
Technische Universität Berlin, Fakultät I � Geisteswissenschaften

Institut für Sprache und Kommunikation

Fachbereich Anglistische und Allgemeine Linguistik

Peter Palaga

Extracting Relations from Biomedical Texts Using

Syntactic Information

Magister Thesis

2009-04-13

Author: Peter Palaga, Matrikelnummer: 228182

Supervisors: Prof. Dr. See-Young Cho, Prof. Dr. Ulf Leser

Table of Contents

 Sebständigkeitserklärung..i

 Zusammenfassung..iii

 Acknowledgments..v

1 Introduction..1

2 SVM Classifier...4

2.1 SVM for Relation Extraction...7

3 Training Data..9

3.1 Learning Format...11

3.1.1 Learning Format Pitfalls...12

3.2 Syntax Representations..13

4 Kernels for Relations Extraction..17

4.1 Kernels of other Authors..17

4.1.1 Subtree Kernel (ST)..17

4.1.2 Subset Tree Kernel (SST)...18

4.1.3 Partial Tree Kernel (PT)..19

4.1.4 Spectrum Tree Kernel (SpT)...20

4.1.5 Comparison...20

4.2 Design of a Novel Kernel...22

4.2.1 Preliminary Attempts to Design a New Kernel..22

4.2.1.1 Transforming Dependency Graphs to Trees...22

4.2.1.2 Redefinition of the Spectrum Tree Kernel for General Graphs......................23

4.2.2 The Successful Strategy..24

4.2.2.1 Fuzzy Matching..24

4.2.2.1.1 Tolerant matching..25

4.2.2.1.2 Levenshtein distance...26

4.2.2.2 Context Selection..26

4.2.3 d-Entity Context Spectrum Kernel...27

4.2.4 k-Band Shortest Path Spectrum Kernel (kBSPS)...28

5 Evaluation Methods and Metrics...29

5.1 Precision, Recall and F-Measure..29

5.2 Area Under the Receiver Operating Characteristics Curve (AUC)................................31

5.3 Cross-Validation...34

5.4 Run Time Measurement...35

6 Experimental Setup..36

6.1 Preprocessing..36

6.1.1 Entity-Token Mapping..36

6.1.2 Entity Blinding...36

6.1.3 Special Preprocessing Steps for some Kernels...37

6.2 Parameters and their Optimization...38

6.3 Kernel Implementations...40

7 Experimental Results...42

8 Conclusion...48

9 References..49

10 Software and Corpora..54

Sebständigkeitserklärung

Die selbständige Anfertigung versichere ich an Eides Statt.

Berlin, den

....................................

 Peter Palaga

i

ii

Zusammenfassung

Relationsextraktion ist ein Verfahren, mit dem Informationen gezielt aus Fließtext in einer

strukturierten Form gewonnen werden. Eine heutzutage sehr häufig untersuchte Anwendung

der Relationsexktraktion ist die Extraktion von Protein-Protein Interaktionen (PPI) aus

biomedizinischen Texten. Wir haben mehrere automatische kernelbasierte Methoden für die

Relationextraktion auf dem PPI-Extraktion Problem evaluiert. Einerseits haben wir

Experimente mit in der Fachliteratur beschriebenen Kernelfunkionen durchgeführt und

andererseits haben wir einige Kernels selbst entworfen. Wir haben Methoden und Metriken

für die Evaluierung benutzt, die einen direkten Vergleich mit den PPI-Extraktionsmethoden

erlauben, die �auf dem neusten Stand der Kunst� sind. Ein von uns entworfener Kernel hat

höhere Genauigkeit und deutlich kürzere Laufzeiten gezeigt als die Kernels aus der Literatur

gezeigt haben. Im Vergleich mit den modernsten Methoden hat jedoch unsere Methode

schlechtere Ergebnisse erreicht.

iii

iv

Acknowledgments

My special thanks go to Lenka, my life partner, for her patience and willingness to carry on

her own most of our fresh parental duties while I was busy working on this thesis. Also, I

would like to thank Prof. Ulf Leser for employing me in Alibaba project at WBI two years

ago and so encouraging me to apply my qualification in practical situations and especially for

his patient assistance from the beginnings of this thesis to its very end. Moreover, I would like

to thank the following people for their special contributions: Many thanks to Prof. See-Young

Cho for his assistance. Many thanks to Antti Airola and Sampo Pyysalo from University of

Turku, for their methodological hints and for corpus splits used in k-fold cross-validation.

Many thanks to Tetsuji Kuboyama from University of Tokyo for providing his spectrum tree

kernel implementation. Many thanks to Alessandro Moschitti from University of Trento for

sending me the newest version of his tree kernel software. Many thanks to Eugene Charniak,

Mark Johnson and David McCloski from Brown University for helping me with their parser.

v

vi

1 Introduction

1 Introduction

Well-formed sentences of natural language usually state facts. Intuitively, such facts can be

seen as consisting of two different types of items: firstly, there are some things and secondly

there are some associations that are claimed to hold between that things. In the field of natural

language processing (NLP), such things are called entities and the associations between them

are called relations. Consider the following sentence as an example:

Alice spends more money on eBay than Bob.

In this sentence, (at least) two entities were mentioned, namely persons Alice and Bob.

Furthermore, the sentence asserts that there is a particular relation between them: the former

spends more money on eBay then the later.

To state which relations hold between which entities is a typical task of researchers in natural

sciences. So, biologists are observing cells to say (among other things) which genes cause

which diseases, which genes inhibit other genes or which proteins interact with which other

proteins (Protein-Protein Interactions, PPI).

Scientists mostly publish their findings in form of free text, e.g. papers, books, etc. With

raising number of known facts, it becomes necessary to systematize the knowledge in a more

structured form, e.g. a database. Structured data sources allow richer queries than free text.

For example, it is not effectively possible to find out which genes are inhibited by gene SOX9

only using free text queries on a big collection of scientific text.

Indeed, there exist attempts to create databases storing biomedical entities and their relations

by hand; e.g Database of Interacting Proteins (DIP, Xenarios et al., 2000), the Biomolecular

Interaction Network Database (BIND, Bader et al., 2001) and the Molecular INTeraction

database (MINT, Zanzoni et al., 2002). However, such projects are far from being complete

(see e.g. Chatr-aryamontri et al., 2006).

It is a task of Information Extraction to develop methods for creating such databases

automatically. This task is commonly seen as having three phases: (1) entity recognition (2)

coreference resolution and (3) relation extraction (Culotta and Sorensen, 2004). It is precisely

Der Sachverhalt ist eine Verbindung von Gegenständen (Sachen, Dingen).

Ludwig Wittgenstein (1921)

1

1 Introduction

the last of these phases which will be focused in this thesis.

Several approaches have been applied to extract relations from free text. The simplest method

is based on the assumption that a mere co-occurrence of two entities implies that there is a

relation between them. Trivially, such methods reach 100% recall, but their precision stays

low (Pyysalo et al., 2008; see also Section 5.1 for more details on precision and recall).

Pattern and rule based methods try to use context information for finding relations between

entities. They usually look for certain words occurring near entity names or use part-of-speech

(POS) and/or syntax information. They usually exhibit high precision, but their recall is low,

i.e. many of the relations in the text are left undiscovered by them. The patterns used by such

approaches may be constructed by hand or learned automatically from an annotated corpus

(Hakenberg et al., 2005; Fundel et al., 2007, Blaschke, 1999).

In this thesis, the machine learning approach will be pursued. A statistical classifier will be

used to predict the presence or absence of a relation between a given pair of entities in a

sample sentence. The decisions of such a classifier rest upon a statistical model which is

produced by a training on a text corpus containing positive and negative examples (Donaldson

et al., 2003).

Several machine learning techniques have been used in the field of relation extraction, among

others nearest neighbor (Fukunaga, 1990), naïve Bayes, sparse regularized least-squares

(RLS) (Airola et al., 2008) and support vector machines (SVM) (Cortes and Vapnik, 1995;

Culotta and Sorensen, 2004). SVM, introduced in Chapter 2, will be used in this thesis. In

Chapter 2 we also introduce the notion of kernel function which plays a central role in our

survey.

The chosen method presupposes a resource with annotated entities and relevant relations on

which the classifier will be trained. To this end, corpora prepared by Pyysalo et al. (2008)

with annotated Protein-Protein Interactions (PPI) will be used. We describe these corpora in

Chapter 3.

Further, in Chapter 4, we present several kernel functions known from the literature. We also

document our own attempts to design a novel kernel suitable for relation extraction.

We have evaluated the kernel functions introduced Chapter 4 using methods and metrics

presented in Chapter 5.

2

1 Introduction

The details of our experimental setup are explained in Chapter 6, while our experimental

results are presented in Chapter 7.

The contribution of this thesis to the field of relation extraction and especially to PPI

extraction can be seen as threefold: Firstly, we apply the evaluation method proposed recently

by Airola et al. (2008) to several kernel functions known from literature. In this way, we

provide benchmarks which allow for direct comparability of these kernels with each other on

one hand and with state-of-the-art methods on the other hand. Secondly, these kernels � to our

best knowledge � have not been evaluated on an relation extraction task yet. Thirdly, we

propose a new kernel method for relation extraction and evaluate it so that its performance is

directly comparable with both the state-of-the-art methods and other methods evaluated in this

thesis.

3

2 SVM Classifier

2 SVM Classifier

Generally, the machine learning techniques have two phases: (1) learning (also called

�training�) and (2) the actual application of the technique on new data instances. To train a

classifier one needs a set of training examples. This set needs to be big enough, so that the

classifier is able to learn some sort of general model, which works also for new, previously

unseen examples.

Within this thesis, Support Vector Machine (SVM) is used as a classifier (Vapnik, 1995).

Internally in the SVM, training examples are represented as feature vectors. Feature vectors

are ordered n-tuples of numeric values. To illustrate, how an SVM works, let us take the

special case of ordered 2-tuples, i.e. pairs. The pairs have the apparent advantage of being

interpretable as coordinates of points in a two-dimensional space. In this way the task of

classification can be nicely visualized in a diagram.

Example 2.1: Suppose, we have the following set of examples for the learning phase:

+[5, 3], +[7, 4], +[7,6], �[2, 5], �[2, 6], �[2, 8], �[4, 8]

Note, that each of the examples is labeled with �+� or ���, which mean, that the given

example is positive (i.e. bearing the relation) or negative (not bearing the relation)

respectively. So we have seven feature vectors of length 2, three of them being positive and

four of them negative. The diagrammatic representation of these examples can be seen in

Figure 2.1.

4

2 SVM Classifier

In the diagram can be seen that the positive and negative examples build distinguished groups.

The positive and negative examples are grouped so clearly, that a line can be drawn, which

divides the whole plane in such a way that positive examples are located on one side of the

line and the negative examples on the other.

This simplified example shows what an SVM classifier does: in the learning phase, it tries to

divide the feature space into into two parts in such a way that the positive and negative

examples are separated from each other. Then, in classification phase, a new, previously

unseen example is assigned a label depending solely on its location relative to the separating

line.

SVM classifiers can do this not only for a two-dimensional feature space, but also for higher-

dimensional feature spaces. In case of an n-dimensional feature space, the result of the

learning phase would not be a line, but an (n-1)-dimensional hyperplane.

In the situation given in the Example 2.1, there are infinitely many possibilities to draw such a

line. Three of them, named a, b and c can be seen in Figure 2.2.

