Algorithms and Data Structures

Sorting:
Merge Sort and Quick Sort
Summary

<table>
<thead>
<tr>
<th></th>
<th>Comparisons worst case</th>
<th>Comparisons best case</th>
<th>Additional space</th>
<th>Moves worst/best</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection Sort</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
<td>$O(1)$</td>
<td>$O(n)^*$</td>
</tr>
<tr>
<td>Insertion Sort</td>
<td>$O(n^2)$</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(n^2) / O(n)$</td>
</tr>
<tr>
<td>Bubble Sort</td>
<td>$O(n^2)$</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(n^2) / O(1)$</td>
</tr>
<tr>
<td>Merge Sort</td>
<td>$O(n\log(n))$</td>
<td>$O(n\log(n))$</td>
<td>$O(n)$</td>
<td>$O(n\log(n))$</td>
</tr>
<tr>
<td>Magic Sort (?)</td>
<td>$O(n)$</td>
<td></td>
<td></td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>
Content of this Lecture

- Merge Sort
- Quick Sort
Central Idea for Improvements in Sorting

- Methods we analyzed so-far did not optimally exploit transitivity of the „greater-or-equal“ relationship
 - If $x \leq y$ and $y \leq z$, then $x \leq z$
- If we compared x and y and y and z, there is no need any more to compare x and z
 - But all our simple algorithms compare every element with every element – at least once
- The clue to lower complexity algorithms for sorting is finding systematic (algorithmic) ways to exploit such information
Merge Sort

- There are various algorithms with $O(n \cdot \log(n))$ comparisons
- (Probably) Simplest one: **Merge Sort**
 - Divide-and-conquer algorithm
 - Break array in two partitions of equal size
 - Sort each partition recursively if it has more than 1 elements
 - Merge sorted partitions
- Merge Sort is not in-place: $O(n)$ additional space
Illustration

Source: WikiPedia
Illustration

Divide - Partition

Conquer - Merge
- Here we exploit transitivity
- We save comparisons during merge because both sub-lists are sorted

Source: WikiPedia
Function `void mergesort(S array; l, r integer)` {
 if (l < r) then
 # Sort each ~50% of array
 m := (r-l) div 2;
 mergesort(S, l, l+m);
 mergesort(S, l+m+1, r);
 # Merges two sorted lists
 merge(S, l, l+m, r);
 else
 # Nothing to do, 1-element list
 end if;
}
Merging Two Sorted Lists

- There is not much sorting – work is done in the **merge step**
- Recall: Intersection of two sorted doc-lists in IR
- Idea
 - Move **one pointer through each list**
 - Whatever element is smaller, copy to a new list and increment this pointer
 - “New list” requires **additional space**
 - Repeat until one list is exhausted
 - Copy rest of other list to new list
 - Note: You cannot do this in-place

```
1  2  3  4  7  8  9  11  12 ...
```

```
1  2  3  4  5  6  7  8  9 ...
```
Example

\[
\begin{array}{c|c|c|c}
\hline
1 & 4 & 7 & 8 \\
\hline
1 & 4 & 7 & 8 \\
\hline
1 & 4 & 7 & 8 \\
\hline
1 & 4 & 7 & 8 \\
\hline
\end{array}
\]
function void merge(S array;
 l,m,r integer) {
 B: array[1..r-l+1];
 i := l; # Start of 1st list
 j := m+1; # Start of 2nd list
 k := 1; # Target list
 while (i<=m) and (j<=r) do
 if S[i] \leq S[j] then
 B[k] := S[i]; # From 1st list
 i := i+1;
 else
 B[k] := S[j]; # From 2nd list
 j := j+1;
 end if;
 k := k+1; # Next target
 end while;
 if i>m then # What remained?
 copy S[j..r] to B[k..k+r-j];
 else
 copy S[i..m] to B[k..k+m-i];
 end if;
 # Back to original list
 copy B[1..r-l+1] to S[l..r];
}
Complexity

• Theorem

Merge Sort requires $\Omega(n \times \log(n))$ and $O(n \times \log(n))$ comparisons

• Proof of $O(n \times \log(n))$
 - Merging two sorted lists of size n requires $O(n)$ comparisons
 • After every comp, 1 element is moved to target; there are only $2 \times n$ elements; thus, there can be only $2 \times n$ comparisons
 - Merge Sort calls MergeSort twice with always ~half of the array
 • Let $T(n)$ be the number of comparisons
 • Thus: $T(n) = T(n/2) + T(n/2) + O(n)$
 - This is $O(n \times \log(n))$
 • See recursive solution of max subarray

