Algorithms and Data Structures

Strongly Connected Components

Ulf Leser
Content of this Lecture

- Graph Traversals
- Strongly Connected Components
Recall: Reachability in Trees

- Assume a DFS-traversal
- Build an array assigning each node two numbers
- **Preorder numbers**
 - Keep a counter `pre`
 - Whenever a node is entered the **first time**, assign it the current value of `pre` and increment `pre`
- **Postorder numbers**
 - Keep a counter `post`
 - Whenever a node is left the **last time**, assign it the current value of `post` and increment `post`
Ancestry and Pre-/Postorder Numbers

• Trick: A node v is reachable from a node w iff
\[\text{pre}(v) > \text{pre}(w) \land \text{post}(v) < \text{post}(w) \]

• Explanation
 - v can only be reached from w, if w is “higher” in the tree, i.e.,
 v was traversed after w and hence
 has a higher preorder number
 - v can only be reached from w, if v is “lower” in the tree, i.e.,
 v was left before w and hence
 has a lower postorder number

• Analysis: Test is $O(1)$
Pre-/Post-order Labeling for Graphs

• Method
 Let $G=(V, E)$. We assign each $v \in V$ a pre-order and a post-order as follows. Set $pre = post = 1$. Perform a depth-first traversal of G, starting at arbitrary nodes. When a node v is reached the first time, assign it the value of pre as pre-order value and increase pre. Whenever a node v is left the last time, assign it the value of $post$ as post-order value and increase $post$.

• Notes
 - Traversals are cycle-free by definition – avoid multiple visits
 - Complexity: $O(|V| + |E|)$
 - Labeling not unique; depends on chosen start nodes and order in which children are visited
Example

\[X \xrightarrow{} K1 \xrightarrow{} K2 \xrightarrow{} K6 \xrightarrow{} K3 \xrightarrow{} K4 \xrightarrow{} K5 \xrightarrow{} K8 \]

\[X \xrightarrow{} K3 \xrightarrow{} K2 \xrightarrow{} K1 \]

\[X \xrightarrow{} K3 \xrightarrow{} K2 \xrightarrow{} K1 \]

\[X \xrightarrow{} K3 \xrightarrow{} K2 \xrightarrow{} K1 \]

\[X \xrightarrow{} K3 \xrightarrow{} K2 \xrightarrow{} K1 \]

\[X \xrightarrow{} K3 \xrightarrow{} K2 \xrightarrow{} K1 \]
Example

Last visit: Cannot be visited again without running into a cycle
Example
• Reachability trick does not work
• Example: K1-K4
 - Reachable in G
 - But pre(K4) > pre(K1)
Tricks to Speed-Up Reachability in Graphs

- Much research over the last decade
 - PPO: Pre-/Post-Order Pair
- Ideas
 - If the graph is “tree-like” and acyclic
 - Follow all paths and assign multiple PPOs
 - Requires exponential space in WC, depending on “tree-likeliness”
Tricks to Speed-Up Reachability in Graphs

- **Ideas (GRIPP)**
 - If the graph is acyclic
 - Perform a modified DFS
 - When a node is visited for the none-first time, assign another PPO but not to continue traversal further
 - For each node, store all PPOs
 - During search, **expand with nodes** which have multiple PPOs
 - Expand: “Jump” to the first PPO and branch another search
 - “Almost constant” runtime in many graphs

Tricks to Speed-Up Reachability in Graphs

- Observation: If v is reachable from w, then there exists a DFS of G in which pre(w) < pre(v) and post(w) > post(v)
 - Example K1-K4: Start DFS in K1

- Idea
 - Perform a fixed number (k) of DFS and use as filter
 - If v is reachable from w in any of the DFS: Done.
 - Otherwise use another method (hopefully not often!)
 - Very effective in dense graphs where most nodes are reachable
 - Parameter k controls runtime and space

Yildirim, H., Chaoji, V. and Zaki, M. J. (2010). "GRAIL: Scalable Reachability Index for Large Graphs." VLDB
Graph Transformations

- Many other suggestions
- All require a preprocessing phase (e.g. PPO indexing) and a search phase
- Complexities of both phases depend fundamentally on $|G|$
 - If we could shrink G (without losing reachability-relevant information), all algorithms would be much faster
- Furthermore, some methods only work with acyclic graphs
 - We need a way to transform a cyclic graph G into an acyclic graph G' which encoded the same reachability information
Content of this Lecture

- Graph Traversals
- Strongly Connected Components (SCC)
 - Motivation: Graph Contraction
 - Kosaraju’s algorithm
Recall

• Definition

Let $G=(V, E)$ be a directed graph.

- An induced subgraph $G'=(V', E')$ of G is called connected if G' contains a path between any pair $v, v' \in V'$
- Any maximal connected subgraph of G is called a **strongly connected component of G**
Recall

- **Definition**

Let $G=(V, E)$ be a directed graph.

