Content of this Lecture

• Optimal Search Trees
 - Definition
 - Construction
 - Analysis
• Searching Strings: Tries
Static Key Sets, Varying Access Frequencies

- Sometimes, the set of keys is “fixed”
 - Streets of a city, cities in a country, keywords of a prog. lang., …
- Often, searches are much more frequent than updates
 - We may spent more effort for reorganizing the tree after updates
- Example: Large-scale web search engines
 - Recall: A search engine creates a dictionary; every word has a link to the set of documents containing it
 - The dictionary must be accessed very fast, changes are rare
 - Often, engines build complex structures to optimally support searching over the current set of documents considered as static
 - Defer updates: Changes are buffered and bulk-inserted periodically
 - Search either searches two data structures, or misses are accepted
Scenario

• Assume a set K of keys and a bag R of requests (workload)
 - Every request searches a $k \in K$; k’s may appear multiple times in R
 - In contrast to SOL, we now don’t care about the order of requests
 - Like SOL with fixed access frequencies – but now we consider trees

• Naïve approach
 - Build an AVL tree over K
 - Every $r \in R$ costs $O(\log(|K|))$, i.e., we need $O(|R| \times \log(|K|))$
 - This is optimal, if every $k \in K$ appears with the same frequency in R

• What if R is highly skewed?
 - Skewed: k’s are not equally distributed in R
 - Rather the norm than the exception in real life (Zipf, …)
 - In contrast to SOL, finding an optimal search tree for R is not trivial
Example

- $K = \{1, 2, 3, 5, 7, 8, 9, 12, 14\}$
- We build an AVL tree

- $R_1 = \{2, 5, 8, 7, 3, 12, 1, 8, 8\}$
 - $2 + 1 + 3 + 4 + 3 + 2 + 3 + 3 + 3 = 31$ comparisons

- $R_2 = \{9, 9, 1, 9, 2, 9, 5, 3, 9, 1\}$
 - $4 + 4 + 3 + 4 + 2 + 4 + 1 + 3 + 4 + 3 = 32$ comparisons
Example

• Let’s **optimize the tree** for R_2
 - Not a AVL tree any more

• $R_2=\{9,9,1,9,2,9,5,3,9,1\}$
 \[=\{9,9,9,9,9,1,1,2,5,3\}\]
 - 9 and 1 should be high in the tree
 - $1+1+1+1+1+2+2+4+3+5=21$
 - Versus 32

• Not good for R_1
 - $R_1=\{2,5,8,7,3,12,1,8,8\}$
 - $4+3+5+4+5+2+2+5+5=35$
 - Versus 31

• Is this truly the **optimal search tree** for R_2?
Request Model

- Assume an (ordered) set K of keys, $K=\{k_1, k_2, \ldots, k_n\}$
- Every k is searched with frequency a_1, a_2, \ldots, a_n
- No-key intervals $]-\infty, k_1], [k_1, k_2[, \ldots, [k_{n-1}, k_n[, [k_n, +\infty[$
 - We need to consider costs of searches that fail
- Together: $R=\{a_1, a_2, \ldots, a_n, b_0, b_1, \ldots, b_n\}$
Request Model

- Assume an (ordered) set \(K \) of keys, \(K = \{k_1, k_2, \ldots, k_n\} \)
- Every \(k \) is searched with frequency \(a_1, a_2, \ldots, a_n \)
- **No-key intervals** \(]-\infty, k_1[,]k_1, k_2[, \ldots,]k_{n-1}, k_n[, ,]k_n, +\infty[\)
 - We need to consider costs of searches that fail
- Together: \(R = \{a_1, a_2, \ldots, a_n, b_0, b_1, \ldots, b_n\} \)
Optimal Search Trees

• Definition

Let T be a search tree for K and R a workload. The cost $P(T)$ of T for R is defined as

$$P(T) = \sum_{i=1}^{n} (\text{depth}(k_i) + 1) \ast a_i + \sum_{j=0}^{n} (\text{depth}([k_j, k_{j+1}]) + 1) \ast b_j$$

• Definition

Let K be a set of keys and R a workload. A search tree T over K is optimal for R iff

$$P(T) = \min \{P(T') \mid T' \text{ is search tree for } K\}$$
One More Definition

• Definition

\textit{Let }T\textit{ be a search tree over }K\textit{ and }R\textit{ a workload. The \textit{weight }W(T)\textit{ of }T\textit{ for }R\textit{ is:}}

\[W(T) = \sum_{i=1}^{n} a_i + \sum_{j=0}^{n} b_j \]

• Thus, the weight of }T\textit{ is simply }|R|\textit{ }

• We will need this \textit{definition for subtrees}
Content of this Lecture

- **Optimal Search Trees**
 - Definition
 - Construction
 - Analysis

- **Searching Strings: Tries**
Finding the Optimal Search Tree

- **Bad news:** There are *exponentially many search trees*
 - We cannot enumerate all search trees, compute their cost, and then choose the cheapest
 - Proof omitted