• $\Omega(n \times \log(n))$: # comparisons does not depend on data in S
Remarks

• Merge Sort is worst-case optimal: Even in the worst of all cases, it does not need more than (in the order of) the minimal number of comparisons
 - Given our lower bound for sorting

• But there are also disadvantages
 - $O(n)$ additional space
 - Requires $\Omega(n\log(n))$ moves
 • Sorted sub-arrays get copied to new array in any case
 • See Ottmann/Widmayer for proof

• Note: Basis for sorting algorithms on external memory
Summary

<table>
<thead>
<tr>
<th>Sort</th>
<th>Comparisons worst case</th>
<th>Comparisons best case</th>
<th>Additional space</th>
<th>Moves worst/best</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection Sort</td>
<td>(O(n^2))</td>
<td>(O(n^2))</td>
<td>(O(1))</td>
<td>(O(n))</td>
</tr>
<tr>
<td>Insertion Sort</td>
<td>(O(n^2))</td>
<td>(O(n))</td>
<td>(O(1))</td>
<td>(O(n^2) / O(n))</td>
</tr>
<tr>
<td>Bubble Sort</td>
<td>(O(n^2))</td>
<td>(O(n))</td>
<td>(O(1))</td>
<td>(O(n^2) / O(1))</td>
</tr>
<tr>
<td>Merge Sort</td>
<td>(O(n^2 \log(n)))</td>
<td>(O(n^2 \log(n)))</td>
<td>(O(n))</td>
<td>(O(n^2 \log(n)))</td>
</tr>
</tbody>
</table>
Content of this Lecture

• Merge Sort
• **Quick Sort**
 - Algorithm
 - Average Case Analysis
 - Improving Space Complexity
Comparison Merge Sort and Quick Sort

• What can we do better than Merge Sort?
 - The **O(n)** additional space is a problem
 - We need this space because the growing sorted runs have fixed sizes of up to 50% of |S| (2, 4, 8, ..., ceil(n/2))
 - We cannot easily merge **two sorted lists in-place**, because we have no clue how the numbers are distributed in the two lists

• Quick-sort uses a similar yet different way
 - We also recursively generate sort-of sorted runs
 - Whenever we create two such runs, we make sure that one contains only “small” and one contains only “large” values - relative to a value that needs to be determined
 - This allows us to do a kind-of “merge” in-place
Main Idea

- Let k be an arbitrary index of S, $1 \leq k \leq |S|$
- Look at element $p = S[k]$ (we call it the pivot element)
- Modify S such that $\exists i: \forall j \leq i: S[j] \leq p$ and $\forall l > i: p \leq S[l]$
 - How? Wait a minute
 - S is broken in two subarrays S' and S''
 - S' with values smaller-or-equal than pivot element p
 - S'' with values larger-or-equal than pivot element p
 - Note that afterwards value p is at its final position in the array
 - S' and S'' are smaller than S
 - But we don’t know how much smaller – depends on choice of k
- Treat S' and S'' using the same method recursively
 - How often? Not clear – depends on choice of k (again)
Illustration
A Bad Case

\[k \rightarrow \rightarrow S[k] \rightarrow \rightarrow p \]

\[k' \rightarrow \rightarrow p' \rightarrow \rightarrow p \]
Quick Sort Framework

• Start with qsort(S, 1, |S|)
• “Sort” S around the pivot element p (divide)
 - Problem 1: Choose k (i.e. p)
 - Problem 2: Do this in-place
• Recursively sort values smaller-or equal than pivot element
• Recursively sort values larger-or-equal than pivot element
• Problem 3: How often do we need to do this?

1. func void qsort(S array; l,r integer) {
2. if r ≤ l then
3. return;
4. end if;
5. pos := divide(S, l, r);
6. qsort(S, l, pos-1);
7. qsort(S, pos+1, r);
8. qsort(S, pos+1, r);
9. }
Addressing Problem P1 – approaching P3

- **P1**: We need to choose k (p=S[k])
- p determines the sizes of S’ and S”

- **Best**: p in the **middle of the values of S** (median)
 - S’ and S” are of equal size (~|S|/2)
 - Creates a low search tree

- **Worst**: p at the **border of the values of S**
 - |S’| ~0 and |S”| ~|S| - 1 or vice versa
 - Creates a deep search tree

- **Hint to P3**: Somewhere in [log(n), n] times
 - Depending on choice of k
Intermezzo: Mean and Median

- In statistics, one often tries to capture the “essence” of a (potentially large) set of values

- One essence: **Mean**
 - Average temperature per month, average income per year, average height of males at age of 18, average duration of study, ...

