
Technische Universität Berlin, Fakultät I � Geisteswissenschaften

Institut für Sprache und Kommunikation

Fachbereich Anglistische und Allgemeine Linguistik

Peter Palaga

Extracting Relations from Biomedical Texts Using

Syntactic Information

Magister Thesis

2009-04-13

Author: Peter Palaga, Matrikelnummer: 228182

Supervisors: Prof. Dr. See-Young Cho, Prof. Dr. Ulf Leser





Table of Contents

 Sebständigkeitserklärung............................................................................................................i

 Zusammenfassung....................................................................................................................iii

 Acknowledgments......................................................................................................................v

1 Introduction..............................................................................................................................1

2 SVM Classifier.........................................................................................................................4

2.1 SVM for Relation Extraction...........................................................................................7

3 Training Data............................................................................................................................9

3.1 Learning Format.............................................................................................................11

3.1.1 Learning Format Pitfalls.........................................................................................12

3.2 Syntax Representations..................................................................................................13

4 Kernels for Relations Extraction............................................................................................17

4.1 Kernels of other Authors................................................................................................17

4.1.1 Subtree Kernel (ST)................................................................................................17

4.1.2 Subset Tree Kernel (SST).......................................................................................18

4.1.3 Partial Tree Kernel (PT)..........................................................................................19

4.1.4 Spectrum Tree Kernel (SpT)...................................................................................20

4.1.5 Comparison.............................................................................................................20

4.2 Design of a Novel Kernel...............................................................................................22

4.2.1 Preliminary Attempts to Design a New Kernel......................................................22

4.2.1.1 Transforming Dependency Graphs to Trees...................................................22

4.2.1.2 Redefinition of the Spectrum Tree Kernel for General Graphs......................23

4.2.2 The Successful Strategy..........................................................................................24

4.2.2.1 Fuzzy Matching..............................................................................................24

4.2.2.1.1 Tolerant matching....................................................................................25

4.2.2.1.2 Levenshtein distance...............................................................................26

4.2.2.2 Context Selection............................................................................................26

4.2.3 d-Entity Context Spectrum Kernel.........................................................................27

4.2.4 k-Band Shortest Path Spectrum Kernel (kBSPS)...................................................28

5 Evaluation Methods and Metrics...........................................................................................29

5.1 Precision, Recall and F-Measure....................................................................................29

5.2 Area Under the Receiver Operating Characteristics Curve (AUC)................................31



5.3 Cross-Validation.............................................................................................................34

5.4 Run Time Measurement.................................................................................................35

6 Experimental Setup................................................................................................................36

6.1 Preprocessing..................................................................................................................36

6.1.1 Entity-Token Mapping............................................................................................36

6.1.2 Entity Blinding.......................................................................................................36

6.1.3 Special Preprocessing Steps for some Kernels.......................................................37

6.2 Parameters and their Optimization.................................................................................38

6.3 Kernel Implementations.................................................................................................40

7 Experimental Results.............................................................................................................42

8 Conclusion.............................................................................................................................48

9 References..............................................................................................................................49

10 Software and Corpora..........................................................................................................54







Sebständigkeitserklärung

Die selbständige Anfertigung versichere ich an Eides Statt.

Berlin, den

....................................

        Peter Palaga

i



ii



Zusammenfassung

Relationsextraktion ist  ein Verfahren, mit dem Informationen gezielt aus Fließtext in einer

strukturierten Form gewonnen werden. Eine heutzutage sehr häufig untersuchte Anwendung

der  Relationsexktraktion  ist  die  Extraktion  von  Protein-Protein  Interaktionen  (PPI)  aus

biomedizinischen Texten. Wir haben mehrere automatische kernelbasierte Methoden für die

Relationextraktion  auf  dem  PPI-Extraktion  Problem  evaluiert.  Einerseits  haben  wir

Experimente  mit  in  der  Fachliteratur  beschriebenen  Kernelfunkionen  durchgeführt  und

andererseits haben wir einige Kernels selbst entworfen. Wir haben Methoden und Metriken

für die Evaluierung benutzt, die einen direkten Vergleich mit den PPI-Extraktionsmethoden

erlauben, die �auf dem neusten Stand der Kunst� sind. Ein von uns entworfener Kernel hat

höhere Genauigkeit und deutlich kürzere Laufzeiten gezeigt als die Kernels aus der Literatur

gezeigt  haben.  Im  Vergleich  mit  den  modernsten  Methoden  hat  jedoch  unsere  Methode

schlechtere Ergebnisse erreicht.
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1 Introduction

1 Introduction

Well-formed sentences of natural language usually state facts. Intuitively, such facts can be

seen as consisting of two different types of items: firstly, there are some things and secondly

there are some associations that are claimed to hold between that things. In the field of natural

language processing (NLP), such things are called entities and the associations between them

are called relations. Consider the following sentence as an example:

Alice spends more money on eBay than Bob.

In  this  sentence,  (at  least)  two  entities  were  mentioned,  namely persons  Alice  and  Bob.

