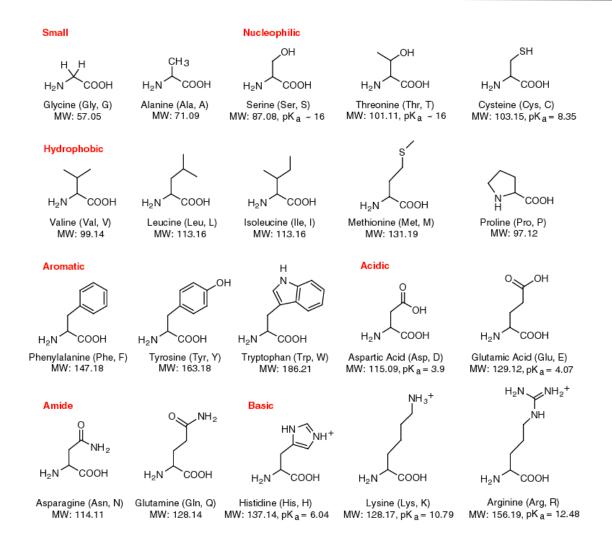

PAM and BLAST

Johannes Starlinger


- Freitag, 14.8.2017, 11-14 (11.30 13.30) Uhr
- Raum: 3.001
- Keine Hilfsmittel erlaubt
- Anmelden
- Übungsschein

- Substitution Matrices
 - PAM distance
 - PAM matrices
- Scaling up Local Alignments
 - BLAST

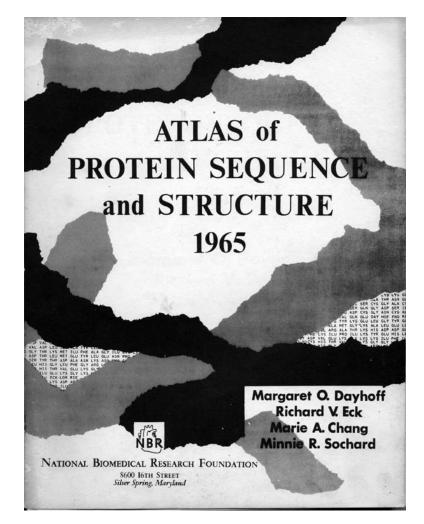
- Recall
 - A scoring function is a function s: $\Sigma' x \Sigma' \rightarrow$ Integer
 - We also call s a substitution matrix
- DNA: symmetric, simple matrices
- Protein sequences are different
 - AA have very different properties
 - Substitutions may change the 3D structure completely or just a little bit or not at all

Amino Acids

Johannes Starlinger: Bioinformatics, Summer Semester 2017

- I	A R N D C Q E G H I L K M F P S T W Y V B Z
Example	A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0 -2 -1
	R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3 -1 0
	N - 2 0 6 1 - 3 0 0 0 1 - 3 - 3 0 - 2 - 3 - 2 1 0 - 4 - 2 - 3 3 0
	D - 2 - 2 1 6 - 3 0 2 - 1 - 1 - 3 - 4 - 1 - 3 - 3 - 1 0 - 1 - 4 - 3 - 3 4 1
	C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 -3 -3
	Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2 0 3
	E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2 1 4
	G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3 -1 -2
Where do	H - 2 0 1 - 1 - 3 0 0 - 2 8 - 3 - 3 - 1 - 2 - 1 - 2 - 1 - 2 - 2 2 - 3 0 0
	I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3 -3 -3
all	L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1 -4 -3
these	к -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2 0 1
numbers	M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1 -3 -1
	F - 2 - 3 - 3 - 2 - 3 - 3 - 3 - 1 0 0 - 3 0 6 - 4 - 2 - 2 1 3 - 1 - 3 - 3
come	P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2 -2 -1
from?	s 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2 0 0
	T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0 -1 -1
	W - 3 - 3 - 4 - 4 - 2 - 2 - 3 - 2 - 2 - 3 - 2 - 3 - 1 1 - 4 - 3 - 2 11 2 - 3 - 4 - 3
	<u>Y</u> - 2 - 2 - 3 - 2 - 1 - 2 - 3 2 - 1 - 1 - 2 - 1 3 - 3 - 2 - 2 2 7 - 4 - 3 - 2
	V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4 -3 -2
	B-2-1 3 4-3 0 1-1 0-3-4 0-3-3-2 0-1-4-3-3 4 1
lahannaa Ctarlingar, Diain	z -1 0 0 1 -3 3 4 -2 0 -3 -3 1 -1 -3 -1 0 -1 -3 -2 -2 1 4

Is it Really Necessary?

