

Sequence Alignment

J ohannes Starlinger

This Lecture

- Approximate String Matching
- Edit distance and alignment
- Computing global alignments
- Local alignment

Gene Function

- A fundamental principle of bioinformatics
- The function of a protein depends on its physical structure
- The physical structure depends on the protein sequence
- The protein sequence depends on the gene sequence
- If the sequence of two genes is only slightly different, so will be the protein sequence
- If the sequence of two proteins is only slightly different, so will be their structure
- If the structure of two proteins is only moderately different, they likely have the same (or at least share some) function
- Studying the sequence of genes allows the generation of hypotheses about their function

How Genes Evolve

- Evolution, sequences, and function
- Any two species X_{1}, X_{2} have a common ancestor A
- Any gene G from A will undergo independent evolution in X_{1} and X_{2}, leading to genes G_{1} and G_{2}
- The more similar G_{1} and G_{2} are, the more likely do they still have the same function (that of G)
- For any two genes of non-trivial length, the chance that they have a very similar sequence by chance is extremely small
- Corollary: If two genes G_{1} and G_{2} today are very similar, they most likely derive from the same ancestor and most likely have the same function
- How can we quantify this?

Basic Evolutionary Events

- The simplest model: Single bases can be replaced (R), inserted (I), or deleted (D) (or kept (M))
- Any changes must be explained by sequences of I, D, R
- I.e., by singular evolutionary events accumulating over time
- We call this an edit script
- Very simple yet quite powerful model
- One more simplification

Example: Eyeless (ey)

- Family of genes identified first in Drosophila
- When activated in arbitrary cells, non functional eyes start to grow at various places of the body
- ey is a "master gene" - controls a cascade of activations of other genes eventually leading to eye development
- Also inflicted with several other neural developments

Eyes

A

D

Red: Only shadow Blue: Lenses etc. Green: Mirrors

Oval: Compound eyes Rectangle: Single chamber

Source: Treisman (2004).

- Eyes probably are an example of convergent evolution
- However, genes controlling eye development are highly conserved across a wide range of species

Homologues of "eyeless isoform D" (DM)

2) job:201105063F73IVJY0G in UniProtKB by taxonomy - Mozilla Firefox								
Datei E-earbeiten Ansicht Ghronik Lesezeichen Extras Hilf								
$\leqslant \Rightarrow \omega^{2}$ http://wwww.uniprot.org/uniprot/?query=job:201105063F73IvJY0G\&by=taxonomy								
[0. Meistbesuchte Seiten \square Nachsehen \square Frequent wBI								

229 results for job:201105063F73IVJY0G in UniProtKB browsing bytaxonomy国 View result list
${ }^{+}$Ceractinomorpha (4)

- Eumetazoa (225) Bilateria (224)
- Coelomata (213
- Deuterostomia (135)
- Chordata (129)
+ Branchiostoma (10)
Urochordata (8)
- Vertebrata (111)
- Euteleostomi (109)
+ Clupeocephala (30)
- Tetrapoda (79)

Amniota (56)

+ Neognathae (8)
- Theria (48)
- Eutheria

E Euarchontoglires

+ Decapodiformes
Lineus sanguineus (Ribbon worm) (1)
- Platyhelminthes (5)

Dugesiidae (3)
Schistosoma mansoni (Blood fluke)

- Pseudocoelomata (6)

Brachionus plicatilis (Marine rotifer) (Brachionus muelleri) (1)

This Lecture

- Approximate String Matching
- Edit distance and alignment
- Computing global alignments
- Local alignment

Edit Scripts and Edit Distances

- Definition
- Let $\mathrm{A}, \mathrm{B} \in \Sigma^{*}$
- An edit script e is a sequence of operations I, D, R, M
- e is an edit script for A and B iff $e(A)=B$
- Slightly underdetermined - which replacement? Which base to insert?
- The length of an edit script is the number of I,D,R it contains
- The edit distance between A and B is the length of the shortest edit script for A and B
- Remarks
- If we know $e(A)=B$, determining e^{\prime} with $e^{\prime}(B)=A$ is trivial
- The shortest edit script is not unique, but its length is
- MIMMMR IRMMMDI
A_TGTA AGTGTC _ATGTA AGTGT_C

Alignment

- Edit scripts are intuitive from an evolutionary point-of-view, but somewhat clumsy from a computational point-of-view
- Definition
- A (global) alignment of strings A, B is an arrangement of A and B, enriched with ,_, "at arbitrary positions, under each other such that no column contains two ,_"
- The score of an alignment is the number of "_ "plus the number of mismatching columns it contains
- The alignment distance between A and B is the minimal score of any alignment of A and B
- Edit distance and alignment distance are essentially identical
- Examples
- A_TGT_A AGTGTC

Score:
3

A_T_GTA _AGAGAG
GAGAGA
2

AGAGAG_ _GAGAGA

A Visual Approach: Dotplots

- A dotplot of two strings A, B is a matrix M with
- The ith character in A is represented by the i'th column
- The j'th character in B is represented by the j'th row
- M[i,j]=1 (blue) iff $A[i]=B[j]$

	A	T	G	C	G	G	T	G	C	A	A	T	G
A													
T													
G													
G													
T													
G													
C													
A													
T													

Dotplot and Identical Substrings

- How do identical substrings look like in a dotplot?