Furthermore, the sentence asserts that there is a particular relation between them: the former

spends more money on eBay then the later.

To state which relations hold between which entities is a typical task of researchers in natural

sciences. So, biologists are observing cells to say (among other things) which genes cause

which diseases, which genes inhibit other genes or which proteins interact with which other

proteins (Protein-Protein Interactions, PPI).

Scientists  mostly publish their findings in form of free text,  e.g.  papers, books,  etc.  With

raising number of known facts, it becomes necessary to systematize the knowledge in a more

structured form, e.g. a database. Structured data sources allow richer queries than free text.

For example, it is not effectively possible to find out which genes are inhibited by gene SOX9

only using free text queries on a big collection of scientific text.

Indeed, there exist attempts to create databases storing biomedical entities and their relations

by hand; e.g Database of Interacting Proteins (DIP, Xenarios et al., 2000), the Biomolecular

Interaction  Network  Database  (BIND,  Bader et  al.,  2001) and  the Molecular  INTeraction

database (MINT, Zanzoni et al., 2002). However, such projects are far from being complete

(see e.g. Chatr-aryamontri et al., 2006).

It  is  a  task  of  Information  Extraction  to  develop  methods  for  creating  such  databases

automatically. This task is commonly seen as having three phases: (1) entity recognition (2)

coreference resolution and (3) relation extraction (Culotta and Sorensen, 2004). It is precisely

Der Sachverhalt ist eine Verbindung von Gegenständen (Sachen, Dingen).

Ludwig Wittgenstein (1921)
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1 Introduction

the last of these phases which will be focused in this thesis.

Several approaches have been applied to extract relations from free text. The simplest method

is based on the assumption that a mere co-occurrence of two entities implies that there is a

relation between them. Trivially, such methods reach 100% recall, but their precision stays

low (Pyysalo et al., 2008; see also Section 5.1 for more details on precision and recall).

Pattern and rule based methods try to use context information for finding relations between

entities. They usually look for certain words occurring near entity names or use part-of-speech

(POS) and/or syntax information. They usually exhibit high precision, but their recall is low,

i.e. many of the relations in the text are left undiscovered by them. The patterns used by such

approaches may be constructed by hand or learned automatically from an annotated corpus

(Hakenberg et al., 2005; Fundel et al., 2007, Blaschke, 1999).

In this thesis, the machine learning approach will be pursued. A statistical classifier will be

used to predict the presence or absence of a relation between a given pair of entities in a

sample sentence.  The decisions of such a classifier rest  upon a statistical  model which is

produced by a training on a text corpus containing positive and negative examples (Donaldson

et al., 2003).

Several machine learning techniques have been used in the field of relation extraction, among

others  nearest  neighbor  (Fukunaga,  1990),  naïve  Bayes,  sparse  regularized  least-squares

(RLS) (Airola et al., 2008) and support vector machines (SVM) (Cortes and Vapnik, 1995;

Culotta and Sorensen, 2004). SVM, introduced in Chapter  2, will be used in this thesis. In

Chapter  2 we also introduce the notion of kernel function which plays a central role in our

survey.

The chosen method presupposes a resource with annotated entities and relevant relations on

which the classifier will be trained. To this end, corpora prepared by Pyysalo et al. (2008)

with annotated Protein-Protein Interactions (PPI) will be used. We describe these corpora in

Chapter 3.

Further, in Chapter 4, we present several kernel functions known from the literature. We also

document our own attempts to design a novel kernel suitable for relation extraction.

We have evaluated  the kernel  functions  introduced Chapter  4 using methods and  metrics

presented in Chapter 5.
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1 Introduction

The details  of our experimental  setup are explained in Chapter  6, while our experimental

results are presented in Chapter 7.

The  contribution  of  this  thesis  to  the  field  of  relation  extraction  and  especially  to  PPI

extraction can be seen as threefold: Firstly, we apply the evaluation method proposed recently

by Airola et al. (2008) to several  kernel functions known from literature.  In  this way, we

provide benchmarks which allow for direct comparability of these kernels with each other on

one hand and with state-of-the-art methods on the other hand. Secondly, these kernels � to our

best  knowledge � have not been evaluated on an relation extraction task yet.  Thirdly,  we

propose a new kernel method for relation extraction and evaluate it so that its performance is

directly comparable with both the state-of-the-art methods and other methods evaluated in this

thesis.
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2 SVM Classifier

2 SVM Classifier

Generally,  the  machine  learning  techniques  have  two  phases:  (1)  learning  (also  called

�training�) and (2) the actual application of the technique on new data instances. To train a

classifier one needs a set of training examples. This set needs to be big enough, so that the

classifier is able to learn some sort of general model, which works also for new, previously

unseen examples.

Within this thesis, Support Vector Machine (SVM) is used as a classifier (Vapnik, 1995).