- Less **sensitive to outliers**: **Median**
 - The middle value
 - Assume temps in June 25 24 24 23 25 25 24 4 -1 9 18 24
 - Which temperature do you expect for an average day in June?
 - Mean: 18.6
 - Median: 24 – more realistic
 - How long will you need for your Bachelor? 6,35 semesters?
 - German median net income (2010) was 24.152€ – but average?
P1: Choosing k

- In the best case, p is the median of S
- Approximations
 - If S is an array of people’s income in Germany, we call the “Statistische Bundesamt” to ask for the mean of all incomes in Germany, and scan the array until we find a value that is 10% or less different, and use this value as pivot
 - If S is large and randomly drawn from a set of incomes, this scan will be very short
 - If S is an array of family names in Berlin, we take the Berlin telephone book, and open it roughly in the middle
- There is no exact and simple way to find the median of a large list of values (without sorting them)
P1: Choosing k - Again

- **Option 1:** Find min/max in S; search k with $p \sim \frac{(\text{max}-\text{min})}{2}$
 - Why should the values in S be *equally distributed* in this range?
 - For instance: Incomes are not equally distributed at all

- **Option 2:** Choose a (small) set of values X from S at random and determine k with $p \sim \text{median}(X)$
 - X follows the same distribution (same median) as S, but $|X| \ll |S|$
 - Since this procedure would have to be performed for each qSort, only very small X do not influence runtime a lot
 - But: Small X will lead to bad median estimations
 - Beware: If $|X| = c \times |S|$ for any c, we are still in $O(|S|)$

- **Option 3:** Choose k at random
 - For instance, simply use the last value in the array
 - We’ll see that this already produces *good result on average*
Recall: Quick Sort Framework

- Start with qsort(S, 1, |S|)
- “Sort” S around the pivot element (divide)
 - Problem 1: Choose k
 - Problem 2: Do this in-place
- Recursively sort values smaller-or equal than pivot element
- Recursively sort values larger-or-equal than pivot element
- Problem 3: How often do we need to do this?

1. func void qsort(S array;
2. l,r integer) {
3. if r≤l then
4. return;
5. end if;
6. pos := divide(S, l, r);
7. qsort(S, l, pos-1);
8. qsort(S, pos+1, r);
9. }
Problem P2: Do this in-place

- We use \(k=r \) (random choice of \(p \))
- Simple idea
 - Search from \(l \) towards \(r \) until first value greater-or-equal \(p \)
 - Search from \(r \) towards \(l \) until first value smaller-or-equal \(p \)
 - Swap these two values
 - Repeat if \(i \) has not reached \(j \) yet
 - Result: Values left from \(i \) are smaller than \(p \) and values right from \(j \) are larger than \(p \)
 - Move \(p \) into the middle

```plaintext
1. func int divide(S array;
2.             l,r integer) {
3.   p := S[r];
4.   i := l;
5.   j := r-1;
6.   repeat
7.     while (S[i]<=p and i<r)
8.       i := i+1;
9.   end while;
10.    while (S[j]>=p and j>l)
11.      j := j-1;
12.    end while;
13.    if i<j then
14.      swap( S[i], S[j]);
15.    end if;
16.  until i>=j;
17.  swap( S[i], S[r]);
18.  return i;
19.}
```
Example

```
1 8 6 3 5 9 3 1 7
  i   j
1 1 6 3 5 9 3 8 7
  i   j
1 1 6 3 5 3 9 8 7
  j   i
1 1 6 3 5 3 7 8 9
```

```
1 1 6 3 5 3
  i  j
1 1 3 6 5 3
   j  i
1 1 3 3 5 6
```

```
1 1 3
  j  i
```

```
5 6
```

```
8 9
```
P2: Complexity of divide()

- **# of comparisons: O(r-l)**
 - Whenever we perform a comparison, either i or j are incremented / decremented
 - i starts from l, j starts from r, and the algorithm stops once they meet
 - This is **worst, average and best case**

- **# of swaps: O(r-l) in worst case**
 - Example: 8,7,8,6,1,3,2,3,5
 - Requires ~ (r-l)/2 swaps

```c
1. func int divide(S array;
2.                 l,r integer) {
3.   val := S[r];
4.   i := l;
5.   j := r-1;
6.   repeat
7.     while (S[i]<=val and i<r)  
8.       i := i+1;
9.   end while;
10.    while (S[j]>=val and j>l)   
11.      j := j-1;
12.   end while;
13.   if i<j then                 
14.     swap( S[i], S[j]);
15.   end if;
16.   until i>=j;
17.   swap( S[i], S[r]);
18.   return i;
19. }
```
Worst-Case Complexity of Quick Sort