- An induced subgraph $G'=(V', E')$ of G is called connected if G' contains a path between any pair $v, v' \in V'$

- Any maximal connected subgraph of G is called a **strongly connected component of G**
Motivation: Contracting a Graph

• Consider finding the **transitive closure (TC)** of a digraph G
 - If we know all SCCs, parts of the TC can be computed immediately
 - Next, each SCC can be replaced by a single node, producing G’
 - G’ must be acyclic – and is (much) smaller than G
Reachability and Graph Contraction

- Intuitively: $TC(G) = TC(G') + SCC(G)$
 - Representing SCC(G): Hash table h mapping each node ID to its SCC-ID
 - Testing reachability $v \rightarrow w$: Test if $h(v) = h(w)$
 - Thus, we only have to consider G' further

- Computing SCC solves our problems in graph reachability
 - "If we could shrink G (without losing reachability-relevant information), all algorithms would be much faster"
 - Yes we can
 - "We need a way to transform a cyclic graph G into an acyclic graph G' which encoded the same reachability information"
 - Yes we can

- But – how much work do we need to compute SCC(G)?
Content of this Lecture

- Graph Traversals
- **Strongly Connected Components (SCC)**
 - Motivation
 - Kosaraju’s algorithm
Kosaraju’s Algorithm

• Definition
 \(G = (V, E) \). The graph \(G^T = (V, E') \) with \((v, w) \in E' \) iff \((w, v) \in E \) is called the transposed graph of \(G \).

• Kosaraju’s algorithm is very short (but not simple)
 - Compute post-order labels for all nodes from \(G \) using a first DFS
 • We don’t need pre-order values
 - Compute \(G^T \)
 - Perform a second DFS on \(G^T \) always choosing as next node the one with the highest post-order label according to the first DFS
 - All trees that emerge from the second DFS are SCC of \(G \) (and \(G^T \))

• Unpublished; Kosaraju, 1978
Example

X: 9
K1: 1
K2: 6
K3: 8
K4: 7
K5: 3
K7: 4
K8: 2
K6: 5
Example

X:9
K3:8
K4:7
K2:6
K6:5
K7:4
K5:3
K8:2
K1:1
Correctness

- **Theorem**
 Let $G=(V,E)$. Any two nodes v, w are in the same tree of the second DFS iff v and w are in the same SCC in G.

- **Proof**
 - \iff: Suppose $v \rightarrow w$ and $w \rightarrow v$ in G. One of the two nodes (assume it is v) must be reached first during the second DFS. Since v can be reached by w in G, w can be reached by v in G^T. Thus, when we reach v during the traversal of G^T, we will also reach w further down the same tree, so they are in the same tree of G^T.

```
  v       y
 x  u  w  
z
```

```
  v       y
 x  u  w  
z
```

Correctness

• ⇒: Suppose v and w are in the same DFS-tree of G^T
 - Suppose r is the root of this tree
 - (1) Since r→v in G^T, it must hold that v→r in G
 - (2) Because of the order of the second DFS: post(r)>post(v) in G
 - (3) Thus, there must be a path r→v in G: Otherwise, r had been visited last after v in G and thus would have a smaller post-order
 - (4) Since v→r (1) and r→v (3) in G, the same is true for G^T
 - (5) The same argument shows that w→r and r→w in G
 - (6) By transitivity, it follows that v→w and w→v via r in G and in G^T
Examples \((p(X) = \text{post-order}(X))\)

- \(v \rightarrow w\)
- Thus, \(w \rightarrow v\) in \(G^T\)
- Because \(w \rightarrow v\) in \(G\), \(p(v) > p(w)\)
- First tree in \(G^T\) starts in \(v\); doesn’t reach \(w\)
- \(v, w\) not in same tree

- \(v \rightarrow w\) and \(w \rightarrow v\) in \(G\) and in \(G^T\)
- Assume \(w\) is first in 1st DFS: \(p(w) > p(v)\)
- Thus 2nd DFS starts in \(w\) and reaches \(v\)
- \(v, w\) in same tree

- Let’s start 1st DFS in \(r\):
 - \(p(r) > p(w) > p(v)\)
- 2nd DFS starts in \(r\), but doesn’t reach \(w\)
- Second tree in 2nd DFS starts in \(w\) and reaches \(v\)
- \(v, w\) in same tree
Complexity

- Both DFS are in $O(|G|)$, computing G^T is in $O(|E|)$
- Instead of computing post-order values and sort them, we can simply push nodes on a stack when we leave them the last time in the first DFS – needs to be done $O(|V|)$ times
- In the 2nd DFS, we pop nodes from the stack as new roots
 - Needs one more array to remove selected nodes during second DFS from stack in constant time
- Together: $O(|V| + |E|)$
 - Optimal: Since in WC we need to look at each edge and node at least once to find SCCs, the problem is in $\Omega(|V| + |E|)$
- There are faster algorithms that find SCCs in one traversal
 - Tarjan’s algorithm, Gabow’s algorithm