Figure 2.1: Visualization of 7 feature vectors of length 2 in two dimensional space.

50 5

5

10

10

�

�

�

�

�

�
�

5

2 SVM Classifier

Intuitively, it is quite important for the classification of new examples, which one of the lines

is chosen in the learning phase. To illustrate this, let us consider the new instance labeled with

�?� in Figure 2.2: with respect to lines a and c, it would be classified as positive, but with

respect to line b, it would be classified as negative.

Clearly, we are interested in a solution, which generalizes � as far as possible � beyond the

training data, as the classification of new previously unseen data instances is our ultimate

objective. On the contrary, what we obviously do not want is the situation, where a classifier

fits the training data very well, but it performs very badly on new examples. Such situation is

called overfitting in machine learning.

There are two things which have strong impact on the classifier's ability not to overfit the

training data.

Firstly, the classifier should by its design draw the boundary in such a way, that it does not

prefer any of the divided groups. It is a particular strength of SVM that it selects the line

which is located just in the middle between the nearest positive and negative examples. The

boundary line is said to have maximum margin. In the Figure 2.2, the line a has maximum

margin. This seems to be the most robust solution, which is best resistant against overfitting

(Culotta and Sorensen, 2004).

Secondly, the classifier's ability to classify previously unseen examples correctly depends

largely on the amount of the training data. Intuitively, the more training examples the more

Figure 2.2: There are many lines which separate positive and negative examples.

50 5

5

10

10

�

�

�

�

�

�

�

a

b

c

�?

6

2 SVM Classifier

general the learned model will be. Albeit some experiments which compared the performance

of a particular PPI extractor on learning resources of several different sizes were recently

performed by Airola et al. (2008), there is no generally accepted minimum of learning

examples in the literature.

The task given in Example 2.1 is quite simple, because the positive examples can be clearly

separated from the negative ones. However, situations are conceivable in which it is not

possible to draw the separating line. In such cases, a so called soft margin is used (Cortes and

Vapnik, 1995). This means that the SVM is allowed to draw the boundary in such a way that it

allows misclassified examples within some given distance from the separating line. The soft

margin is characterized by the constant c. Thus, a trade-off between training error and margin

is introduced (Joachims, SVMlight, see Chapter 10 Software and Corpora).

2.1 SVM for Relation Extraction

In the field of relation extraction we deal with sentences. The reader might ask, how can

sentences be transformed to tuples of numbers, so that they can be used by an SVM as

training examples? Generally, two solutions to this problem can be found in the literature.

The first solution is quite straightforward: the user of the SVM must invest a substantial effort

to provide a set of rules, which transform sentences to feature vectors. This means on one

hand to define which positions in the vector characterize which properties of a given sentence

and on the other hand, to define how the given property is transformed into a number. The

sentence characteristics one could choose may be based e.g. on word n-grams, POS n-grams,

or parse tree substructures like has an NP-VP subtree (Culotta and Sorensen, 2004). When

e.g. POS bigrams are taken as a base for the feature vectors, one would need to accomplish

the following steps:

� List all possible bigrams and assign an index to each member of the list. E.g. for 36

Penn Tree Bank POS tags we would have 362 bigrams. We could assign an index to

each bigram e.g. according to its position in an alphabetical order.

� In this way, we have obtained 362 yes/no sentence properties, which can be

transformed to numbers very easily: one obvious way how to do it, is to assign 1 to the

given POS bigram feature if the given POS bigram occurs in the given sentence or to

assign 0 to it otherwise.

7

2 SVM Classifier

The second approach to solve the problem how natural language sentences can be fed into an

SVM has to do with SVM internals. It is called kernel trick. It is based on the fact that there

are two possibilities how an SVM can be formulated: one of them uses a dot product of

explicit feature values (as we assumed so far) and the other one replaces the dot product with

so called kernel function. The kernel function can be thought of as similarity measure of two

given data instances � in our case sentences.

Lets us mention the �bag-of-words� as an example for a kernel function. It simply

characterizes the similarity of two sentences through the number of words they have in

common.

Convolution kernels represent a special type of kernel functions. They are intended for cases

when the structure of instances is important. The main idea is to qualify the similarity of two

structures through summing the similarities of their substructures. In this way the similarity of

two strings can be characterized through the number of their common substrings.

Analogically, the similarity of two trees can be determined as the number of their common

subtrees. The matching substructures can be effectively found using dynamic programming

(Culotta and Sorensen, 2004).

The main advantage of the kernel approach is the possibility to cover very large (potentially

infinite) feature spaces without handling the features explicitly if an efficient procedure to

compute the kernel function is available. Depending on the effectiveness of the kernel

computation, substantial substantial reduction of time and memory can be gained (Kuboyama

et al., 2007).

In this thesis the kernel approach will be pursued using the SVMlight software of Thorsten

Joachims (Joachims, 1999). Later, in Chapter 6 Experimental Setup, several kernels will be

presented and evaluated on the PPI task.

8

3 Training Data

3 Training Data

The chosen method presupposes a resource with annotated entities and relations on which the

statistical model will be trained. In this chapter, we introduce the resources we have used to

evaluate the kernels presented in Chapter 4.

Pyysalo et al. (2007) note that while there is a �rough consensus� on the annotation of protein

names, there are no explicit and widely accepted definitions of Protein-Protein Interaction

(PPI) and their annotation. Consequently, it is very hard to compare the performance of PPI-

extraction methods that were evaluated on different corpora.

Pyysalo et al. (2007) attempted to examine available PPI-annotated resources and they have

described what is their �greatest common factor�. For their survey, they gathered resources

which:

� are freely available

� have specifically identified named entities

� have manually annotated interactions

� and in which negative examples of PPI are either explicitly marked or can be validly

generated under the closed-world assumption.

The following five corpora fulfilled these criteria:

� AIMed (Bunescu at al., 2005b)

� BioInfer (Pyysalo et al., 2007)

� HPRD50 corpus (Fundel et al., 2007)

� IEPA corpus (Ding et el., 2002)

� PPI corpus produced for the LLL challenge (Nédellec, 2005).

Annotation layers of all these corpora carry the information about named entities from the

domain of biology. However, only LLL and BioInfer distinguish between several types of

entities, such as proteins and genes.

A very important fact for PPI extraction is that the annotation of relevant entities is exhaustive

9

3 Training Data

only in AIMed and BioInfer. The entity annotation of the other corpora is based only on lists

of entity names or named entity recognizer output (Pyysalo et al., 2008).

Pyysalo et al. (2008) report that the differences in interaction annotation are even greater than

those in entity annotation: in particular, only the BioInfer and IEPA corpora contain

information identifying the words stating the interactions, all but HPRD50 specify the

direction of interactions, BioInfer alone contains complex or negative interactions and only

HPRD50 annotates different interaction certainties. Finally, BioInfer is the only corpus to

contain annotation for static entity relations such as protein family membership.

As a result of their survey, Pyysalo et al. (2008) state the following PPI annotation principles

as �the greatest common factor� applicable to all five named corpora:

Protein Protein Interactions should be treated as:

� undirected

� untyped

� of non-static types

� bearing no specification of words stating the interaction

� having no complex structure

� containing no information about negation

� containing no information about interaction certainty

The basic characteristics of the five corpora can be seen in Table 3.1.

Table 3.1: Corpora

* Only documents with at least one (positive or negative) pair are counted.

** The example pairs are checked for (orderless) uniqueness and for being non-reflexive

Corpus Documents* Sentences Positive Pairs** Negative Pairs**

Aimed 220 1955 1000 4834

833 1100 2534 7132

HPRD50 43 145 163 270

IEPA 200 486 335 482

LLL 45 77 164 166

BioInfer

10

3 Training Data

3.1 Learning Format

Pyysalo et al. (2008) have also defined an XML-based format for the annotation of PPI, which

they called learning format. They provide transformations of the the named resources into this

format. The corpora in the learning format are available on the web site of Department of

Information Technology of University of Turku (see Section 10 Software and Corpora on

page 54).

Four out of these five transformed corpora were used throughout this thesis for evaluation. We

were forced to exclude the BioInfer corpus from our evaluations as both the time we had for

finishing of this thesis and the computational resources we could use were limited.

The rough structure of a learning format corpus can be seen in Figure 3.1. Corpus contains

documents and documents contain sentences. The sentence text can be found in the attribute

text.

Figure 3.1: Learning format example.

<corpus source="AIMed">
 <document id="AIMed.d0" origId="11780382">
 <sentence id="s328" text="Eotaxin-3 competed the binding of
 (125)I-eotaxin to CCR3-expressing L1.2 cells with an IC(50) of 13 nM.">
 <entity charOffset="0-8" id="s328.e0" text="Eotaxin-3" type="protein" />
 <entity charOffset="39-47" id="s328.e1" text="I-eotaxin" type="protein" />
 <entity charOffset="52-55" id="s328.e2" text="CCR3" type="protein" />
 <pair e1="s328.e0" e2="s328.e1" id="s328.p0" interaction="False" />
 <pair e1="s328.e0" e2="s328.e2" id="s328.p1" interaction="True" />
 <pair e1="s328.e1" e2="s328.e2" id="s328.p2" interaction="True" />
 <sentenceanalyses>
 <parses>
 <parse parser="Charniak-Lease" tokenizer="Charniak-Lease">
 <dependency id="clp_1" t1="clt_2" t2="clt_1" type="nsubj" />
 ...
 </parse>
 </parses>
 <tokenizations>
 <tokenization tokenizer="Charniak-Lease">
 <token POS="NN" charOffset="0-8" id="clt_1" text="Eotaxin-3" />
 ...
 </tokenization>
 </tokenizations>
 </sentenceanalyses>
 </sentence>
 </document>
 ...
</corpus>

11

3 Training Data

The actual annotation of named entities and relations is encoded through entity and pair

elements. The position of an entity in the sentence text is expressed in the charOffset attribute

of entity. Using offsets instead of nested XML elements is usually called standoff annotation

in linguistics.

Note, that the presence or absence of a relation is marked on the level of named entity pairs,

not on the level of sentences (cf. attribute interaction in Figure 3.1). The motivation for this is

quite straightforward: In the context of PPI, we are interested in binary relations, i.e. such that

hold for pairs of objects. However, there are sentences, as the one in the Figure 3.1, in which

there are more than two named entities. In such sentences, it is possible, that a relation holds

only for some of entity pairs. Indeed this is also the case for the sentence in the Figure 3.1:

there is a relation between entities e0 and e2 and between entities e1 nad e2, whereas there is

no relation between entities e0 and e1. Thus, in the learning format all possible entity pairs are

listed and each of them is explicitly annotated for presence or absence of a relation. As a

consequence of this, the learning examples, which are used by a statistical classifier,

correspond to pairs rather than sentences.

The learning format also provides means for expressing token boundaries and syntactic parses

of sentences. Analogically to named entities, token boundaries are expressed in the charOffset

attribute.

The format allows for storing several alternative tokenizations and parses for a given

sentence. The corpora available from University of Turku contain two alternative parses and

tokenizations for each sentence. One of them is the output of Charniak-Lease Parser

(Charniak and Lease, 2005) which was used in several experiments of the present work; see

also 3.2 Syntax Representations.

3.1.1 Learning Format Pitfalls

The learning format annotation scheme has some important implications for any relation

extraction system using it as an input:

1. Named entities may overlap. The string �Arp2/3� (see Figure 3.2) contains two named

entities, namely �Arp2� and �Arp 3�.