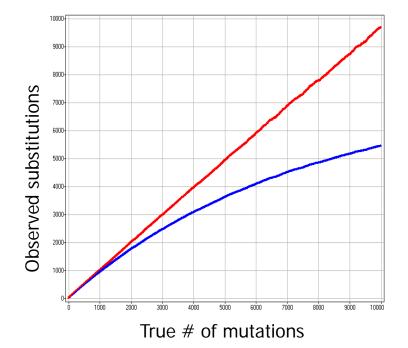

Code	Häufig- keit	Mutier- barkeit	
L	0.091	54	
А	0.077	100	
G	0.074	50	
S	0.069	117	
v	0.066	98	
E	0.062	77	
К	0.059	72	
Т	0.059	107	
Ι	0.053	103	
D	0.052	86	
Р	0.051	58	
R	0.051	83	
N	0.043	104	
Q	0.041	84	
F	0.040	51	
Y	0.032	50	
М	0.024	93	
Н	0.023	91	
С	0.020	44	
W	0.014	25	

- We count how often a particular AA was replaced by any other AA
 - Using "sure" sequence alignments
- Replacement rate of Alanin (A) := 100%
- Obviously no equal distribution
- Even if we assume that mutations happen more or the less at the same rate, they obviously don't survive at the same rate
 - Mutations are suppressed to different degrees
 - W (Tryptophan): Strong suppression
 - S (Serin): Little suppression

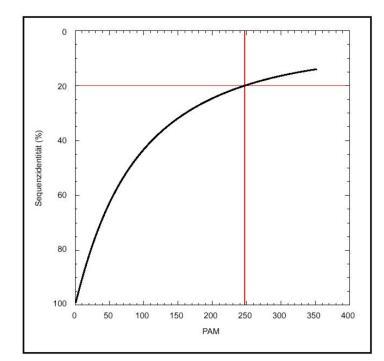
- We need app. 200 values
 - Assuming a symmetric matrix
- Possibility 1: Analytical
 - Capture weight, polarity, size, ...
 - Find a scoring scheme to measure the difference between two AA
 - Needs to produce a single value per AA pair
 - Not used in practice
- Possibility 2: Empirical
 - Count which substitutions survived at which frequency in reality
 - Needs true alignments: Pairs of homologues and aligned sequences

Margaret O. Dayhoff

- Goal: "Deduce evolutionary relationships of the biological kingdoms, phyla, and other taxa from sequence evidence"
- Collection of all known
 protein sequences
 - First edition: 65 proteins
 - Several releases followed
 - Resulted in the Protein Information Resource (PIR)


Thanks to Antje Krause

- Dayhoff, M. O., R. V. Eck, C. M. Park. (1972) *A model of evolutionary change in proteins.* in M. O. Dayhoff (ed.), Atlas of Protein Sequence and Structure Vol. 5.
- PAM has two meanings
 - 1 PAM Unit for measuring the similarity of two AA sequences
 - PAM-X matrix Substitution matrix to use when aligning two sequences that are X PAM distant


• Definition

Let S_1 , S_2 be two protein sequences with $|S_1| = |S_2|$. We say S_1 and S_2 are x PAM distant, iff S_1 most probably was produced from S_2 with x mutations per 100 AAs

- Remarks
 - PAM is motivated by evolution
 - Assumptions: Mutations happen with the same rate at every position of a sequence
 - If mutation rate is high, mutations will occur again and again at the same position
 - PAM ≠ %-sequence-identity

- No INDELS, only replacements
- The PAM distance d of two DNA sequences can be derived analytically from their %-sequence-diversity p
 - d = -3/4*ln(1-4/3*p)
 - Derivation skipped
- Pairs with PAM >250 are probably not homologues
 - %-sequence-identity < 20%</p>
 - Twilight zone
 - Which %-sequence-identity will two random protein sequences have?