- Diagonals from up-left to down-right
- Longest diagonal is the longest common substring

Alignments and Dotplots

- Every alignment of A, B can be uniquely mapped into a path through M
- The path starts in the upper-left corner (coord: 0,0)
- Go through the alignment column by column
- Next column is " $X,{ }_{\prime}$ " - move to the right
- Next column is " ${ }^{\prime}, \mathrm{X}$ " - move down
- Next column is " X, Y " - move right-down

ATG___CGGTG__CAATG
ATGG__TGCA \qquad T

ATGCGGTGCAATG ATGGTGCCAT \qquad

Examples

ATGCGGTGCAATG ATG__GTGCA__T

- Clearly, the number $c(P)$ of 1's crossed in a diagonal step by a path P is the same as $|P|-e(A, B)$
- Finding the path that minimizes $|P|-C(P)$ also solves the problem of computing the edit distance

This Lecture

- Approximate String Matching
- Edit distance and alignment
- Computing global alignments
- Local alignment

Algorithm

- How do we compute the edit distance of two strings?
- Naïve: Enumerate all paths, compute $c(P)$ for each

- Bad news: There exist $>3^{\min (m, n)}$ paths
- Good news: We can compute e(A,B) with $\sim 3^{*} m^{*} n$ operations

Enumerating all Paths Recursively

The naïve (recursive) Way

- Observation
- Let $|A|=n,|B|=m$
- Let $d(i, j)=e(A[. . i], B[. . j])$ for $0 \leq i \leq n$ and $0 \leq j \leq m$ with $d(i, 0)=i$ and $d(0, j)=j$
- We can compute $e(A, B)=d(n, m)$ recursively as follows

$$
d(i, j)=\min \left\{\begin{array}{c}
d(i, j-1)+1 \\
d(i-1, j)+1 \\
d(i-1, j-1)+t(i, j)
\end{array}\right.
$$

$$
t(i, j)=\left\{\begin{array}{l}
1: \text { if } \quad A[i] \neq B[j] \\
0: \text { else }
\end{array}\right.
$$

Algorithm

```
function d(i,j) {
    if (i = 0) return j;
    else if (j = 0) return i;
    else
            return min ( d(i,j-1) + 1,
                                    d(i-1,j) + 1,
                                    d(i-1,j-1) + t(A[i],B[j]));
}
function t(c, coch) {
    if (c, cocor me;
}
```


What is Happening?

Much Redundant Computation

There are only $\sim n^{*} \mathrm{~m}$ different parameter combinations

Dynamic Programming - Using a Table

- Instead of computing top down (from n, m), we compute all different values for $\mathrm{d}(\mathrm{i}, \mathrm{j})$ bottom up
- We store all values in a table
- We can immediately "compute" d(i,0) and d(0,j)
- Which values can we compute next?

Example

$$
d(i, j)=\min \left\{\begin{array}{c}
d(i, j-1)+1 \\
d(i-1, j)+1 \\
d(i-1, j-1)+t(i, j)
\end{array}\right\}
$$

		A	T	G	C	G	G	T
	0	1	2	3	4	5	6	7
A	1							
T	2							
G	3							
G	4							

		A	T	G	C	G	G	T
	0	1	2	3	4	5	6	7
A	1	0						
T	2							
G	3							
G	4							

		A	T	G	C	G	G	T
	0	1	2	3	4	5	6	7
A	1	0	1	2	3	4	5	6
T	2							
G	3							
G	4							

		A	T	G	C	G	G	T
	0	1	2	3	4	5	6	7
A	1	0	1	2	3	4	5	6
T	2	1	0	1	2	3	4	5
G	3							
G	4							

		A	T	G	C	G	G	T
	0	1	2	3	4	5	6	7
A	1	0	1	2	3	4	5	6
T	2	1	0	1	2	3	4	5
G	3	2	1	0	1	2	3	4
G	4							

		A	T	G	C	G	G	T
	0	1	2	3	4	5	6	7
A	1	0	1	2	3	4	5	6
T	2	1	0	1	2	3	4	5
G	3	2	1	0	1	2	3	4
G	4	3	2	1	1	1	2	3

Finding the (an) optimal Alignment(s)