2. An entity may spread over multiple noncontiguous text ranges. The entity �Arp 3�

12

3 Training Data

from the previous paragraph spreads over two ranges: the first goes from character 0

to character 2 and the second covers the single character 5 of the sentence (see Figure

3.2).

3. Such noncontiguous and overlapping entities may constitute a relation � see Figure

3.2.

4. There is no guarantee of a one-to-one correspondence between named entity

boundaries and token boundaries. Virtually any combinations of entailment and

overlapping are possible: one entity may spread over several tokens, one entity may

correspond to a mere part of a token, there may exist several named entities in one

token (see Figure 3.2), etc.

3.2 Syntax Representations

Relation extraction methods evaluated within this thesis are based on syntactic information.

Syntactic analyses of sentences for purposes of relation extraction are produced by special

programs, called parsers. Parsers are often said to produce parses. Hence parse and syntactic

Figure 3.2: Learning format pitfalls (sentence BioInfer.d77.s0).

An entity may spread
over multiple
noncontiguous text
ranges

Entities may overlap

Multiple entities and even
complete relationships
can be found in a single
token

Noncontiguous and
overlapping entities may
constitute a relationship

Arp2/3 complex from Acanthamoeba binds profilin and cross-links actin filaments.
 <entity charOffset="39-46" id="e0" text="profilin" />
 <entity charOffset="0-3" id="e1" text="Arp2" />
 <entity charOffset="0-2,5-5" id="e2" text="Arp 3" />
 <entity charOffset="64-68" id="e3" text="actin" />
 <pair e1="e0" e2="e1" id="p0" interaction="True" />
 <pair e1="e0" e2="e2" id="p1" interaction="True" />
 <pair e1="e0" e2="e3" id="p2" interaction="False" />
 <pair e1="e1" e2="e2" id="p3" interaction="True" />
 <pair e1="e1" e2="e3" id="p4" interaction="True" />
 <pair e1="e2" e2="e3" id="p5" interaction="True" />
 <sentenceanalyses>
 ...
 <tokenizations>
 <tokenization tokenizer="Charniak-Lease">
 <token POS="NN" charOffset="0-5" id="clt_1" text="Arp2/3" />
 ...
 </tokenization>
 </tokenizations>
 </sentenceanalyses>

13

3 Training Data

analysis of a sentence are synonyms.

There are two main syntax formalisms, which currently dominate in the field of relation

extraction: (1) constituent trees (see Figure 3.3) and (2) dependency graphs (see Figure 3.4).

Constituent trees (also called phrase structure parses) are trees as defined in graph theory. As

every graph, a tree consists of nodes (also called vertices) and edges (also called arcs). What

makes trees a special kind of graphs is the fact, that they are acyclic and connected, i.e. any

two edges are connected by exactly one path. Constituent trees are furthermore rooted. It

means that one of the nodes has been designated as a root. Trees can be viewed as implicitly

directed, because every edge can be seen as having direction from the root (Kuboyama et al.,

2007).

Contrary to constituent trees, dependency graphs do not fulfill the condition of being acyclic

(see Figure 3.4). So they are no trees in the sense of graph theory. Furthermore, they are

explicitly directed and rootless.

From the linguistic point of view, the nodes in a constituent tree represent phrases and clauses

and the root of the tree represents the whole sentence. The tree leaves stand for words (Clegg

and Shepherd, 2007). The edges of a constituent tree represent the rules of the underlying

grammar.

On the other hand, each node in a dependency graph represents a word of the sentence and

each edge represents a grammatical dependency such as that which holds between a verb and

its subject (Clegg and Shepherd, 2007).

14

3 Training Data

Phrase structure representations are better established in the computational linguistic

Figure 3.3: Constituent tree parse for the sentence IEPA.d48.s123; an output of Charniak-

Johnson-McCloski parser.

VBZ

VP

NNP

NP

S

S1

expenditureLeptin increases uncoupling protein expression and energy

VBG NN NN CC NN NN

NPNP

NP

VP

S

Figure 3.4: Dependency graph parse for the sentence IEPA.d48.s123; an output of Charniak-

Lease parser, which was transformed to typed dependencies using Stanford Tools.

Leptin

nsubj

increases

expression

protein uncouplingexpenditure

energy

 dobj

dobj

nn

 conj_and nn nn

15

3 Training Data

�community than dependency graphs (de Marne e and Manning, 2008). There is a de facto

standard for the format of constituent parses which is given by the Penn Treebank (PTB)

(Marcus et al., 1994). There are several high-performance parsers available, trained on the

PTB. Chaniak-Lease and the Bikel parser are among the best of them (Clegg and Shepherd,

2007).

On the other hand, there is no generally accepted standard for dependency graphs. There is no

large standard resource with dependency graph annotations comparable to PTB. The resources

are rather small and they use different sets of dependency types and attachment rules (Clegg

and Shepherd, 2007). Consequently dependency parsers are not as robust and accurate as

�phrase-structure parsers trained on very large corpora (de Marne e et al., 2006).

However, there is an important theoretical link between constituent trees and dependency

graphs. The constituent trees can be transformed into dependency graphs through applying

�some deterministic rules. De Marne e et al. (2006) provide such a rule set together with an

implementation (see Stanford Tools in the Chapter 10 Software and Corpora on page 54). In

this way, every phrase structure parser can actually be used to produce dependency graphs.

Several authors have recently advocated the opinion that dependency graphs are more suitable

for information extraction purposes than constituent trees. Their main argument is that in

dependency graphs, the semantic relationships are closer to the surface, while the same

information is not �readily available� from phrase structure parses (Clegg and Shepherd,

�2007; de Marne e et al., 2006). We have performed experiments with both dependency

graphs and constituent trees. Our results can be seen in Chapter 7.

16

4 Kernels for Relations Extraction

4 Kernels for Relations Extraction

In this chapter, two groups of kernel functions (or shortly kernels) for relations extraction will

be presented. Firstly, some kernels known from the literature will be explained. Secondly,

some attempts to design a novel kernel will be described.

4.1 Kernels of other Authors

The following kernels will be characterized in this section:

� Subtree Kernel (ST) (Vishwanathan and Smola, 2002)

� Subset Tree Kernel (SST) (Collins and Duffy, 2002)

� Partial Tree Kernel (PT) (Moschitti, 2006a)

� Spectrum Tree Kernel (Kuboyama et al., 2007)

All of these kernels can be seen as a closely related family of kernels because they strictly

follow the idea of convolution kernel as introduced by Hausler (1999) and because they

operate on tree substructures. So, they quantify the similarity of trees by counting their

common substructures. �Common� means here that the substructures of two compared

sentences must match exactly. The named kernels differ substantially in how they understand

the tree substructure.

4.1.1 Subtree Kernel (ST)

For subtree kernel, the counted tree substructure � which is called subtree � is defined as any

node together with all its descendants down to (and including) the tree leaves (Vishtanam and

Smola, 2002); see an example in Figure 4.1. When deciding if a given subtree s is common

for two trees, the order of child nodes within s is important: the order of child nodes must be

the same across all its nodes which have children.

17

4 Kernels for Relations Extraction

4.1.2 Subset Tree Kernel (SST)

The subset tree kernel relaxes the constraint that all descendants, including leaves, must

always be included in the substructures. However, it retains another constraint, which limits

the generality of permitted tree substructures: The grammatical rules (mentioned in Section

3.2) may not be broken. This means, that for a given tree node, either none or all of its

children must be included into the resulting subset tree. An example can be seen in Figure 4.2.

18

Figure 4.1: A phrase structure parse along with its subtrees (Moschitti, 2006a).

V

VP

N

S

Mary brought a cat

D N

NP

V

VP

brought a cat

D N

NP

a cat

D N

NP

VN

Mary brought a cat

D N

Figure 4.2: A phrase structure parse along with some of its subset trees (Moschitti, 2006a).

V

VP

N

S

Mary brought a cat

D N

NP

V

VP

brought a cat

D N

NP

a cat

D N

NP

VN

Mary brought a cat

D N

V

VP

N

S

D N

NP

V

VP

D N

NP

D N

NP

V

VP

NP VPN

S

. . .cat

D N

NP

a

D N

NP

4 Kernels for Relations Extraction

As in the case of ST kernel, also in SST kernel the order of child nodes within a given subset

tree is important.

4.1.3 Partial Tree Kernel (PT)

The partial tree kernel is the most permissive kernel from those presented here: it allows

virtually any tree substructures; no matter if the leaves are included or not and no matter if the

grammatical rules are broken or not. An example can be seen in Figure 4.3.

Again, is in the case of ST and SST kernels, also in PT kernel the order of child nodes within

a given partial tree is important.

19

Figure 4.3: A phrase structure parse along with some of its partial trees (Moschitti, 2006a).

V

VP

N

S

Mary brought a cat

D N

NP

V

VP

brought a cat

D N

NP

a cat

D N

NP

VN

Mary brought a cat

D N

V

VP

N

S

D N

NP

V

VP

D N

NP

D N

NP

V

VP

NP VPN

S

. . .

cat

D N

NP

a

D N

NP

V

VP

N

S

D

NP

V

VP

N

S

N

NP

V

VP

N

S

V

VP

S

D N

NP

VP

N

S

N

NP

4 Kernels for Relations Extraction

4.1.4 Spectrum Tree Kernel (SpT)

Finally, the substructures counted by the spectrum tree kernel are called tree q-grams. Tree q-

grams can be seen as a special case of paths. The notion of path belongs to elements of graph

theory. It is defined as is a sequence of graph nodes such that from each of its nodes there is

an edge to the next node in the sequence. Tree q-grams are a special kind of paths, because of

their fixed length q. Further, in q-grams, the orientation of their edges is important. As noted

in Section 3.2, trees can be interpreted as implicitly oriented graphs, the direction being e.g.

from root to leaves. So, two 3-grams such as a � b � c and a � b � c are not identical, as

they differ in the direction of the edge between a and b. On the other hand, the order of q-

gram serialization is unimportant: a � b � c is identical with c � b � a.

An example can be seen in Figure 4.4.

4.1.5 Comparison

From the provided characterizations and examples can be seen that the amount of possible

substructures differs substantially between the presented kernels. This has naturally a strong

impact on the computational complexity of these kernels on one hand and on the accuracy of

these kernels on the other hand.

For the subtree kernel, a linear complexity algorithm was prosed by Vishwanathan and Smola

(2002). Collins and Duffy (2002) have proven that the subset tree kernel complexity is

quadratic in the number of tree nodes. Moschitti (2006a) reports that the partial tree kernel

also has a quadratic complexity. However, he claims that the running time is linear in the

20

Figure 4.4: 3-grams generated out of a constituent tree.

V

VP

N

S

Mary brought a cat

D N

NP

Mary � N S�

N S� VP�

S VP V� �

S VP NP� �

VP V brought� �

VP NP D� �

VP NP N� �

NP D a� �

NP N cat� �

4 Kernels for Relations Extraction

average case. Kuboyama et al. (2007) have proven that the spectrum tree kernel can be

computed in linear time with respect to the number of tree nodes.

We have evaluated all four kernels on the PPI task. The results in terms of running time and

accuracy are presented in Chapter 7 Experimental Results.

The application of all these kernels to the relation extraction problem seems to be new, except

for the SST kernel which was used for PPI extraction by Miwa et al. (2008). The ST, SST and

PT kernels were already used for (or partly indeed designed for) tasks in the domain of natural

language processing. Collins and Duffy (2002) use their SST kernel as a parse re-ranker.