(Jukes-Cantor model)

- The PAM-X matrix contains measures for the probability that a given AA was replaced by another given AA in two sequences that are x PAM distant
- Estimated from data
 - Let (S_{1,1}, S_{2,1}), ..., (S_{1,n}, S_{2,n}) be n x-PAM distant pairs of aligned sequences
 - Compute f(i), the relative frequency of AA A_i in all pairs
 - Compute f(i,j), the relative substitution frequency of A_i and A_i
 - Number of positions k in any of the aligned pairs with $S_{1,z}'[k] = A_i$ and $S_{2,z}'[k] = A_j$ or vice versa
 - Then

$$M_{x}(i,j) = \log\left(\frac{f(i,j)}{f(i)*f(j)}\right)$$

- Log-likelihood ratio combining
 - Expectation: chances to generate this mutation by chance given the relative frequencies of the two involved AAs
 - Observation: observed frequency of this mutation

$$M_{x}(i,j) = \log\left(\frac{f(i,j)}{f(i)*f(j)}\right)$$

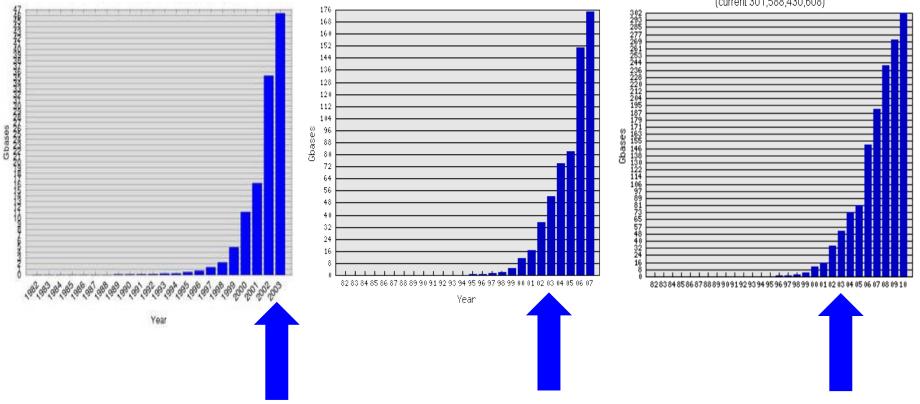
- Meaning
 - M(i,j) = 0: No selection
 - M(i,j) < 0: Negative selection, suppression of mutation
 - M(i,j) > 0: Positive selection, mutation is favored

Example

S _{1,1} :	ACG	F	Relative frequencies							
S _{2,1} :	AGG	IGCC	Z	A: 10/3	8 C:	6/3	38 G:	: 11/3	8 T: 11	L/38
S _{1,2} :		AGTA							l	
S _{2,2} :										
S _{1,3} :										
S _{2,3} :	AGT	CA								
Mutat	tion ra	tes						Matrix		
	А	С	G	Т			А	С	G	Т
Α	4/19	1/19	1/19	0/19		А	0,48	0,10	-0,16	-
C		2/19	1/19	0/19		С		0,63	0,06	-
G			4/19	1/19		G			0,40	-0,20
Т				5/19		Т				0,50

- Depends on predefined alignments
- We need a substitution matrix to find optimal alignments
 - A hen-egg problem
 - Alternative: Do it manually using experience, 3D-structure, ..
- Makes several assumptions
 - Mutations are equally likely at every position in a sequence
 - Mutations are equally likely independent from AA neighbors

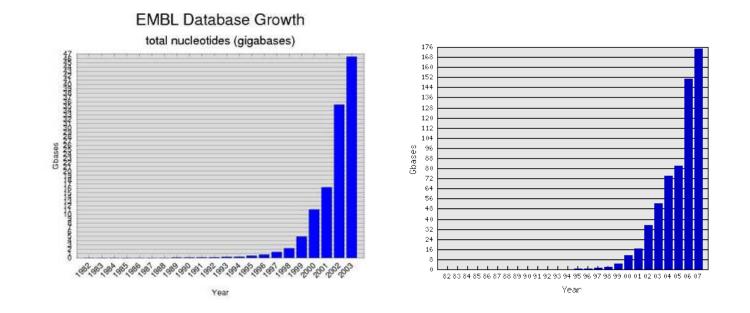
— ...