- Traceback
- We find the path from back to front
- Start at cell (n, m)
- See which cells were used to compute d(n,m)
- Walk any of these - finds one optimal path
- Walking all means finding all optimal paths
- Alternative: Store pointers while filling the table

		A	T	G	C	G	G	T
	Q	1	2	2	3	4	5	6
A	1	0	1	7	2	3	4	5
T	2	1	1	0	1	2	3	4
G	3	2	1	0	1	2	3	4
G	4	3	2	1	1	1	2	3

		A	T	G	C	G	G	T
			2	-3	-			7
A								6
T	3	1	0	1	2	3	4	5
G	3	2	1	0	1	2	3	4
G	4	3	2	1	1	1	2	3

		A	T	G	C	G	G	T
	0	$\mathbf{1}$	$\mathbf{2}$	-3	-4	5	6	-7
A	1	1	0	1	2	3	-4	5

Complexity

- Building the table
- For every $\mathrm{d}(\mathrm{i}, \mathrm{j})$, we need to access three other cells and make some (constantly many) additions and comparisons
- There are m*n cells
- Thus: approximately $3 *{ }^{*}{ }^{*} n$ operations
- Finding one optimal alignment
- We must walk from (n, m) to $(1,1)$
- Such a path can have at most length m+n
- We cannot go wrong!
- Together: approximately m+n operations
- Together: $\mathrm{O}\left(\mathrm{m}^{*} \mathrm{n}\right)$ (for $\mathrm{m}^{*} \mathrm{n}>\mathrm{m}+\mathrm{n}$)

Eyeless Again - a Closer Look

Filter Overview Results • Jobinformation Customize order
 Graphical overview

- The similar regions in the different homologues are not distributed randomly
- Actually, a single stretch of 128 AA, the PAX domain, is virtually unchanged in all homologues
- Controls binding to DNA and hence regulatory effects
- Typical: Only some parts of a gene are conserved, and these carry function

This Lecture

- Approximate String Matching
- Edit distance and alignment
- Computing global alignments
- Local alignment

Example

Zufall?

Kein Zufall!

IIIIIIIII
AG|G|AG|T|C|A|TAA|TA|C|ATA|TA|A|GA|GATTA|G|A|TA|TAT|T|GA|T|G

Distance or Similarity

- Until now, we computed a global distance
- The higher $e(A, B)$, the less similar are A and B
- The longer A and B, the higher is their distance (in general)
- Different lengths are punished: $e(A, B) \geq||A|-|B||$
- Often, we want a local similarity instead
- If we have a sequence and don't know exactly where the genes are
- If a function is associated to a motif in a protein, i.e., a subsequence in the gene
- We need to search for substrings $A^{\prime} \in A, B^{\prime} \in B$ which are very similar to each other
- Further, A^{\prime} and B^{\prime} should have a certain length to be interesting
- $e\left(A^{\prime}, B^{\prime}\right)$ does not help - optimal distance is 0 for $A^{\prime}=B^{\prime}={ }^{\prime \prime \prime}$

Sequence Similarity

- Let $|A|=|B|=n$
- A scoring function is a function s: $\Sigma^{\prime} \chi \Sigma^{\prime} \rightarrow$ Integer
- We also call s a substitution matrix
- The ungapped similarity sim' of A, B wrt. s is defined as

$$
\operatorname{sim}^{\prime}(A, B)=\sum_{i=1}^{n} s(A[i], B[i])
$$

- The similarity sim of A, B (wrt. s) is the highest ungapped similarity score over all alignments of A and B
- Higher = better; maximal similarity is $n * \max (\mathrm{~s})$
- We are not yet there: This still is a global similarity score

Example

$$
\Sigma^{\prime}=\left\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{~T},{ }_{-}\right\}
$$

	\mathbf{A}	\mathbf{C}	\mathbf{G}	\mathbf{T}	-
\mathbf{A}	4	-2	-2	-1	-3
\mathbf{C}		4	-1	-2	-3
\mathbf{G}			4	-2	-3
\mathbf{T}				4	-3

AC_GTC AGGT_C	$=\mathbf{- 1}$
ACGTC AGGTC	$=15$
A_CGTC AG_GTC $=10$	

Computation

- Same ideas as for edit distance apply
- But: We want a high similarity, not a low distance
- Thus, we can compute $\operatorname{sim}(\mathrm{A}, \mathrm{B})$ as $\mathrm{d}(\mathrm{n}, \mathrm{m})$ with

$$
\begin{gathered}
d(i, 0)=\sum_{k=1}^{i} s\left(A[k],,_{-}\right) \quad d(0, j)=\sum_{k=1}^{j} s\left({ }_{-}, B[k]\right) \\
\left.d(i, j) \neq \begin{array}{c}
d(i, j-1)+s\left(_, B[j]\right) \\
d(i-1, j)+s(A[i],-) \\
d(i-1, j-1)+s(A[i], B[j])
\end{array}\right\}
\end{gathered}
$$

