVYGRCELAAAMKRLGLDNYRGYSLGNWVCAAKFESNFNTHATNRNTD GSTDYGILQINSRWWCNDGRTPGSKNLCNIPCSALLSSDITASVNCAK KIASGGNGMNAWVAWRNRCKGTDVHAWIRGCRL

Classification

- Classification: Classify each AA into one of three classes
- Classification is a fundamental problem
 - Classify the readout of a microarray as diseased / healthy
 - Classify a subsequence of a genome as coding / non-coding
 - Classify an email as spam / no spam
- Many different techniques: Naïve Bayes, Regression, Decision Trees, SVMs, Neural Networks, ...
 - Based on same principles can be exchanged easily
 - Classification function learned from properties of known objects
- The following is a rather unsystematic approach
 - But simple to explain and classical for this application

This Lecture

- Introduction
- Predicting Protein Secondary Structure
 - Secondary structure elements
 - Chou-Fasman
 - Other methods

Chou-Fasmann Algorithm

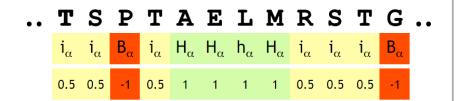
Chou & Fasman (1974). Prediction of protein conformation. Biochemistry 13

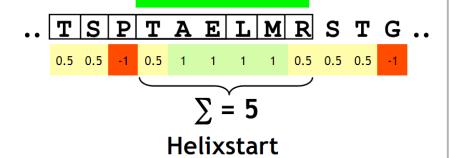
- Observation: Different AA favor different folds
 - Different AA are more or less often in H, E, C
 - Different AA are more or less often within, starting, or ending a stretch of H, E, C
- Chou-Fasman algorithm (rough idea)
 - Classifies each AA into E or H; unclassified AA are assigned C
 - Compute a score for the probability of any AA to be E (H)
 - Basis: Relative frequencies in a set of sequences with known SSE
 - In principle, assigns each AA its most frequent class
 - Add constraints about minimal length of E (H) stretches
 - Several further heuristics

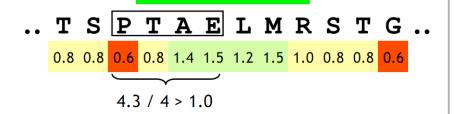
Some Details [sketch, some heuristics omitted]

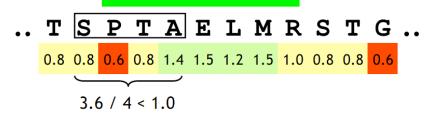
- Let f_{i,k} be the relative frequency of observing AA j in class k
- Let f_k be the average over all 20 f_{i,k} values
- Compute the propensity of AA j to be part of class k as $P_{i,k}=f_{i,k}/f_k$
- Using P_{i,k}, classify each AA j for every class k into
 - Strong, normal, weak builder $(H_{\alpha}, h_{\alpha}, I_{\alpha})$
 - Strong, weak breaker (B_{α}, b_{α})
 - Indifferent (i_{α})

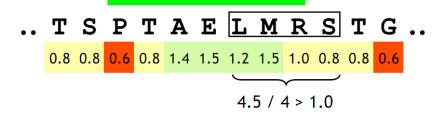
Concrete Values

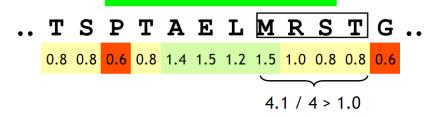

Originally computed on only 15 proteins (1974)

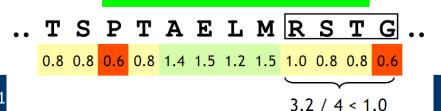

۷۲	P_{α}	Klasse	۸۵	P_{β}	Klasse	AS	Pα	Klasse	AS	P_{β}	Klasse
Glu	.53		Met	.67		lle	1.00	I_{α}	Ala	0.93	I_{β}
Ala	1.45	H_{α}	Val	1.65	Нβ	Asp	0.98	\mathbf{i}_{lpha}	Arg	0.90	i _β
Leu	1.34		lle	1.60		Thr	0.82		Gly	0.81	
His	1.24	h_{α}	Cys	1.30		Ser	0.79		Asp	0.80	
Met	.20		Tyr	1.29		Arg	0.79		Lys	0.74	b_{β}
Gin	1.17		Phe	1.28		Cys	0.77		Ser	0.72	
Trp	1.14		Gln	1.23	h_{β}	Asn	0.73	b_{α}	His	0.71	
Val	1.14		Leu	1.22		Tyr	0.61		Asn	0.65	
Phe	1.12		Thr	1.20		Pro	0.59	D	Dro	0.62	
Lys	1.07	I_{α}	Trp	1.19		Gly	0.53	Β _α	Glu	.26	B_{β}


Algorithm for Helices


- Go through the protein sequence
- Score each AA with 1 (H_{α} , h_{α}), 0.5 (I_{α} , i_{α}), or -1 (B_{α} , b_{α})
 - based on known values from propensity table
- Find helix cores: subsequences of length 6 with an aggregated AA score ≥ 4
- Starting from the middle of each core, shift a window of length 4 to the left (then to the right)
 - Compute aggregated score A using values P_{i,k} inside the window
 - If $A \ge 4$, continue; otherwise stop
- Similar method for strands
- Conflicts (regions assigned both H and E) are resolved based on aggregated scores


Example [Source: O. Kohlbacher, "Strukturvorhersage"]





Performance

- Accuracy app. 50-60%
 - Measured on per-AA correctness
- Prediction is more accurate in helices than in strands
 - Because helices build local bridges (hydrogen bounds between the turns; each AA binds to the +4 AA)
- General problem
 - Secondary structure is not only a local problem
 - Looking only at single AAs is not enough
 - Note: Scores are based on individual AA; aggregation by summation assumes statistical independence of pairs, triples ... in a class
- One needs to include the context of an AA

This Lecture

- Introduction
- Predicting Protein Secondary Structure
 - Secondary structure elements
 - Chou-Fasman
 - Other methods

Classes of Methods

- First generation: Properties of single AA only
 - Accuracy: 50-60%
 - E.g. Chou-Fasman (1974)
- Second generation: Include info. about neighborhood
 - − Accuracy: ~65%
 - E.g. GOR (1974 1987)
- Third generation: Include info. from homologous seq's
 - Accuracy: ~70-75%
 - E.g. PHD (1994)
- Forth generation: Build ensembles of good methods
 - Accuracy: ~80%
 - E.g. Jpred (1998)

Further Reading

- Gerhard Steger (2003). "Bioinformatik Methoden zur Vorhersage von RNA- und Proteinstrukturen", Birkhäuser, chapter 8,10,11,13
- Zvelebil, M. and Baum, J. O. (2008). "Understanding Bioinformatics", Garland Science, Taylor & Francis Group, chapter 2, 11, 12 (partly)