Real Substitution Matrices

- PAM requires large n for each x to adequately capture rare mutations
- Dirty trick: Molecular clock assumption
 - Assume that mutations appear with equal rate over time
 - Then the frequencies of PAM-x mutations depend linearly on the frequencies of PAM-1 mutations
 - PAM-x matrices are computed by repeated matrix multiplication of PAM-1 with itself
- Complete, highly heuristic procedure
 - Choose set of n pairs with small distance and align manually
 - Use these alignments to compute M₁
 - Compute $M_x = (M_1)^x$

- PAM is a bit old-fashioned
- BLOSUM: BLOcks SUbstitution Matrix
 - Henikoff and Henikoff, 1993
 - Removes assumption of equal mutation rates across each sequence position by considering conserved blocks
 - Direct estimation for different PAM distances instead of errorpropagating self multiplication

- Substitution Matrices
 - PAM distance
 - PAM matrices
- Scaling up Local Alignments
 - BLAST


Growth of EMBL

Total nucleotides (current 301,588,430,608)

Johannes Starlinger: Bioinformatics, Summer Semester 2017

Scaling Up Local Alignment

- Searching similar sequences (with a high local alignment score) is a fundamental operation in Bioinformatics
- Sequence databases grow exponentially
- We need faster algorithms, even if they sometimes fail

Similarity Search Problems and their Accuracy

- Task: Given a sequence s and a database D, find all sequences T in D that are sufficiently local-similar to s
 - Often, exactly computing T is not feasible and not necessary (think of the WWW and search engines)
- Assume a method that finds a set X of answers for s
- How good is this method?
 - Some sequences will be in X and T true positives
 - Some will be in X but not T false positives
 - Also called Type I error
 - Some will be in T but not X false negatives Reality
 - Also called Type II error
 - Some will be neither
 in X nor T true negatives

[+	-	
Prediction	+	TruePositive	FalsePositive	
		(TP)	(FP)	
	-	FalseNegative	TrueNegative	
		(FN)	(TN)	

Precision and Recall

- Precision = TP/(TP+FP)
 - What is the fraction of correct answers in X?
 - Related to specificity
- Recall = TP/(TP+FN)
 - Which fraction of correct answers from T are also in X?
 - Also called sensitivity
- Trade-Offs
 - Usual methods compute a score per element of D
 - All sequences with a score above a threshold t are returned as X
 - Increasing t : higher precision, lower recall
 - Lowering t: lower precision, higher recall
 - ... if the score correlates with correctness ...

	Reality						
		+	-				
Prediction	+	TruePositive	FalsePositive				
		(TP)	(FP)				
	-	FalseNegative	TrueNegative				
		(FN)	(TN)				

Example

• Let |DB| = 1000, |X|=15, |T|=20, $|X \cap T|=9$

	Real: Positive	Real: Negative
Alg: Positive	TP = 9	FP = 6
Alg: Negative	FN = 11	TN= 974

- Precision = TP/(TP+FP) = 9/15 = 60%
- Recall = TP/(TP+FN) = 9/20 = 45%
- Assume we increase t: |X| = 10, $|X \cap T| = 7$