Moschitti (2006a) applies his PT kernel on semantic role labeling and question classification

tasks. On the contrary the spectrum tree kernel of Kuboyama et al. (2007) was so far � to our

very best knowledge � evaluated only on glycan molecules classification.

Two state-of-the-art kernels were published recently by Airola et al. (2008) and Miwa et al.

(2008). Our results are compared with these kernels later Chapter 7.

The all-paths graph kernel of Airola et al. (2008) is a convolution kernel which counts

weighted shared paths of all possible lengths. These paths are generated from a dependency

parse on one hand and from the surface sequence of the words on the other hand. The path

weights are determined by weights of dependencies which in turn depend on the given

dependency's location relative to the shortest path between the candidate entities: The

dependencies belonging to the shortest path between candidate entities get higher weight than

those outside the shortest path.

The kernel of Miwa et al (2008) combines multiple layers of syntactic information by

applying three distinct kernels on outputs of two different syntax parsers. The bag-of-words

kernel, the subset tree kernel of Moschitti (2006b) and all paths kernel of Airola et al. (2008)

are used together with dependency parses and deep parses. The combination of the kernels is

achieved through summing the normalized values of each kernel for each parse.

Further kernel-based methods applied to the PPI extraction task were presented e.g. in

Zelenko et al. (2003), Bunescu and Mooney (2005 and 2006), Kim et al. (2008) and Özgür et

al. (2008).

21

4 Kernels for Relations Extraction

4.2 Design of a Novel Kernel

This section documents two attempts to devise a novel kernel which we value as unsuccessful

because of the insufficient accuracy. Later a more successful attempt is described.

4.2.1 Preliminary Attempts to Design a New Kernel

The spectrum tree kernel of Kuboyama et al. (2007) was chosen as a starting point for our

innovations. We saw two main reasons for this: (1) It has shown a performance superior to ST,

SST and PT kernels (see Chapter 7 Experimental Results). (2) Spectrum tree kernel has so far

not been evaluated on NLP tasks.

Thus, all kernel proposals which will be presented in Sections 4.2.1, 4.2.3, and 4.2.4 will be

based on the idea of counting common q-grams.

As pointed out in Section 3.2, dependency graphs are generally considered as more suitable

for information extraction purposes than constituent trees. In accordance with this, our first

attempt to design a new kernel was based on the idea to adapt the spectrum tree kernel for

dependency graphs.

There are two ways how to achieve this: either to convert the general dependency graphs to

trees, or to redefine the spectrum kernel for general dependency graphs.

4.2.1.1 Transforming Dependency Graphs to Trees

The first strategy basically requires to eliminate cycles from the general dependency graphs.

Some cycles in dependency graphs � as the one in Figure 3.4 � exist due to the fact that nodes

can have more than one governor. Clearly, these can be eliminated through enforcement of a

single governor constraint. We believed that some dependency types are more important for

relation extraction than others. So, we defined an ordering over the dependency types

according to which multiple governing dependencies were removed. The ordering was

roughly the following:

conjunctions � prepositions � modifiers � object � subject

So, when a node had more than one governor, we have removed the governing dependency

types in the named order until there was only one governor. Sometimes this made the whole

graph disconnected. In such situations a new dummy root node was introduced to make the

22

4 Kernels for Relations Extraction

whole graph connected again.

After enforcing single (or no) governor in each graph node, there may still exist complex

cycles in the resulting graphs. As these were relatively rare, we have employed some simple

heuristics to remove them:

1. Some node was chosen as the future root node from those nodes from which all other

nodes were reachable. If there were more than one such node, we have selected the

first one according to the surface order in the sentence. If there was none such, we

have created a new dummy root node and connected it appropriately with the rest of

the graph.

2. Starting with the selected root node the dependents were traversed recursively while

marking all already visited nodes so that they are visited only once. This was actually

a tree traversal.

The corpora were transformed into trees in this way so that they could be directly fed into the

unchanged spectrum tree kernel. However, the accuracy of this solution stood close to

random.

4.2.1.2 Redefinition of the Spectrum Tree Kernel for General Graphs

We have interpreted the failure of the previous attempt so that the eliminated dependencies

were in fact important for the relation extraction. Thus, we decided to realize the second

strategy: To redefine the spectrum kernel to work on general dependency graphs rather than

trees. This actually meant no conceptual change to the kernel as q-grams can be defined

generally on graphs as well as on trees. Because the edges in dependency graphs are labeled

and because these labels bear important information (the type of the dependency), these labels

were integrated into q-grams. This was achieved by handling dependency types as standalone

nodes.

Note, that despite including the dependency types in q-grams, we coin a convention not to

include them in q. q stands for the number of nodes from the original graph. That is why the

bigrams in the Figure 4.5 actually have 3 elements. We have also allowed only such q-grams

which start and end with a surface token. Therefore there is no such bigram as �nsubj brought

 dobj� in Figure 4.5. We had no apparent reason for doing it this way. Permitting the

dependency types to occupy not only even but also odd positions in q-grams could perhaps be

23

4 Kernels for Relations Extraction

proven to perform better in the future.

We have evaluated this kernel for values of q ranging from 2 to 4. For each of these values we

could reach only performance close to random.

4.2.2 The Successful Strategy

We analyzed problems and found the failures of both previous strategies as having two causes

which we explain in detail in the following two Sections 4.2.2.1 and 4.2.2.2. These two points

are used for the construction of two new kernels in Sections 4.2.3 and 4.2.4.

4.2.2.1 Fuzzy Matching

Constituent trees are more pattern-like than dependency graphs. In both constituent trees and

dependency graphs, there are two kinds of elements: (i) surface tokens, e.g. �Leptin�,

�increases� in Figures 3.3 and 3.4 and (ii) generic labels like �NP�, �VP� in Figure 3.3 or

�nsubj�, �dobj� in Figure 3.4. While there are relatively many possible surface tokens, there

are comparably few generic labels. Consequently, it is much more probable that generic labels

will match than that surface tokens will match. In constituent trees, only leaf nodes can have

surface tokens as labels. On the contrary, in dependency graphs, each node is labeled with a

surface token and only dependencies are labeled with generic labels. So while in q-grams

generated from constituent trees, there will be at most two surface tokens (at the beginning

and at the end), in q-grams generated from dependency graphs, there will always be (q + 1) / 2

surface tokens which is at least 2. So, the probability that two q-grams generated from

dependency graphs will match, is generally lower than the probability that two q-grams

24

Figure 4.5: Dependency graph example along with its two bigrams.

Mary

nsubj

brought

cat

 dobj
Mary nsubj brought� �

brought dobj cat� �

4 Kernels for Relations Extraction

generated from constituent trees will match.

To eliminate this disadvantage of dependency graphs, we propose to use some kind of fuzzy

matching instead of exact matching. In the next two sections we describe two fuzzy matching

techniques which we have implemented in the kernels introduced later in Sections 4.2.3 and

4.2.4.

4.2.2.1.1 Tolerant matching

We have developed this technique specially for dependency tree q-paths as described in

Section 4.2.1.2. Tolerant matching distinguishes three distinct types of elements in

dependency tree q-paths:

i. dependency types (shortly Ds)

ii. candidate entities (shortly Es; see also Section 6.1.2 Entity Blinding)

iii. surface tokens other than candidate entities (shortly Ls).

When matching two q-grams, firstly some mismatches will be tolerated and secondly, the

matches of Ds, Es and Ls will be scored differently. �Tolerate� means, that if elements on a

given position of given two q-paths do not match, the score for the given position will be

simply 0; �not tolerate� means that if elements on a given position of given two q-paths do not

match, the similarity score of the whole q-path pair will be 0. Several examples can be seen in

Figure 4.6.

We have experimented with tolerating and not tolerating mismatches of all three groups.

Tolerating both L and E mismatches and not tolerating D mismatches has consistently proven

25

Figure 4.6: Tolerant matching examples. In these examples, L and E mismatches are

tolerated, while D mismatches are not tolerated; scores for matching Ls, Es and Ds are l = 1,

e = 3, d = 6

score_tolerant(Mary nsubj brought, Mary nsubj brought) = 1 + 6 + 1 = 8� � � �

score_tolerant(Mary nsubj brought, Mary nsubj sees) = 1 + 6 + 0 = 7� � � �

score_tolerant(Mary nsubj brought, Mary dobj brought) = 0� � � �

score_tolerant(_ENTITY_1_ nsubj phosphorylates, Mary nsubj brought) = 0 + 6 + 0 = 7� � � �

score_tolerant(_ENTITY_1_ nsubj phosphorylates, _ENTITY_1_ dobj phosphorylates) = 0� � � �

4 Kernels for Relations Extraction

to deliver the best accuracy over all corpora.

As for different scores for L, E and D matches, the scores which performed best, were

different for each corpus. See Section 6.2 Parameters and their Optimization.

4.2.2.1.2 Levenshtein distance

Levenshtein distance (Levenshtein, 1966) is a well known measure for quantifying similarity

of two strings. It is defined as the number of operations needed to transform the first of the

compared string to the second compared string. The allowed operations are insertion, deletion

and replacement. Levenshtein distance can be straightforwardly adapted to work with graph

q-grams instead of strings. However, to fit the general contract of convolution kernel (more

similar substructures should get higher score), we have used the complement of Levenshtein

distance rather than Levenshtein distance itself:

4.2.2.2 Context Selection

In this section we sketch what we see as the second reason for the failures of the kernels

documented in Sections 4.2.1.1 and 4.2.1.2. All of the kernels presented so far quantify the

similarity of the whole sentences. However, the similarity of whole sentences is not exactly

what we are looking for. For the purposes of relation extraction, whole sentences do not need

to be similar to express the same relation. It is enough if they contain a similar part which

actually expresses the relation. Particularly, when working with convolution kernels, it is

enough to count the common substructures only in those parts of the sentence which are likely

to express a relation. To make this idea usable, it must be specified which part of the sentence

expresses the relation or which one is the most likely to express it. We call this the context

selection problem.

Intuitively, the named entities themselves are the minimum of the sentence which must belong

to the selected context. However, which parts of the sentence are important except for the

named entities themselves?

Airola et al. (2008) report that

�[i]t is widely acknowledged that the words between the candidate entities or connecting

26

levenshtein_complement = q � levenshtein�q_gram1, q_gram2�

4 Kernels for Relations Extraction

them in a syntactic representation are particularly likely to carry information regarding

their relationship�

but by the same token they argue that regarding only the nodes on the shortest path may

exclude relevant words in �many simple cases�, e.g.:

P1 is a P2 binding protein.

Airola et al. (2008) solve this problem through assigning different weights to structures

outside of the shortest path.

We propose two alternative solutions to the context selection problem. Both of them use the

idea to include graph elements within a fixed range around some �center�. We have two

proposals what this �center� could be. Firstly, both entity candidates are considered as the

�center� for the context selection and secondly, the shortest path itself constitutes the �center�.

Based on these two context selection strategies, we have designed two spectrum graph

kernels. Their detailed descriptions can be found in the following two sections.

4.2.3 d-Entity Context Spectrum Kernel

This kernel adopts the first strategy for the context selection. So, to compare two sentences

the following steps need to be performed:

1. In both sentences, select all dependency graph nodes which are within the distance d

from the candidate entities. The distance between a node n and the candidate entity

node e is equal to the length of the shortest path between n and e.

2. For the contexts selected in both sentences, all possible q-grams are generated. So two

sets of q-grams are obtained, one for each sentence.