- Worst case: A reverse-sorted list and \(k = |S| \)
 - \(S[r] \) in first iteration is the smallest element, later always the smallest or the largest
 - Requires \(r-l \) comparisons in every call of `divide()`
 - Every pair of qSort's has \(|S'| = 0 \) and \(|S''| = n-1 \)
 - This gives \((n-1) + ((n-1)-1) + \ldots + 1 = O(n^2) \)
Intermediate Summary

- Great *disappointment*
- We are in O(1) additional space, but as slow as our basic sorting algorithms in worst case
- Let’s look at the *average case*
Content of this Lecture

- Merge Sort
- Quick Sort
 - Algorithm
 - Average Case Analysis
 - Improving Space Complexity
Average Case

- Without loss of generality, we assume that S contains all values $1 \ldots |S|$ in arbitrary order
 - If S had duplicates, we would at best save swaps
 - Sorting n different values is the same problem as sorting the values $1 \ldots n$ – replace each value by its rank
- For k, we choose any value in S with equal probability $1/n$
- This choice divides S such that $|S'|=k-1$ and $|S''|=n-k$
- Let $T(n)$ be the average # of comparisons. Then:

$$T(n) = \frac{1}{n} \sum_{k=1}^{n} (T(k-1) + T(n-k)) + bn = \frac{2}{n} \sum_{k=1}^{n-1} T(k) + bn$$

- Where $b \times n$ is the time to divide the array and $T(0)=0$
Induction

- We need to show that, for some c independent of n:

$$T(n) \leq c \cdot n \cdot \log(n)$$

- **Proof by induction** (for $n \geq 2$)
 - Clearly, $T(1) = b$, $T(2) = 3b \leq c \cdot 2 \cdot \log(2)$ if $c \geq 3b/2$
 - We assume the above assumption holds for all $2 \leq k < n$
 - We start with (for simplicity, assume $n = 2^x$ for some x):

$$T(n) = 2 \sum_{k=1}^{n-1} T(k) + bn$$
Induction

\[T(n) = \frac{2}{n} \sum_{k=1}^{n-1} T(k) + bn \]
\[= \frac{2}{n} \sum_{k=2}^{n-1} T(k) + bn + \frac{2}{n} T(1) \]
\[= \frac{2}{n} \sum_{k=2}^{n-1} T(k) + bn + \frac{2}{n} b \]
\[\leq \frac{2}{n} \sum_{k=2}^{n-1} T(k) + bn + b \]
\[\leq \frac{2c}{n} \sum_{k=1}^{n-1} k \log(k) + bn + b \]
\[= \frac{2c}{n} \left[\sum_{k=1}^{n/2} k \log(k) + \sum_{k=n/2+1}^{n-1} k \log(k) \right] + bn + b \]
Continued

\[T(n) \leq \frac{2c}{n} \left[\sum_{k=1}^{n/2} k \log(k) + \sum_{k=n/2+1}^{n-1} k \log(k) \right] + bn + b \]

\[\leq \frac{2c}{n} \left[\sum_{k=1}^{n/2} k \log(n/2) + \sum_{k=n/2+1}^{n-1} k \log(n) \right] + bn + b \]

\[= \frac{2c}{n} \left[\sum_{k=1}^{n/2} k \log(n) - n^2/8 - n/4 + \sum_{k=n/2+1}^{n-1} k \log(n) \right] + bn + b \]

\[= \frac{2c}{n} \left[\left(\frac{n^2}{2} - \frac{n}{2} \right) \log(n) - \frac{n^2}{8} - \frac{n}{4} \right] + bn + b \]

\[= cn \log(n) - c \log(n) - \frac{cn}{4} - \frac{c}{2} + bn + b \]

\[\leq cn \log(n) - cn/4 - c/2 + bn + b \]

\[\leq c \cdot n \log(n) \]

Set \(c \geq 4b \)
Conclusion

- Although there are cases where we need $O(n^2)$ comparisons, these are so rare in the set of all possible permutations that we do not need more than $O(n \cdot \log(n))$ comparisons on average.
- In other words: If we average over the runtimes of Quick Sort over many (all) different orders of n values (for different n), then this average will grow with $n \cdot \log(n)$, not with n^2.
- One can show the same for the number of swaps.
- Quick Sort is a fast general-purpose sorting algorithm.
Content of this Lecture

• Merge Sort
• Quick Sort
 – Algorithm
 – Average Case Analysis
 – Improving Space Complexity
Looking at Space Again