	Real: Positive	Real: Negative
Alg: Positive	TP = 7	FP = 3
Alg: Negative	FN = 13	

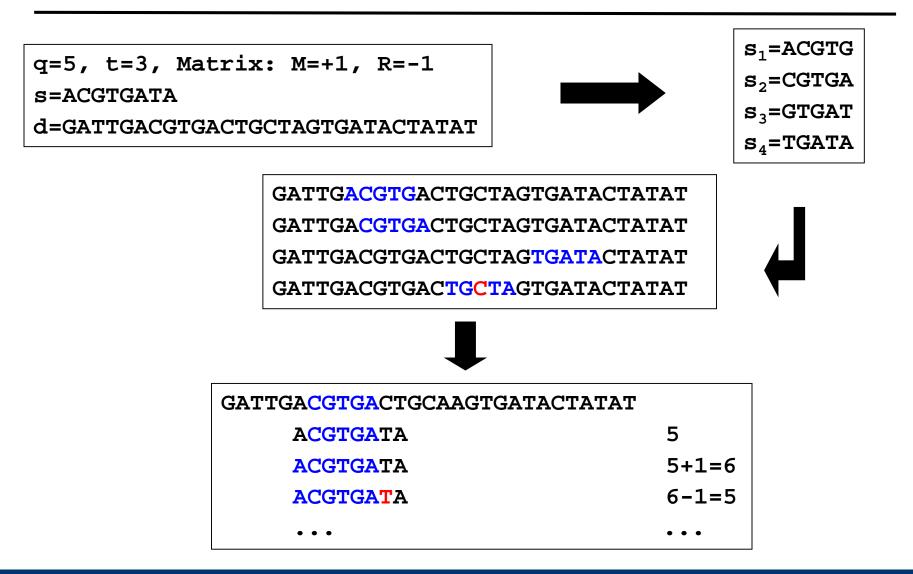
- Precision: 70%, recall = 35%

BLAST

- Altschul, Gish, Miller, Myers, Lipman: "Basic Local Alignment Search Tool", J Mol Bio, 1990
 - A heuristic algorithm for sequence similarity search
 - Very fast, high recall, not perfect
 - Very successful: You "blast" a sequence
 - NCBI runs thousands of BLAST searches every day
- A family of tools
 - Gapped-BLAST, PSI-BLAST, MegaBlast, BLAST-ALL, PATHBLAST, Name-BLAST, ...
 - BLAST for DNA, protein, DNA-protein, protein-DNA, ...
 - We only look at the simple DNA-DNA version
 - We skip several heuristic and domain-specific tricks

- Fundamental idea : If two sequences have a good local alignment, then the matching area contains, with very high probability, a sub-area where the match is even better (or even exact)
- These sub-areas are called seeds

TTGACTCGATTATAGTCGCGGATATACTATCG CCTATCACAAGAATATAGTCCCTGATCCAGC


TTGACTC GATTATAGTCGCGGAT ATACTATCG CCTATCACAA GAATATAGTCCCTGAT CCAGC

TTGACTC GATTATAGTCGCGGAT ATACTATCG CCTATCACAA GAATATAGTCCCTGAT CCAGC

Algorithm

- Given query sequence s and sequence database D={d_i}
- 1. Compute all substrings s_i of s of length q
 - Also called q-grams
 - How many?
- 2. Find all approximate occurrences of all s_i in all d_i
 - Gap-free alignment with matrix; score must be above threshold t
 - Hits are called seeds –approx. occurrences of some s_i in some d_i
- 3. Extend seeds to left and right in s_i and d_i until
 - [Constantly updating the similarity score]
 - ... the score drops sharply
 - \dots s or d_j ends
 - ... the score gets too bad compared to other hits found earlier

Example

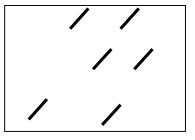
Johannes Starlinger: Bioinformatics, Summer Semester 2017

Properties

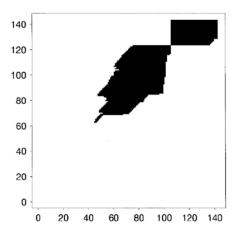
- Finding seeds efficiently requires more work
 - Pre-compute all q-grams of all d_i
 - Group by q-gram
 - Called a hash-index (should be kept in main memory)
 - Lookup: Given s, find all matching q-grams (as seeds)
- Exclusion method
 - Vast majority of all sequences in DB are never looked at because they do not contain a seed
 - The "seed" idea is the basis of nearly all fast alignment methods
- Where it fails
 - Sensitive to t: Too high missing hits; too low slow
 - Does not consider gaps

• Increasing t

- Higher requirements for any seed
- Less seeds, less extensions
- Lower recall, higher speed, precision stays
- Increasing q (and adapting t)
 - Higher requirements for any seed
 - Less seeds, less extensions
 - Lower recall, higher speed, precision stays