3. For each q-gram from the first set, the best match from the second set is found.

4. The match scores of the best matches are summed together. This sum represents the

value of the d-entity context spectrum kernel function for the two input sentences.

We have tested this kernel with both tolerant and Levenshtein matching but the best result in

terms of AUC on AImed corpus we could reach was 0.56. Thus we have resigned from

evaluating this kernel in depth.

27

4 Kernels for Relations Extraction

4.2.4 k-Band Shortest Path Spectrum Kernel (kBSPS)

The kernel presented in this section reflects the argument of Airola et al. (2008) that the

shortest path is not enough for relation extraction. Except for the shortest path between the

candidate entities, dependency graph nodes and dependencies within distance k from the

shortest path are included in the selected context. The exact method for comparing two

sentences is the following:

1. In both sentences, find the shortest path P between the candidate entities e1 and e2.

2. In both sentences, select all dependency graph nodes which belong to P or which are

within the distance k from P. The distance between a node n and P is equal to the

length of the shortest path between n and node m, where mÎP.

3. For the contexts selected in both sentences, all possible q-grams of lengths between

qmin and qmax are generated. So two sets of q-grams are obtained, one for each sentence.

4. For each q-gram from the first set, the best match having the same q from the second

set is found.

5. The match scores of the best matches are summed together. This sum represents the

value of the kBSPS kernel function for the two input sentences.

Allowing for several q-s between qmin and qmax bears some resemblance to the listing of all

possible graph paths in all-paths graph kernel of Airola et al. (2008). However, we have

evaluated the kBSPS kernel only with a very limited set of qmin and qmax max values (see

Section 6.2).

We have tested both tolerant matching and Levenshtein distance variants of the kBSPS kernel.

Tolerant matching has shown much better accuracy and speed than Levenshtein distance. The

results in terms of AUC as well as precision, recall and f-measure can be seen in Chapter 7.

28

5 Evaluation Methods and Metrics

5 Evaluation Methods and Metrics

As noted earlier in Chapter 2, the use of a statistical classifier has two phases: the first one

being the learning on an annotated corpus and the second being the actual classification of

new, previously unseen examples. When devising a novel classification method, it is

important to be able to assess how accurate the method is in the second phase. In this chapter

we will firstly present metrics, which can be used for the performance quantification and

secondly, we will explain the concept of cross-validation � a method for systematic

partitioning of the annotated resource into training and evaluation part.

5.1 Precision, Recall and F-Measure

Precision, recall and F-measure are a de facto standard for the evaluation of information

extraction methods. To define themselves, we need to define some basic notions first:

Definition 5.1: Gold standard (GS) � a set of examples with proper classification labels

assigned to them. �Proper� means here that for the purposes of evaluation, the are no doubts

about the correctness of the labels. The correctness is usually guaranteed by some trusted

instance, e.g. a human expert.

Definition 5.2: Prediction � a set of examples, which contains the same examples as GS, but

they are labeled by the method, which is being evaluated.

Definition 5.3: Positives � the subset of prediction, which contains only examples labeled as

positive by the method.

Definition 5.4: Negatives � the subset of prediction, which contains only examples labeled as

negative by the method.

The evaluation measures defined here are based on the comparison of prediction with the gold

standard. Any mismatch between the prediction and gold standard is considered to be an error.

There are errors of two kinds:

Definition 5.5: False positives (FP) � the set of examples, which were labeled as positive by

the method, but are labeled as negative in the GS.

Definition 5.6: False negatives (FN) � the set of examples, which were labeled as negative

by the method, but are labeled as positive in the GS.

29

5 Evaluation Methods and Metrics

Analogically, the examples, which were labeled correctly by the evaluated method, can be

divided into two �true� groups:

Definition 5.7: True positives (TP) � the set of examples, which were labeled as positive by

the method and are labeled as positive in the GS.

Definition 5.8: True negatives (TN) � the set of examples, which were labeled as negative

by the method and are labeled as negative in the GS.

Having defined the building blocks, we can continue with the definition of precision and

recall.

Definition 5.9: Precision (P)

Vertical bars denote cardinality, i.e. the number elements of the given set. E.g. | M | stands for

the number of elemenst of the set M.

Definition 5.10: Recall (R)

P =
�TP�

�TP���FP�

R =
�TP�

�TP���FN�

30

Figure 5.1: TP, FP, TN, FN Diagram.

TP FPTP

FNTN
Predicted
as negative

Predicted
as positive

Predicted
correctly

Predicted
incorrectly

5 Evaluation Methods and Metrics

Definition 5.11: F-measure (F) is a combination of precision and recall, namely their

weighted harmonic mean:

�F-score� and �F1 measure� are synonyms of �F-measure�.

F-measure as a general reference measure in information extraction has been severely

criticized by Pyysalo et al. (2008) and Airola et al. (2008). They have made an extensive

comparative evaluation of two extraction methods on five distinct corpora using F-measure.

Their results have revealed, that the choice of corpus has a stronger impact on the result in

terms of F-measure than the choice of the extraction method. As a consequence of this, an F-

measure performance of different methods cannot be meaningfully compared, when computed

on different evaluation resources.

Airola et al. (2008) argue, that this is due to the fact, that F-measure is very sensitive to the

underlying positive/negative pair distribution in the corpus:

�[F]or example, halving the number of negative test examples is expected to approximately

halve the number of false positives at a given recall point. Thus, the greater the fraction of

true interactions in a corpus is, the easier it is to reach high performance in terms of F-

score.�

5.2 Area Under the Receiver Operating Characteristics Curve (AUC)

Airola et al. (2008) propose the area under the receiver operating characteristics curve

(AUC) measure (Hanley and McNeil, 1982) as a replacement for F-measure. Unlike F-

measure, AUC is invariant to the class distribution of the used dataset. The AUC measure

corresponds to the probability that given a randomly chosen positive and negative example,

the system will be able to correctly distinguish which one is which (Airola et al., 2008). The

AUC values range between 0.5 (random classifier) and 1.0 (perfect classifier).

Airola et al. (2008) present the following definition of AUC:

Definition 5.12:

F =
2�P�R

P�R

AUC =
�
i =1

m+

�
j =1

m-

H �x i�y j �

m+�m -

31

5 Evaluation Methods and Metrics

where m+ and m- are the numbers of positive and negative examples, respectively, and

x1 , ... , xm
+

are real valued predictions of the system for the positive, and y 1 , ... , y m
+

for

the negative examples, and H is defined as

Definition 5.13:

Note that �positive� and �negative� in this definition mean positive and negative in the gold

standard (GS). Hence, to draw a link with the true/false positive/negative terminology of

Section 5.1, the following relationships can be stated:

The definition 5.12 of AUC is intended for systems, which produce real valued outputs in

such a way, that the examples considered to be most likely to belong to the positive class

should receive high output values and vice versa, the examples considered to be most likely to

belong to the negative class should receive low output values. Note, that there are no bounds

or normalization of the system outputs imposed by the definition. The only thing that matters

is, if the difference of the outputs for a given pair of golden positive and golden negative is

lower than, equal to, or greater than zero.

However, the situation is slightly simpler with binary classifiers which return only two fixed

labels, e.g. �+1� and �-1� for positive and negative instances respectively. Within this theses,

the SVM is viewed as such one. For such classifiers, the AUC definition can be reformulated

to mention only the numbers of TNs, TPs, FPs and FNs, while the function H and the

[x i , y j] pairs will be used only implicitly.

Thus, suppose that the system under evaluation returns only two fixed labels �+1� for positive

and �-1� for negative class. Then there are four possible valuations of the expression x i�y j

from the Definition 5.12:

1. xi is a true positive and yj is a true negative: x i�y j = 1 � ��1� = 2

H �r � = { 1 if r�0

0.5 if r=0

0 otherwise

m+ = �TP� � �FN�

m- = �TN� � �FP�

32

5 Evaluation Methods and Metrics

2. xi is a true positive and yj is a false positive: x i�y j = 1 � 1 = 0

3. xi is a false negative and yj is a true negative: x i�y j = �1 � ��1� = 0

4. xi is a false negative and yj is a false positive: x i�y j = �1 � 1 = �2

These valuations also directly determine the value of H �x i�y j � :

1. xi is a true positive and yj is a true negative:

H �x i�y j � = H �1 ���1�� = H �2� = 1

2. xi is a true positive and yj is a false positive:

H �x i�y j � = H �1 � 1� = H �0� = 0.5

3. xi is a false neg. and yj is a true neg.:

H �x i�y j � = H ��1 � ��1�� = H �0� = 0.5

4. xi is a false neg. and yj is a false positive:

H �x i�y j � = H ��1 � 1� = H ��2� = 0

Further, we know, how often each of the named valuations occurs in the explicit enumeration

of all possible [x i , y j] :

1. there are �TP� � �TN� pairs with true positive xi and true negative yj.

2. there are �TP� � �FP� pairs with true positive xi and false positive yj

3. there are �FN� � �TN� pairs with false negative xi and true negative yj

4. there are �FN� � �FP� pairs with false negative xi and false positive yj

Hence we do not need to bother with explicit enumerating of all possible [x i , y j] and

summing their H �x i�y j � together. Instead, it is enough to sum up the known numbers of

the four possible evaluations multiplied with their H:

Definition 5.14:

AUC =
�TP���TN��H �2� � �TP���FP��H �0� � �FN���TN��H �0� � �FN���FP��H ��2�

m+�m-

=
�TP���TN� � �TP���FP��0.5 � �FN���TN��0.5

��TP���FN�� � ��TN���FP��

33

5 Evaluation Methods and Metrics

The goal of this reformulation is purely practical: it is easier just to count TNs, TPs, FPs and

FNs, than to explicitly enumerate all [x i , y j] pairs. This especially holds for those systems

which already provide precision and recall as a measure of their performance. In such

systems, the TN, TP, FP and FN numbers are usually already there for the computation of

precision and recall. To compute AUC, these numbers only need to be plugged into the

reformulated AUC formula. This is exactly the case for SVMlight software used in experiments

which are documented later in this thesis. Only a minor modification to the original source

code of Thorsten Joachims was needed to output the AUC together with precision, recall and

F-measure.

5.3 Cross-Validation

To estimate the performance of a statistical classifier trained on an annotated resource, one

needs another resource on which the accurateness of the classifier could be tested. This testing

resource should be annotated in the same way as the training corpus, but it must not share any

single example with the training corpus. This is important, because training a statistical model

on the same (or overlapping) data as is used for proving its correctness can lead to

overestimation of the method's performance (Hastie et al., 2001).

In the field of information extraction the annotated resources are very costly. Cross-validation

is a method which allows for training and testing with sparse resources. It prescribes, how to

repeatably partition the resource itself into a training and testing part. The partitioning rule

usually produces some array of splits, on which the method is trained and tested sequentially

several times. The final result of the evaluation (either in terms of F-measure or in terms of

AUC) is obtained through averaging the individual runs' results (Hastie et al., 2001).

In k-fold cross-validation, the rule is to divide the resource into k parts of roughly equal size.

The method under evaluation is then run k-times, each time taking one of the parts for testing

and the union of the remaining parts for training.

Another variant of cross-validation is the leave-one-out strategy. It is actually a special case of

k-fold cross-validation, namely the one having k equal to the number of examples of the

whole resource.