• We were quite sloppy
• Quick Sort as described here actually does need extra space – every recursive call puts some data on the stack
 – Array can be passed-by-reference or declared as a global variable
 – But we need to pass l and r
• Our current version has worst-case space complexity $O(n)$
 – Consider the worst-case of the time complexity
 • Reverse-sorted array
 – Creates 2^n recursive calls
 – This requires n times 2 integers on the stack
Improving Space Complexity

- In the recursive decent, always treat the smaller of the two sub-arrays first (S’ or S’”, whatever is smaller)
- This branch of the search tree can generate at most $O(\log(n))$ calls, as the smaller array always is smaller than $|S|/2$ (or it would not be the smaller one)
- Use iteration (no stack) to sort the bigger array afterwards
- Space complexity: $O(\log(n))$
Implementation

1. func integer qSort(S array; 1, r int) {
2. if r ≤ l then
3. return;
4. end if;
5. val := S[r];
6. i := l-1;
7. j := r;
8. repeat
9. while (S[i] ≤ val and i < r)
10. i := i+1;
11. end while;
12. while (S[j] ≥ val and j > l)
13. j := j-1;
14. end while;
15. if i < j then
16. swap(S[i], S[j]);
17. end if;
18. until i ≥ j;
19. swap(S[i], S[r]);
20. qSort(S, l, i-1);
21. qSort(S, i+1, r);
22. }

1. func integer qSort++(S array; 1, r int) {
2. if r ≤ l then
3. return;
4. end if;
5. while r > l do
6. val := S[r];
7. i := l-1;
8. j := r;
9. repeat
10. ... # as before
11. until i ≥ j;
12. swap(S[i], S[r]);
13. if (i-1-l) < (r-i-1) then
14. qSort(S, l, i-1);
15. l := i+1;
16. else
17. qSort(S, i+1, r);
18. end if;
19. end while;
20. }

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017
Implementation

- **14-20:** Choose the smaller and sort it recursively
 - Note: **Only one call** is made for each division
- **We adjust l/r and sort the larger sub-array directly**
 - New loop (6-21) applies the same procedure performing the next sort
- **We turned a linear tail recursion into an iteration** (without stack)

```
1. func integer qSort++(S array; l,r int) {
2.     if r≤l then
3.         return;
4.     end if;
5.     while r > l do
6.         val := S[r];
7.         i := l-1;
8.         j := r;
9.         repeat
10.        … # as before
11.        until i>=j;
12.        swap( S[i], S[r]);
13.        if (i-1-1) < (r-i-1) then
14.            qsort(S, l, i-1);
15.            l := i+1;
16.        else
17.            qSort(S, i+1, r);
18.            r := i-1;
19.        end if;
20.     end while;
21. }
```
Illustration
Improving Space Complexity Further

- Even $O(1)$ space is possible
 - Do not store l/r, but search them at runtime within the array
 - Requires extra work in terms of runtime, but within the same complexity
 - See Ottmann/Widmayer for details
 - Is it worth it in practice?
 - $\log(n)$ usually is not a lot of space
Summary

<table>
<thead>
<tr>
<th></th>
<th>Comps worst case</th>
<th>avg. case</th>
<th>best case</th>
<th>Additional space</th>
<th>Moves (wc / ac)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection Sort</td>
<td>O(n²)</td>
<td>O(n²)</td>
<td>O(1)</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>Insertion Sort</td>
<td>O(n²)</td>
<td>O(n)</td>
<td>O(1)</td>
<td>O(n²)</td>
<td>O(n²)</td>
</tr>
<tr>
<td>Bubble Sort</td>
<td>O(n²)</td>
<td>O(n)</td>
<td>O(1)</td>
<td>O(n²)</td>
<td>O(n²)</td>
</tr>
<tr>
<td>Merge Sort</td>
<td>O(n*log(n))</td>
<td>O(n*log(n))</td>
<td>O(n*log(n))</td>
<td>O(n)</td>
<td>O(n*log(n))</td>
</tr>
<tr>
<td>QuickSort</td>
<td>O(n²)</td>
<td>O(n*log(n))</td>
<td>O(n*log(n))</td>
<td>O(log(n))</td>
<td>O(n²) / O(n*log(n))</td>
</tr>
</tbody>
</table>
Exemplary Questions

- Proof that any sort algorithm using only value comparisons needs $\Omega(n \cdot \log(n))$ comparisons in worst case.
- Proof or refute: For every n, there exists a list with n elements which is a best case for quick sort (choosing first element as pivot) and for bubble sort.
- Give pseudo code for QuickSort with $O(\log(n))$ additional space.
- Imagine your main memory can use only $n/16$ values. Recall that access disk is much more expensive than accessing memory. Which of the sorting algorithms can be used to keep disk I/O low? Describe the algorithm in pseudo code and argue about the number of blocks read.