- **Good news:** We don’t need to look at all possible search trees
 - We can use a divide & conquer approach
 - **Dynamic programming:** Build large solutions from smaller ones
 - Recall max_subarray etc.
 - Here: Build larger optimal search trees from smaller optimal STs
General Idea

- Observation: We can define $P(T)$ recursively
 - Let k_r be root of T and $T_{lr}=$leftChild(k_r), $T_{rr}=$rightChild(k_r)
 - "lr: Left-of-r"; "rr: Right-of-r"
 - Clearly: $P(T) = P(T_{lr}) + P(T_{rr}) + a_r + W(T_l) + W(T_{rr})$
 $= P(T_{lr}) + P(T_{rr}) + W(T)$
 - Since $W(T)$ is the same for every possible search tree, the cost of a tree only depends on the cost of its subtrees

- Problem: We do not know k_r, but we need to find it
 - k_r divides T into a left part (T_{lr}) and a right part (T_{rr})
 - Both T_{lr} and T_{rr} are smaller than T
 - Assume we knew $P(T_{lr})$ and $P(T_{rr})$ for every possible k_r
 - Both are smaller, so we can compute T_l/T_r values bottom-up
 - We can test all n different k_r's and find the one maximizing the term $P(T_{lr}) + P(T_{rr}) + W(T)$
Example

- We want to compute the optimal search tree T for the keys a_1-a_4 and no-key ranges b_0-b_5
- One of the keys a_1, a_2, a_3, a_4, must be the root
Example Continued

- If a1 would be the “optimal root”, the cost of $P(T)$ would be $P(b2)+P(b1\ldots b4)+W(T)$

![Diagram showing the structure of a tree with nodes a1, b0, b1, b2, b3, b4, and a2, a3, a4. The text explains the concept of optimal substructure being irrelevant in this context but known by construction.]
Example Continued

- If a_2 would be the “optimal root”, the cost of $P(T)$ would be $P(b_0..b_1)+P(b_2..b_4)+W(T)$
Formal: A Divide & Conquer Approach

- Consider a range \(R(i,j) \) of keys and intervals
 \[
 R(i,j) = \{ \]k_i,k_{i+1}[, \ k_{i+1}, \]k_{i+1},k_{i+2}[, \ k_{i+2}, \ldots k_j, \]k_j,k_{j+1}[\ }
 \]
- Assume that \(R(i,j) \) is represented as subtree \(T(i,j) \) of \(T(1,n) \)
 - That’s not the case in all topologies for \(T \); the “left” part of \(R \) could lie in a different subtree than the “right” part
- One of the \(k_r \in R(i,j) \) must be the root of this subtree
- Thus, \(k_r \) divides \(R(i,j) \) in two halves \(R(i,r-1), R(r,j) \)
- Assume we know the optimal trees for all sub-ranges \(R(i,i+1), R(i,i+2), \ldots, R(i,j-1), R(i+1,j), \ldots, R(j-1,j) \)
- Then, we find the \(r \) creating the optimal tree \(T(i,j) \) using
 \[
P(T(i, j)) = W(T(i, j)) + \min_{r=i+1 \ldots j} \left(P(T(i, r-1)) + P(T(r, j)) \right)
 \]
Bottom-Up Computation

- We **systematically enumerate** smaller $R(i,j)$ and puzzle them together to larger ones.
- Let $P(i,j)$ be the cost of the optimal search tree for $R(i,j)$.
- To compute $P(i,j)$, we (1) need the P and W-values of all possible enclosed subtrees and we (2) need to find the optimal value of r.
- We perform **induction over the breadth b of intervals**: All intervals of breadth $0, 2 \ldots n$ (and we are done).
 - Breadth of an interval: Number of keys contained.
Illustration

\[b=4=n \]

\[b=3 \]

\[b=2 \]

\[b=1 \]

\[b_0 \quad a_1 \quad b_1 \quad a_2 \quad b_2 \quad a_3 \quad b_3 \quad a_4 \quad b_4 \]
Induction Start

• \(b=0 \); all subintervals \((i,i)\)
 - This is a leaf (an interval without keys), no root selection required
 - \(\forall 0 \leq i < n+1: W(i,i) = b_i \)
 \(P(i,i) = W(i,i) \)

• \(b=1 \); all subintervals \((i,i+1)\)
 - The root is always \(k_{i+1} \)
 • The only key in this interval; \(l=i+1 \)
 - \(\forall 0 \leq i < n: W(i,i+1) = b_i + a_{i+1} + b_{i+1} \)
 \(P(i,i+1) = P(i,i) + W(i,i+1) + P(i+1,i+1) \)
Induction

- **General case: \(b>1 \), subintervals \((i,j)\) with \(j-i=b>1 \)
 - Induction hypothesis: We know \(W, P \) for all intervals of breadth \(<b \)
 - Find the **index \(r \) for the optimal root** of the subtrees
 - Then compute:
 \[
 W(i,j) = W(i,r-1) + a_i + W(r,j) \\
 P(i,j) = P(i,r-1) + W(i,j) + P(r,j)
 \]
Content of this Lecture