BLAST Screenshots

🕹 NCBI Blast:gi 12	4806265 (3279 letter	rs) - Mozilla Firefox					
Datei Bearbeiten		06265 (3279 letters) - Mozilla	Firefor.				7
👍 - 📥 - 🙆		Entrez Genome view - Moz				I 111 I 11	
🗁 Nachsehen 🗁 Fr	4 • ⊨ • 2	<u>D</u> atei <u>B</u> earbeiten <u>A</u> nsicht <u>C</u> hr	onik Lesezeichen E <u>x</u> tras <u>H</u> il	fe			0
옹 NCBI Blast:gi 1	🔽 🚽 💟 Freque	🤙 - 🔶 - 🥑 🛞 🏠	Shttp://www.ncbi.nlm.nih.go	ov/mapview/map_search.cgi?t	axid=9606&RID=7J14JBRC012&C	LIENT=web&QL 🔻 🕨 💽 🗸 Go	oogle
Job Title: gi 1248	S NCBI Blast:gi 1248	🗀 Nachsehen 🗀 Frequent <u> </u> G G	oogle 너 WBI 너 Lehre 🚞 Ne	ws 🗀 Suchen 📄 Buecher	kaufen 🗀 Paper suchen 🗀 Ri	eisen 🗀 MyStuff	
BLASTN 2.2.1	Legend for links	S NCBI Blast:gi 124806265 (3279	Y		S Entrez Genome view	Y	s of Sequence Similarity S 💽 💌
Reference: Altschul, Sto Jinghui Zhang (1997), "Gapp protein datab	Sequences produc: (Click headers to Accession Transcripts	S NCBI		NCBI Map Vie	ewer_		
RID: 7J14JBR	NM 022726.2	PubMed Nucleot			∋ene Structure	PopSet Taxon	
Database: hu	NT 007933.14	Search for	on chromosome(s)	assembl	y All 💌 Fin	d	Advanced Search
assemblies. 4 If you have a please refer Taxonomy repo Genome	NW 923640.1 + NT 079596.2 NT 005403.16 + NW 921618.1 + NT 011786.15 + NT 016354.18 + NW 9227211.1 + NW 922217.1 + NT 007299.12 NW 922184.1 +	Homo sapiens (human) ge Build 36.2 statistics <u>Switch to</u>		_0 =0- 0 =	1 .	BLAST	search the human genome
Query= gi 12* protein, cons Length=3279	NT 006576.15 NW 922562.1 NT 022162.1 NT 011903.12 NT 011630.14 NT 025028.13 NT 077661.2 NT 026437.11	1 2 3 Hit GIs: 3 9 2 Hits: 5 31 4	4 5 6 7 8 4 7 10 6 2 11 16 30 26 3		12 13 2 2 2 8		
	NT 113923.1 F NT 023666.17 NT 027819.16 NT 025741.14 NT 022171.14 NT 026970.9 NW 9277756.1 F NW 927770.1	14 15 16 Hit CIS: 2 4 5 Hits: 5 4 8	1 1 1 1 1 1 1 1	22 X Y 2 2 11 2 2 16 4	• –] II not placed 2 2		
	NW 927106.1 + NW 925918.1 + NW 925561.1 + NW 923907.1 + NW 923240.1 + NT 079592.2 + NW 923095.1 +		: 100 BLAST hits found		= 200 etical protein, conserved (PF:	Baci L1345c) mRNA, complete cds	k to BLAST alignments page
<	NW 921585.1	~				_	BLAST results 🔹
Suchen: compre	Suchen: compre	Chr Assembly reference	Map element NT 032977			Type CONTIG	Hits <u>Score</u> E value 2 42.8 2.6
Fertig	http://130.14.29.110/BLAS	1 Celera	all matches				× <u>14.0</u> 2.0
	Approvent apprendicted	🔀 Suchen: compre	🐺 Ab <u>w</u> ärts 🏠 <u>A</u> ufwärts 🔄	Hervorheben 🔲 Groß-/K	leinschreibung		
		Fertig					


Johannes Starlinger: Bioinformatics, Summer Semester 2017

BLAST-2

- Altschul, Madden, Schaffer, Zhang, Zhang, Miller, Lipman: "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", NAR, 1997
- Faster
 - BLAST: 90% of time spend in extensions
 - BLAST2: Two seeds in short distance
 - Needs a decrease in t
- Higher recall
 - BLAST didn't even consider gaps in the extension phase
 - BLAST2: Full local alignment starting from a central position between the two seeds
 - Allows an increase of t

- Substitution matrixes: Krane & Raymer, Chapter 3
- BLAST, BLAST2: Merkl & Waack, Chapter 12