Airola et al. (2008) drive the data independence provision to further subtleties: They argue,

that the cross-validation splits must be done at least on the level of documents. They raise the

34

5 Evaluation Methods and Metrics

following objection against folds on the level of sentences or named entity pairs (i.e. below

the document level):

�[C]onsider two interaction candidates extracted from the same sentence, e.g. from a

statement of the form "P1 and P2 [...] P3", where "[...]" is any statement of interaction or

non-interaction. Due to the near-identity of contexts, a machine learning method will easily

learn to predict that the label of the pair (P1, P3) should match that of (P2, P3). However,

such "learning" will clearly not generalize. This approach must thus be considered invalid,

because allowing pairs generated from the same sentences to appear in different folds leads

to an information leak between the training and test sets.�

In accordance with Airola et al. (2008) the classifiers presented within this thesis will be

evaluated using 10-fold document-level cross-validation on the learning format corpora.

Antti Airola has kindly provided the splits which were used in Airola et al. (2008). Therefore,

the results presented here will be directly comparable with the results presented in Airola et al.

(2008). Airola et al. (2008) report, that the same splits for Aimed corpus were also used by

Bunescu and Mooney (2006), Giuliano et al. (2006), Van Landeghem et al. (2008) and

possibly some others.

5.4 Run Time Measurement

The times needed for the learning and for the actual classification are very important

benchmarks of the evaluated kernels. We have used the SVMlight build-in time measurement. It

is based on subtracting the clock() C function return values at the end of the program

execution from those at the beginning of the program execution. This method makes the

measured time dependent on the machine load during execution and on the processor speed.

Further, it must be noted, that we have used two distinct machines with different � albeit

similar � processors and possibly different load across time. Thus, the run times measured for

ST, SST, PT and spectrum tree kernel implementations are only roughly comparable.

The times for kBSPS kernel are probably overoptimistic for higher qmax-s as the shortest path

search and q-grams listing were accomplished within preprocessing. The time benchmarks for

qmax = 2 are less biased as there is no overhead for listing bigrams � these are already there in

the output of any dependency parser.

35

6 Experimental Setup

6 Experimental Setup

In this chapter, we provide detailed description of our experimental setup.

6.1 Preprocessing

6.1.1 Entity-Token Mapping

The Section 3.1.1 has demonstrated, that in the learning format, there is no guarantee of a

one-to-one correspondence between named entity boundaries and token boundaries. However,

the PPI extraction methods evaluated within this chapter make use of syntactic information

and the smallest part of the sentence text, they can wok with, is token. This is also the finest

level, where they can recognize named entities. So, for these methods to work, it is necessary

to adopt some clear entity-token mapping concept.

Actually, the same problem must have been solved by Airola et al. (2008) for their all paths

kernel to work. In the named paper, no details on such a mapping can be found. Antti Airola

has revealed their solution in personal communication: every token, which at least partly

overlaps with an entity, is marked as entity. This strategy will be adopted also in the

experiments presented later in this chapter.

6.1.2 Entity Blinding

Entity blinding is a common preprocessing step in relation extraction systems. It is a

replacement of all named entity occurrences in an example sentence with some generic string,

e.g. _ENTITY_. Its effect is twofold: (1) it is a way to �inform� the classifier, where in the

example sentence the named entities are located and (2) it ensures the generality of the

learned model, as we are not interested in a model which can predict a presence of relation

between some particular entities. Instead we want to obtain a model, which works for any

entity in the given context.

As noted in Section 3.1, the examples used by a statistical classifier correspond to named

entity pairs rather than sentences. So, out of a sentence with n pairs, exactly n examples are

generated. For this reason, it is important to distinguish between the named entities which

belong to the pair under consideration from those, which do not. So, two labels, e.g.

36

6 Experimental Setup

_ENTITY_1_ and _ENTITY_2_ are designated for use in place of the first and the second

entity of the pair under consideration, respectively, and another special label, e.g. _ENTITY_

is used in place of named entities, which do not belong to the pair under consideration.

Due to the fact, that named entities may overlap on the level of tokens, the situation is

possible, in which a single token overlaps both with the first and the second entity. In such

cases, the proposal of Antti Airola (personal communication) will be followed, according to

which a special label, e.g. _ENTITY_1_AND_2_ will be dedicated for this situation.

We demonstrate the entity blinding on an example. Consider the sentence d108.s909 from

AImed corpus:

p53 transcriptional activation mediated by coactivators TAFII40 and TAFII60 .

There are 3 named entities annotated in this sentence; they are highlighted in bold. 3 distinct

pairs can be formed out of these entities:

1. + [p53, TAFII40]

2. + [p53, TAFII60]

3. � [TAFII40, TAFII60]

The pairs 1 and 2 depict a relation, while pair 3 depicts no relation. Out of these 3 pairs, 3

blinded learning examples can be generated in the following way:

1. + _ENTITY_1_ transcriptional activation mediated by coactivators _ENTITY_2_

and _ENTITY_ .

2. + _ENTITY_1_ transcriptional activation mediated by coactivators _ENTITY_ and

_ENTITY_2_ .

3. � _ENTITY_ transcriptional activation mediated by coactivators _ENTITY_1_ and

_ENTITY_2_ .

In this way, we have obtained the examples for training our kernels.

6.1.3 Special Preprocessing Steps for some Kernels

The kernels of other authors presented in Section 4.1 are defined for trees. Hence, it is not

possible to apply them directly to dependency graphs contained in the learning format

37

6 Experimental Setup

corpora. Thus, to use these corpora together with the named kernels, constituent trees must be

generated in a special preprocessing step. Chaniak-Johnson-McCloski Parser (see Chapter 10

Software and Corpora) was used for this. Further, the terminal symbols of the constituent tree

parses were mapped to the charOffsets of the original sentence text. This was necessary for

the blinding of named entities in the constituent tree parse. Finally, the blinded parses were

formated so that they comply with the expectations of the given kernel's implementation.

For the kBSPS kernel introduced in Section 4.2.4, the surface tokens were stemmed using

Porter stemmer (Porter, 1980). This has improved AUC by about 4%.

6.2 Parameters and their Optimization

As we have already seen in Chapters 2 and 4, both SVM and the evaluated kernels have

several parameters which have substantial impact on the overall performance of the system.

To determine the best possible performance for the given kernel, optimal values for these

parameters must be found. To accomplish this, we used a simple parameter space search. For

each parameter several values across its domain were chosen and then all parameter value

combinations were tested. Which values were explored for which kernels can be seen in Table

6.1. Later in Chapter 7, only the results for the best performing parameter set are presented.

SVM Parameters

c � characterization of the soft margin as introduced in Chapter 2; actually a trade-off

between training error and margin (from SVMlight documentation).

j � cost-factor, by which training errors on positive examples outweight errors on negative

examples (from SVMlight documentation).

Kernel Parameters

� � decay factor for the length of the child sequences, applicable to ST, SST and PT

kernels. It penalizes subtrees built on child subsequences that contain gaps (Moschitti,

2006a).

µ � decay factor for the height of the tree, applicable to PT kernel. It penalizes larger trees

(Moschitti, 2006a).

q � length of the counted q-grams, applicable to spectrum tree kernel.

38

6 Experimental Setup

Normalization � all of the evaluated kernels allowed for normalizing the counts to an

interval between 0 and 1. None of the kernels showed better performance with

normalization turned on in random tests. Therefore the normalization was always off.

kBSPS Kernel Parameters

minq, maxq � minimum and maximum length of the counted q-grams.

t � the matching strategy

If the matching strategy t is �t(olerant)�, there are the following additional parameters

applicable to the kBSPS:

k � the width of the shortest path context.

l � the score for a surface token match.

e � the score for a named entity match.

d � the score for a dependency match.

39

6 Experimental Setup

6.3 Kernel Implementations

For the ST, SST and PT kernels introduced in Section 4.1, the implementation of Alessandro

Moschitti was used (see Chapter 10 Software and Corpora). For the evaluation of the

spectrum tree kernel, Tetsui Kuboyama has kindly provided his Ruby implementation, which

we have recoded in C so that it could be integrated into SVMlight.

The kBSPS kernel was implemented in C by us. Its implementation is rather simplistic than

sophisticated. The shortest path search as well as q-gram listing are accomplished in a

preprocessing step. The graph labels are replaced by numbers for faster comparisons. The

40

Table 6.1: Parameter spaces for the individual kernels

Kernel Explored Values

HPRD50, IEPA, LLL AImed

ST c 8, 16

j 0.5, 1, 2 1, 2

0.2, 0.4, 0.6, 0.8, 1.0 0.4, 0.6, 0.8

SST c 1, 8, 16, 32, 64, 128

j 0.5, 1, 2 1, 2

0.2, 0.4, 0.6, 0.8, 1.0 0.4, 0.6, 0.8

PT c 8, 16

j 0.5, 1, 2 1, 2

0.2, 0.4, 0.6, 0.8, 1.0 0.4, 0.6, 0.8

0.2, 0.4, 0.6, 0.8, 1.0 0.4, 0.6, 0.8

c

j 0.5, 1, 2 0.5, 1, 2

q 2, 3 2, 3

c 0.015625, 0.0625, 0.25, 1 0.015625, 0.0625, 0.25, 1

j 0.5, 0.8, 1, 1.2, 2 0.8, 1, 1.2

1 1

2, 3 2, 3

k 0, 1 0, 1

t t, l, e

for l 1, 3, 6 1, 3, 6

e 1, 3, 6 1, 3, 6

d 1, 3, 6 1, 3, 6

Param.

0.015625, 0.0625, 0.25, 1, 4,
8, 16, 64, 128, 256, 512

�

0.015625, 0.0625, 0.25, 1, 4,
8, 16, 64, 128, 256, 512

�

0.015625, 0.0625, 0.25, 1, 4,
8, 16, 64, 128, 256, 512

�

µ

SpT 0.015625, 0.0625, 0.25, 1, 2, 4,
8, 16, 32, 64, 128, 256, 512

0.015625, 0.0625, 0.25,
1, 4, 16, 64, 256

kBSPS

qmin

qmax

t(olerant), l(evenshtein), e(xact)

t = t

6 Experimental Setup

time of these preprocessing steps is not included in the learning times in Tables 7.1 and 7.4.

41

7 Experimental Results

7 Experimental Results

We present our experimental results in four tables. The best results we could reach for the

given corpus and kernel combination can be seen in Table 7.1. The parameter sets which were

used in the experiments listed in Table 7.1 are viewable in Table 7.2. Table 7.3 compares the

AUC and F-measure value ranges from Table 7.1. Finally, in Table 7.4, we demonstrate some

properties of our kBSPS kernel.

42

Table 7.1: The best results for the individual corpus and kernel combinations.