- **Optimal Search Trees**
 - Definition
 - Construction
 - Analysis

- **Searching Strings: Tries**
Implementation

- There are only \((n+1) \times (n+1)\) different pairs \(i, j\)
- We essentially fill a **quadratic matrix** of size \((n+1) \times (n+1)\) for \(W\) and one for \(P\)
 - Since \(j \geq i\), we actually only need half of each matrix
- Both matrixes are iteratively filled **from the main diagonal to the upper-right corner**
Analysis

• Space
 - We need 2 arrays of size $O(n^2)$
 - Space complexity: $O(n^2)$

• Time
 - Cases $b=0$ and $b=1$ are $O(n)$
 - We enumerate breadths from 2 to n
 - For each b, we consider all possible start positions: $O(n-b)$ many
 - In each range, we need to find the optimal l – this is $O(b)$
 - A range has max size $n-1$
 - Together: $O(n^3)$
Constructing the tree

- We only showed how to compute the cost of the optimal tree, but **not how to build the tree itself**
- But this is simple since we never revise decisions
- We can “grow” the tree whenever we have computed a new optimal root \(l \)
- For instance, we can define a \(r(i,j) := l \) in every step; the sequence of computed \(l \)-values fully determine the tree
Relevance

• Nice and instructive
• Runtime can actually be reduced to $O(n^2)$
• But: $O(n^2)$ is still quite expensive for large n
• Fortunately, one can compute „almost“ optimal search trees in linear time
 – Not this lecture
Content of this Lecture

- Optimal Search Trees
- Searching Strings: Tries
Keys that are Strings

- Assume K is a set of strings of maximal length m
- We can build an AVL tree over K
- Searching requires $O(\log(n))$ key comparisons
- But: Each string-comp requires m char-comps in WC
 - Very pessimistic, but we do WC analysis
- Together: We need $O(|k| \cdot \log(n))$ character comparisons for searching a key k
- Observation
 - “Similar” strings will be close neighbors in the tree
 - These will share prefixes (the longer, the more similar)
 - These prefixes are compared again and again
Example

$k=\text{„verhalten“}$
Tries

- Tries are **edge-labeled trees** of order $|\Sigma|$
 - Developed for Information Retrieval
- Edges are labeled with chars from Σ
- Idea: **Common prefixes** of keys are represented only once
- Problem: If “verl” is a key?
 - Trick: Add a “$” (not in Σ) to every string
 - Then every and **only leaves** represent keys
Analysis

• Construction of a trie over K?
 - Let $\text{len}(K)$ be the sum of all key lengths in K
 - We start with an empty tree and \textit{iteratively add} all $k \in K$
 - To add a key k, we \textit{char-match k in the tree} as long as possible
 - As soon as no continuation is found, we build a new branch
 - This requires $O(|k|)$ operations (char-comps or node creations)
 - It follows: \textit{Construction is in $O(\text{len}(K))$}

• Searching a key k (which maybe in K or not in K)
 - We match k from root down the tree
 - When k is exhausted and we are in a leaf: $k \in K$
 - If no continuation is found or we end in an inner node: $k \notin K$
 - It follows: \textit{Searching is in $O(|k|)$}
 - But …
Space Complexity

- We have at most \(\text{len}(K) \) edges and \(\text{len}(K) + 1 \) nodes
 - Shared prefixes make the actual number smaller
- But we also need **pointer to children**
- To achieve our search complexity, choosing the right pointer must be in \(O(1) \)
- This adds \(O(\text{len}(K) \cdot |\Sigma|) \) pointers
- Too much for any non-trivial alphabet
 - **Digital tries** are a popular data structure in coding theory
 - There, \(|\Sigma| = 2 \), so the pointers don’t matter much
 - But beware – the trees get very deep
- Furthermore, most of the pointers will be null
 - Depending on \(|\Sigma|, |K|, \) and lengths of shared prefixes
Alternatives

- Full array for children ptr
 - Advantage: $O(|k|)$ search
 - Disadvantage: Excessive space consumption

- Dense array for children ptr
 - Advantage: $O(\text{len}(K))$ space
 - Disadvantage: Search is $O(|k| \times \log(|\Sigma|))$
Compressed Tries = Patricia Trees

• We can save further space
• A patricia tree (or radix tree) is a trie where edges are labeled with (sub-)strings, not with characters
• All sequences $S=<\text{node, edge}>$ which do not branch are compressed into a single edge labeled with the concatenation of the labels in S
• More compact, less pointer
• Slightly more complicated implementation
 - E.g. insert requires splitting of labels
Exemplary Questions

• Recall the definition of a trie. Give in implementation (in pseudo code) for (a) searching a key k and (b) building a trie for a string set K. You may presuppose a data structure „list“ with operations add(c, p) for adding a pair of character and pointer and retrieve(c), which returns the pointer associated to c or nil.

• Build an optimal search tree for K={5,12,15,20} and R={6,2,3,8,11,5,2,1,4}. Show the complete tables for W and P.

• Prove that all tries for any permutation of a set of strings are identical.