Example

	A	G	T	C
A	4	-1	-1	-1
G		4	-1	-1
T			4	-1
C				4
-	-3	-3	-3	-3

Edit Distance
Similarity

		A	G	G	T	C
	0	1	2	3	4	5
A	1	0	1	2	3	4
G	2	1	0	1	2	3
T	3	2	1	1	1	2
C	4	3	2	2	2	1
C	5	4	3	3	3	2

		A	G	G	T	C
	0	-3	-6	-9	-12	-15
A	-3	4	1	-2	-5	-8
G	-6	1	8	5		
T	-9					
C	-12					
C	-15					

Lokal Similarity = Local Alignment

- Definition
- The local similarity score sim* of A, B is defined as

$$
\operatorname{sim}^{*}(A, B)=\max _{\forall A^{\prime} \text { substringOf } A, B^{\prime} \text { substringOf } B}\left(\operatorname{sim}\left(A^{\prime}, B^{\prime}\right)\right)
$$

- Remark
- Inequality in string length does not matter any more
- Sounds terribly complex, but there is a neat trick

ACCCCTAITCGIATAGCITAGAAGICTTCGAAAAITACCCIACCIAG|TAT IIII II II
 AIGGAIGTCGAATAAATAICAITATTAAGAIGAITAGAAATAITAITTGAITG

Example

Match: +1
I/R/D: -1

		A	T	G	T	G	G
	0	-1	-2	-3	-4	-5	-6
G				-1			
T					0		
G						1	
A							0

Smith-Waterman Algorithm

- Smith, Waterman: „Identification of common molecular subsequences", J. Mol. Bio 147, 1981
- Idea
- Note: Local paths need not span the entire strings
- Look at a single (global) path
- A series of matches (positive values for scoring function s) creates a series of increasing similarity values
- Any step with s<0 lowers the score
- Whenever the score gets below 0, we can forget this continuation of the path
- Instead of carrying on, we conceptually start a new (local) path
- To this end, we simply set d: =0 whenever it would be d<0
- The highest value in the matrix is the end of the best local path

Computation

- The same ideas as before
- We compute $\operatorname{sim}^{*}(\mathrm{~A}, \mathrm{~B})$ as $\mathrm{d}(\mathrm{n}, \mathrm{m})$ with
- Assume $\forall X: s\left(X, _\right)<0$ and $s\left(_, X\right)<0$

$$
d(i, 0)=0 \quad d(0, j)=0
$$

$$
d(i, j)=\max \left\{\begin{array}{c}
d(i, j-1)+s(,, B[j]) \\
d(i-1, j)+s\left(A[i], _\right) \\
d(i-1, j-1)+s(A[i], B[j]) \\
0
\end{array}\right.
$$

Example

I/R/D: -1

		A	T	G	T	C	G
	0	-1	-2	-3	-4	-5	-6
A	-1	1	0	-1	-2	-3	-4
T	-2	0	2	1	0	-1	-2
G	-3	-1	1	3	2	1	0

ATGTCG
ATG
ATGTCG AT _G

ATGTCG
A__T_G

		A	T	G	T	C	G
	0	0	0	0	0	0	0
A	0	1	0	0	0	0	0
T	0	0	2	1	1	0	0
G	0	0	1	3	2	1	1

ATGTCG
ATG \qquad

Local versus global Alignment

- Global Alignment
- Comparison of two entire sequences
- Use when you know the sequences are related
- Interest: The differences
- Example: Proteins of the same family
- Local Alignment
- Finds interesting regions in yet uncharacterized sequences
- Use when trying to relate a sequence to other (known) sequences
- Interest: The similarities
- Often a first step before global alignment
- Example: Find similar genes in other species

Beware: Not all Events are Equal

Wildtype

						DNA
Leu	Ser	Asp	Tyr	Gl	Ly	in
C TTAGGTGAC						
Leu	Ser	A	Stop	-Coc		in
C TTAGTGAACTACIGGTAAA						
Leu	Ser	His	A	Le	Thr	tein
CTTTAGCGACTACG\|GTAAA						DNA
Leu	Ser	Asp	T	Gly	Ly	otein
						DN
Leu	Ser	Glu	Tyr	Gly	Lys	Protein

Functional

Further Reading

- Everywhere
- Relaxed: Christianini \& Hahn, Chapter 3
- Step by step: Waack, Chapter 9