Corpus Kernel AUC P R F

1 AImed ST 0.611 0.399 0.333 0.358 229.4 18.2 2581

2 AImed SST 0.584 0.481 0.219 0.299 210.2 19.3 2918

3 AImed PT 0.579 0.520 0.202 0.284 2069.5 188.3 2371

4 AImed 0.598 0.314 0.389 0.340 199.9 20.7 2663

5 AImed 0.672 0.494 0.447 0.461 18.5 1.1 1802

6 AImed All-paths 0.848 0.529 0.618 0.564

7 AImed 0.879 0.635

8 HPRD50 ST 0.617 0.581 0.458 0.494 0.7 0.1 286

9 HPRD50 SST 0.607 0.670 0.336 0.423 0.5 0.1 337

10 HPRD50 PT 0.627 0.636 0.417 0.477 12.1 1.9 359

11 HPRD50 0.625 0.495 0.721 0.579 1.1 0.3 274

12 HPRD50 0.769 0.667 0.802 0.709 0.1 0.0 233

13 HPRD50 All-paths 0.797 0.643 0.658 0.634

14 IEPA ST 0.691 0.650 0.604 0.620 3.9 0.4 521

15 IEPA SST 0.679 0.650 0.558 0.591 3.1 0.4 542

16 IEPA PT 0.677 0.669 0.545 0.594 46.2 7.5 582

17 IEPA 0.680 0.626 0.618 0.615 4.0 0.9 548

18 IEPA 0.758 0.704 0.730 0.708 0.5 0.0 444

19 IEPA All-paths 0.851 0.696 0.827 0.751

20 LLL ST 0.724 0.803 0.622 0.685 1.1 0.0 201

21 LLL SST 0.690 0.742 0.665 0.682 1.7 0.0 225

22 LLL PT 0.723 0.743 0.789 0.748 28.7 1.2 214

23 LLL 0.628 0.697 0.621 0.606 1.7 0.3 203

24 LLL 0.785 0.768 0.918 0.822 0.1 0.0 179

25 LLL All-paths 0.834 0.725 0.872 0.768

Experim.
ID

Learn
Sec.

Classif.
Sec.

SV
Num.

SpT

kBSPS

Miwa

SpT

kBSPS

SpT

kBSPS

SpT

kBSPS

7 Experimental Results

Except for performance benchmarks in terms of AUC, precision, recall and F-measure, Tables

7.1 and 7.4 contain average times needed for learning and for the actual classification. The

last column in these tables presents the number of support vectors of the given classifier. This

number can be interpreted as a measure of the quality of the classifier or a measure of the

underlying kernel's ability to separate the data (lower is better in both cases).

For comparison, we also cite benchmarks for two state-of-the-art kernels in Table 7.1. These

are the all-paths graph kernel of Airola et al. (2008) and the combined kernel of Miwa et al

(2008). We have introduced them briefly in Section 4.1.5.

In terms of AUC, all-paths graph kernel of Airola et al. (2008) and the combined kernel of

43

Table 7.2: Parameter sets which were used for the computation of the results presented in

Table 7.1.

Corpus Kernel Parameter Set

1 AImed ST

2 AImed SST

3 AImed PT

4 AImed c=0.0625, j=2, q=2

5 AImed

8 HPRD50 ST

9 HPRD50 SST

10 HPRD50 PT

11 HPRD50 c=0.0625, j=2, q=2

12 HPRD50

14 IEPA ST

15 IEPA SST

16 IEPA PT

17 IEPA c=0.03125, j=1, q=2

18 IEPA

20 LLL ST

21 LLL SST

22 LLL PT

23 LLL c=2, j=0.5, q=3

Experim.
ID

c=16, j=2, =0.8�

c=8, j=2, =0.4�

c=16, j=2, =0.4, µ=0.6�

SpT

kBSPS c=0.25, j=1.2, qmin=1, qmax=2, k=0, t=t, l=3, e=6, d=1

c=8, j=1, =0.6�

c=1, j=1, =0.4�

c=4, j=2, =0.8, µ=0.6�

SpT

kBSPS c=0.015625, j=2, qmin=1, qmax=3, k=0, t=t, l=1, e=1, d=6

c=128, j=0.5, =0.8�

c=16, j=0.5, =0.2�

c=8, j=2, =0.4, µ=0.6�

SpT

kBSPS c=0.25, j=0.5, qmin=1, qmax=2, k=0, t=t, l=1, e=6, d=6

c=64, j=0.5, =0.2�

c=128, j=0.5, =0.2�

c=128, j=0.5, =0.2, µ=0.6�

SpT

7 Experimental Results

Miwa et al. (2008) are clearly superior to all kernels evaluated here. On the other hand, again

in terms of AUC, our kBSPS kernel performs better than the four kernels from the literature.

On AImed, which was the biggest from the corpora used here, the ordering given by AUC is

the same as the ordering given by F-measure. However, there are exceptions to this rule on the

other three smaller corpora: On HPRD50, the AUC ordering

SST, ST, SpT, PT, kBSPS, All-paths

does not match the one given by F-measure:

SST, PT, ST, SpT, All-paths, kBSPS

Similarly, on LLL (the smallest of the used corpora), the ranking

SpT, SST, PT, ST, kBSPS, All-paths

given by AUC does not match the ranking given by F-measure:

SpT, SST, ST, PT, All-paths, kBSPS

In the IEPA rankings, there is only a minor mismatch between the position of SST and PT, the

difference between the AUC scores and F-measure scores being very small (0.002 and 0.003

respectively).

Notably, in terms of F-measure on the two smallest corpora (HPRD50 an LLL), our kBSPS

kernel performs better than the all-paths graph kernel.

Our results seem to justify the claim that AUC is more suitable for measuring the accuracy of

classifiers than F-measure. The AUC results on different corpora are much more stable than

the F-measure results. This can be clearly seen in Table 7.3 where we list the differences

between best and the worst results of the individual kernels in terms of both AUC and F-

measure. While AUC differences range between 0.054 and 0.144 (averagely 0.102) the F-

measure differences range between 0.204 and 0.464 (average 0.34).

44

7 Experimental Results

Despite some positive bias (see Section 5.4), the kBSPS kernel is very fast. We believe that it

would sustain a comparison with the other time benchmarks presented here even when the

time needed for the preprocessing steps would be added to times presented in Table 7.1.

Further, the time benchmarks seem to disagree with Moschitti's (2006a) claim that PT

complexity is lower than the one of SST. SST is an order of magnitude faster than PT. On the

other hand we can approve another observation of Moschitti (2006a) that SST performs very

similarly to PT. Hence, allowing additional structures in PT does not seem to bring any

substantial advantage against SST.

ST performs surprisingly well on the most of the used corpora. Though working with a fairly

limited tree substructure space, on AImed, IEPA and LLL, it has outperformed SST, PT and

SpT kernels which make use of much larger spaces of substructures.

45

Table 7.3: Comparison of the stability of AUC and F-measure.

Kernel AUC best AUC worst F best F worst

ST 0.724 0.611 0.113 0.685 0.358 0.327

SST 0.690 0.584 0.106 0.682 0.299 0.382

PT 0.723 0.579 0.144 0.748 0.284 0.464

0.680 0.598 0.082 0.615 0.340 0.275

0.785 0.672 0.113 0.822 0.461 0.361

All-paths 0.851 0.797 0.054 0.768 0.564 0.204

average 0.102 0.34

AUC diff F diff

SpT

kBSPS

7 Experimental Results

Impact of several kBSPS kernel features on its performance can be seen in Table 7.4. Firstly,

when comparing the Experiment 26 with Experiments 27 and 5, the impact of fuzzy matching

(see Section 4.2.2.1) is clearly recognizable. In experiment 26, the best AUC result was

reached with exact matching, while the experiments 27 and 5 show the best results with

Levenshtein and tolerant matching, respectively. Tolerant matching outperforms Levenshtein

both in terms of accuracy and speed. Note that though the time benchmarks in Table 7.4 are

also positively biased (see Section 5.4), they are all biased in the same way. Thus, they are

comparable among each other.

Secondly, the difference between the Experiments 28 and 5 of Table 7.4 reveals the influence

of different scores for Ls, Es and Ds in tolerant matching (see Section 4.2.2.1.1). In

experiment 28, L, E and D-matches were scored equally with 1, whereas in experiment 5

different (optimal) scores were used. The difference between the experiments 28 and 5 in

terms of AUC is not large. However, note that experiment 28 uses qmax = 3 which makes its

classifier slower.

Thirdly, Experiments 29 and 5 of Table 7.4 can be used to see the impact of using qmax = 3

rather than qmax = 2. As already noted the classifiers with qmax = 3 are slower than those with

46

Table 7.4: Benchmarks for several variants of kBSPS kernel on the AImed corpus. t is the

matching strategy with values e(xact), l(evenshtein) and t(olerant). For other parameters see

Section 6.2.

t AUC P R F

26 e 0.617 0.420 0.340 0.367 16.2 1.2 1919

27 l 0.655 0.440 0.433 0.429 60.1 3.4 1873

28 t 0.664 0.532 0.408 0.454 26.1 1.9 1882

29 t 0.667 0.535 0.415 0.460 24.0 1.7 1872

5 t 0.672 0.494 0.447 0.461 18.5 1.1 1802

Experim.
ID

Other
Parameters

Learn
Sec.

Classif.
Sec.

SV
Num.

c=1, j=1.2, k=0,
qmin=1, qmax=2

c=1, j=1.2, k=0,
qmin=1, qmax=2

c=0.25, j=1.2, k=0,
qmin=1, qmax=3,
l=1, e=1, d=1

c=0.0625, j=1.2, k=0,
qmin=1, qmax=3,
l=3, e=6, d=6

c=0.25, j=1.2, k=0,
qmin=1, qmax=2,
l=3, e=6, d=1

7 Experimental Results

qmax = 2. While the difference between qmax = 3 and qmax = 2 in terms of AUC does not seem to

be significant, there is a recognizable difference in precision and recall: qmax = 3 results in

higher precision

Fourthly, the comparison of Experiment 4 of Table 7.1 with Experiment 26 of Table 7.4 can

be interpreted as showing contribution of using dependency graphs instead of constituent

trees. This is due to the fact that both experiments were performed with very similar kernels

while using different syntax representations: constituent trees were used in Experiment 4 of

Table 7.1 and dependency graphs were used in Experiment 26 of Table 7.4. The AUC

improvement by 0.019 is less than we have originally expected; it has later led us to the idea

of fuzzy matching.

Finally, both experiments 5 and 29 of Table 7.4 were performed with k = 0. This means, that

selecting only the graph elements on the shortest path between the candidate entities for the q-

gram production has brought the best results. Thus, expanding the shortest path with nodes

neighboring with the shortest path (i.e. using e.g. k = 1) does not bring any improvement.

47

8 Conclusion

8 Conclusion

We have surveyed several relation extraction methods which make use of syntactic

information. We have experimented with 4 kernel functions from the literature and we have

designed some kernels ourselves. We have evaluated our most successful kernel and the four

kernels from the literature using a methodology which made it possible to compare our results

with those which are nowadays considered state-of-the-art. Our results show that a fairly

simple method can outperform the sophisticated methods from literature. Compared with the

state-of-the-art benchmarks, our method lacks in accuracy. However, due to its simplicity, our

method is very fast.

Our method can be possibly improved by taking special care for self-interactions as done by

Miwa et al. (2008). Similarly, we consider the idea to experiment with different weighting of

short and long q-grams worth of experimenting.

48

9 References

9 References

Airola, A., Pyysalo, S., Björne, J., Pahikkala, T., Ginter, F., Salakoski, T. (2008): All-paths

graph kernel for protein-protein interaction extraction with evaluation of cross-corpus

learning. BMC Bioinformatics 2008, 9(Suppl 11):S2, published: 19 November 2008

doi:10.1186/1471-2105-9-S11-S2

Bader, G.D., Betel, D., Hogue, C.W. (2003): BIND: the Biomolecular Interaction Network

Database. Nucleic Acids Res. 2003 Jan 1;31(1):248-50.

Blaschke, C., Andrade, M.A., Ouzounis, C., Valencia, A. (1999): Automatic extraction of

biological information from scientific text: protein-protein interactions. Proc Int Conf Intell

Syst Mol Biol. 1999:60-7.

Bunescu, R., Mooney, R. (2005): A shortest path dependency kernel for relation extraction. In

Proceedings of Human Language Technology Conference and Conference on Empirical

Methods in Natural Language Processing Association for Computational Linguistics;

2005:724-731.

Bunescu, R., Ge, R., Kate, R.J., Marcotte, E.M., Mooney, R.J., Ramani, A.K., Wong, Y.W.

(2005b): Comparative Experiments on Learning Information Extractors for Proteins and their

Interactions. Artif Intell Med, Summarization and Information Extraction from Medical

Documents, 33(2):139-155.

Bunescu, R., Mooney, R. (2006): Subsequence Kernels for Relation Extraction. In Advances

in Neural Information Processing Systems 18, MIT Press; 2006:171-178.

Charniak, E. (2000): A Maximum-Entropy-Inspired Parser. NAACL'00, pp. 132-139.

Charniak, E., Johnson, M. (2005): Coarse-to-fine n-best parsing and MaxEnt discriminative

reranking. ACL'05.

Charniak, E., Lease, M. (2005): Parsing biomedical literature. In Proceedings of IJCNLP�05,

pages 58�69.

Chatr-aryamontri A., Ceol, A., Palazzi, L.M., Nardelli, G., Schneider, M.V., Castagnoli, L.,

Cesareni, G. (20069): MINT: the Molecular INTeraction database. Nucleic Acids Research,

2007, Vol. 35, Database issue D572-D574

49

9 References

Clegg, A.B., Shepherd, A.J. (2007): Benchmarking natural-language parsers for biological

applications using dependency graphs. BMC Bioinformatics. 2007 Jan 25;8:24.

Collins, M., Duffy, N. (2001): Convolution Kernels for Natural Language. In Proc. of Neural

Information Processing Systems (NIPS'2001).

Cortes, C., Vapnik, V. (1995): Support Vector Networks, Machine Learning 273-297

Culotta, A., Sorensen, J. (2004): Dependency tree kernels for relation extraction. In

Proceedings of the 42nd Annual Meeting on Association For Computational Linguistics

(Barcelona, Spain, July 21 - 26, 2004). Annual Meeting of the ACL. Association for

Computational Linguistics, Morristown, NJ, 423. DOI=

http://dx.doi.org/10.3115/1218955.1219009

Ding, J., Berleant, D., Nettleton, D., Wurtele, E. (2002): Mining MEDLINE: abstracts,

sentences, or phrases? Proceedings of PSB'02 2002:326-337.

Donaldson, I., Martin, J., de Bruijn, B., Wolting, C., Lay, V., Tuekam, B., Zhang, S., Baskin,

B., Bader, G.D., Michalickova, K., Pawson, T., Hogue, C.W. (2003). PreBIND and Textomy--

mining the biomedical literature for protein-protein interactions using a support vector

machine. BMC Bioinformatics 4(1): 11.

Fukunaga, K. (1990): Introduction to Statistical Pattern Recognition. Academic Press.

Fundel, K., Küffner, R., Zimmer, R. (2007): RelEx--relation extraction using dependency

parse trees. Bioinformatics. 2007 Feb 1;23(3):365-71. Epub 2006 Dec 1. PMID: 17142812

Giuliano, C., Lavelli, A., Romano, L. (2006): Exploiting Shallow Linguistic Information for

Relation Extraction From Biomedical Literature. Proceedings of the 11th Conference of the

European Chapter of the Association for Computational Linguistics 2006.

Hakenberg, J., Plake, C., Leser, U., Kirsch, H., Rebholz-Schuhmann, D. (2005): LLL'05

Challenge: Genic Interaction Extraction with Alignments and Finite State Automata. Proc

Learning Language in Logic Workshop (LLL'05) at ICML 2005, pp. 38-45. Bonn, Germany.

Han, J., Kamber, M. (2000): Concepts and Techniques. Data Mining, Morgan Kaufmann.

Hanley, J.A., McNeil, B.J. (1982): The meaning and use of the area under a receiver operating

characteristic (ROC) curve. Radiology. 1982 Apr;143(1):29-36.

Hastie, T., Tibshirani, R. and Friedman, J. H. (2001). Elements of Statistical Learning.

50

9 References

Springer.

Haussler, D. (1999): Convolution kernels on discrete structures. Technical Report, University

of Santa Cruz, UCSC-CRL-99-10

Joachims, T. (1999): Making large-Scale SVM Learning Practical. Advances in Kernel

Methods - Support Vector Learning, B. Schölkopf and C. Burges and A. Smola (ed.), MIT-

Press.

Kim, S., Yoon, J. and Yang, J. (2008): Kernel approaches for genic interaction extraction.

Bioinformatics, 2008. 24(1): p. 118-26.

Klein, D., Manning, Ch. D. (2003a): Fast Exact Inference with a Factored Model for Natural

Language Parsing. In Advances in Neural Information Processing Systems 15 (NIPS 2002),

Cambridge, MA: MIT Press, pp. 3-10.

Klein, D., Manning, Ch. D. (2003b): Accurate Unlexicalized Parsing. Proceedings of the 41st

Meeting of the Association for Computational Linguistics, pp. 423-430.

Kuboyama, T., Kashima, H., Aoki-Kinoshita, K.F., Hirata, K., Yasuda, H. (2007): A Spectrum

Tree Kernel, Journal of Japanese Society of Artificial Intelligence, Vol.22, No.2, 2007.

Van Landeghem, S., Saeys, Y., Van de Peer, Y., De Baets, B. (2008): Extracting Protein-

Protein Interactions from Text using Rich Feature Vectors and Feature Selection. Proceedings

of the Third International Symposium on Semantic Mining in Biomedicine 2008:77-84.

Levenshtein, V. I. (1966): Binary codes capable of correcting deletions, insertions, and

reversals. Soviet Physics Doklady 10 (1966):707�710.

Lodhi, H., Shawe-Taylor, J., Cristianini, N., Watkins, Ch. J. C. H. (2000): Text classi cation�

using string kernels. In NIPS, pages 563�569.

Marcus, M.P., Santorini B., Marcinkiewicz M.A. (1994): Building a Large Annotated Corpus

of English: The Penn Treebank. Computational Linguistics 1994, 19(2):313-330.

de Marneffe, M.C., MacCartney, B., Manning, C.D. (2006): Generating Typed Dependency

Parses from Phrase Structure Parses. In Proceedings of 5th International Conference on

Language Resources and Evaluation (LREC2006) Genoa, Italy; 2006.

de Marneffe, M.C., Manning, C.D. (2008): Stanford typed dependencies manual. Technichal

report. http://nlp.stanford.edu/software/dependencies_manual.pdf last visited 2008-04-09.

51

9 References

McClosky, D., Charniak, E. (2008) Self-Training for Biomedical Parsing. Proceedings of the

Association for Computational Linguistics (ACL 2008, short papers), Columbus, Ohio

Miyao, Y., Sagae, K., Sætre, R., Matsuzaki, T., Tsujii, J. (2008): Evaluating Contributions of

Natural Language Parsers to Protein-Protein Interaction Extraction. Bioinformatics. 2008 Dec

9. PMID: 19073593

Miwa, M., Sætre, R., Miyao, Y., Ohta, T., Tsujii, J. (2008): Combining Multiple Layers of

Syntactic Information for Protein-Protein Interaction Extraction. Proceedings of the Third

International Symposium on Semantic Mining in Biomedicine 2008:101-108.

Moschitti, A. (2006a): Efficient convolution kernels for dependency and constituent syntactic

trees. In Proceedings of The 17th European Conference on Machine Learning, pages 318-329,

Berlin, Germany.

Moschitti, A. (2006b): Making tree kernels practical for natural language learning. In

Proceedings of 11th Conference of the European Chapter of the Association for

Computational Linguistics (EACL2006), pages 113-120, Treato, Italy.

Nédellec, C. (2005): Learning language in logic - genic interaction extraction challenge.

Proceedings of LLL'05 2005:31-37.

Özgür, A., Vu, T., Erkan, G., and Radev, D. R. (2008): Identifying gene-disease associations

using centrality on a literature mined gene-interaction network. Bioinformatics 24, 13 (Jul.

2008), i277-i285. DOI= http://dx.doi.org/10.1093/bioinformatics/btn182

Porter, M.F. (1980): An Algorithm for Suffix Stripping, Program, 14(3): 130-137

Pyysalo, S., Ginter, F., Heimonen, J., Björne, J., Boberg, J., Järvinen, J., Salakoski, T. (2007):

BioInfer: A Corpus for Information Extraction in the Biomedical Domain. BMC

Bioinformatics 2007, 8(50).

Pyysalo, S., Airola, A., Heimonen, J., Björne, J., Ginter, F., Salakoski, T. (2008): Comparative

analysis of five protein-protein interaction corpora. BMC Bioinformatics. 2008 Apr 11;9

Suppl 3:S6. PMID: 18426551

van Rijsbergen, C.V. (1979): Information Retrieval. London; Boston. Butterworth, 2nd

Edition.

Vapnik, V. (1995): The Nature of Statistical Learning Theory. Springer-Verlag.

52

9 References

Vishwanathan, S., Smola, A. (2002): Fast kernels on strings and trees. In: Proceedings of

NIPS.

Wittgenstein, L. (1961 [1921]): Tractatus-Logico Philosophicus. Routledge & Kegan Paul.

Xenarios, I., Rice, D.W., Salwinski, L., Baron, M.K., Marcotte, E.M., Eisenberg, D. (2008):

DIP: the database of interacting proteins. Nucleic Acids Res. 2000 Jan 1;28(1):289-91.

Zanzoni, A., Montecchi-Palazzi, L., Quondam, M., Ausiello, G., Helmer-Citterich, M.,

Cesareni, G. (2002): MINT: a Molecular INTeraction database. FEBS Lett. 2002 Feb 20;

513(1):135-40.

Zelenko, D., Aone, C., Richardella, A. (2003): Kernel methods for relation extraction. Journal

of Machine Learning Research 2003, 3:1083-1106.

53

10 Software and Corpora

10 Software and Corpora

SVMlight: http://svmlight.joachims.org/, maintained by Thorsten Joachims, last visited 2009-

03-16; see also Joachims (1999).

Tree Kernels In SVM-light: http://dit.unitn.it/moschitti/Tree-Kernel.htm, maintained by

Alessandro Moschitti from University of Trento, last visited: 2009-03-28; see also Moschitti

(2006a and 2006b). The �1.5-to-be-released� version used here is not publicly available yet �

Alessandro Moschitti has kindly sent it to us via e-mail.

Stanford Tools: http://nlp.stanford.edu/software/lex-parser.shtml maintained by The Stanford

Natural Language Processing Group, last visited 2009-04-07; see also �de Marne e et al

(2006).

Charniak-Lease Parser: see next and Charniak and Lease (2005).

Charniak-Johnson-McCloski Parser: actually a Charniak-Johnson parser (Charniak and

Johnson, 2005) with David McCloski's model trained on biomedical resources (McClosky and

Charniak, 2008); http://bllip.cs.brown.edu/resources.shtml maintained by Brown Laboratory

for Linguistic Information Processing (BLLIP), last visited 2009-04-07

Five corpora (AImed, BioInfer, HPRD50, IEPA and LLL) in the learning format: http://

mars.cs.utu.fi/PPICorpora/GraphKernel.html, maintained by Department of Information

Technology of University of Turku, last visited 2009-03-16; see also Pyysalo et al. (2008).

54