Internally in the SVM, training examples are represented as feature vectors. Feature vectors

are ordered  n-tuples of numeric values. To illustrate,  how an SVM works,  let  us take the

special case of ordered 2-tuples, i.e. pairs. The pairs have the apparent advantage of being

interpretable as coordinates  of points in a two-dimensional space.  In  this way the task of

classification can be nicely visualized in a diagram.

Example 2.1: Suppose, we have the following set of examples for the learning phase:

+[5, 3], +[7, 4], +[7,6], �[2, 5], �[2, 6], �[2, 8], �[4, 8]

Note,  that  each  of  the examples  is  labeled  with �+� or  ���,  which  mean,  that  the  given

example  is  positive  (i.e.  bearing  the  relation)  or  negative  (not  bearing  the  relation)

respectively. So we have seven feature vectors of length 2, three of them being positive and

four of them negative.  The diagrammatic representation of these examples can be seen in

Figure 2.1.
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2 SVM Classifier

In the diagram can be seen that the positive and negative examples build distinguished groups.

The positive and negative examples are grouped so clearly, that a line can be drawn, which

divides the whole plane in such a way that positive examples are located on one side of the

line and the negative examples on the other.

This simplified example shows what an SVM classifier does: in the learning phase, it tries to

divide the feature space into into two parts in such a way that  the positive and negative

examples  are  separated  from each  other.  Then,  in  classification  phase,  a  new,  previously

unseen example is assigned a label depending solely on its location relative to the separating

line.

SVM classifiers can do this not only for a two-dimensional feature space, but also for higher-

dimensional  feature  spaces.  In  case  of  an  n-dimensional  feature  space,  the  result  of  the

learning phase would not be a line, but an (n-1)-dimensional hyperplane.

In the situation given in the Example 2.1, there are infinitely many possibilities to draw such a

line. Three of them, named a, b and c can be seen in Figure 2.2.

Figure 2.1: Visualization of 7 feature vectors of length 2 in two dimensional space.
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2 SVM Classifier

Intuitively, it is quite important for the classification of new examples, which one of the lines

is chosen in the learning phase. To illustrate this, let us consider the new instance labeled with

�?� in  Figure 2.2: with respect to lines  a and  c, it would be classified as positive, but with

respect to line b, it would be classified as negative.

Clearly, we are interested in a solution, which generalizes � as far as possible � beyond the

training data,  as the classification of new previously unseen data instances is  our ultimate

objective. On the contrary, what we obviously do not want is the situation, where a classifier

fits the training data very well, but it performs very badly on new examples. Such situation is

called overfitting in machine learning.

There are two things which have strong impact on the classifier's ability not to overfit the

training data.

Firstly, the classifier should by its design draw the boundary in such a way, that it does not

prefer any of the divided groups. It  is a particular strength of SVM that it selects the line

which is located just in the middle between the nearest positive and negative examples. The

boundary line is said to have  maximum margin. In the  Figure 2.2, the line  a  has maximum

margin. This seems to be the most robust solution, which is best resistant against  overfitting

(Culotta and Sorensen, 2004).

Secondly,  the classifier's  ability to  classify previously unseen  examples  correctly depends

largely on the amount of the training data. Intuitively, the more training examples the more

Figure 2.2: There are many lines which separate positive and negative examples.

50 5

5

10

10

�

�

�

�

�

�

�

a

b

c

�?

6



2 SVM Classifier

general the learned model will be. Albeit some experiments which compared the performance

of a particular PPI extractor on learning resources of several different sizes were recently

performed  by  Airola  et  al.  (2008),  there  is  no  generally  accepted  minimum  of  learning

examples in the literature.

The task given in Example 2.1 is quite simple, because the positive examples can be clearly

separated from the  negative  ones.  However,  situations  are conceivable  in  which  it  is  not

possible to draw the separating line. In such cases, a so called soft margin is used (Cortes and

Vapnik, 1995). This means that the SVM is allowed to draw the boundary in such a way that it

allows misclassified examples within some given distance from the separating line. The soft

margin is characterized by the constant c. Thus, a trade-off between training error and margin

is introduced (Joachims, SVMlight, see Chapter 10 Software and Corpora).

2.1 SVM for Relation Extraction

In the field of relation extraction we deal  with sentences. The reader might ask,  how can

sentences  be transformed to  tuples  of  numbers,  so that  they can be used by an SVM as

training examples? Generally, two solutions to this problem can be found in the literature.

The first solution is quite straightforward: the user of the SVM must invest a substantial effort

to provide a set of rules, which transform sentences to feature vectors. This means on one

hand to define which positions in the vector characterize which properties of a given sentence

and on the other hand, to define how the given property is transformed into a number. The

sentence characteristics one could choose may be based e.g. on word n-grams, POS n-grams,

or parse tree substructures like  has an NP-VP subtree (Culotta and Sorensen, 2004). When

e.g. POS bigrams are taken as a base for the feature vectors, one would need to accomplish

the following steps:

� List all possible bigrams and assign an index to each member of the list. E.g. for 36

Penn Tree Bank POS tags we would have 362 bigrams. We could assign an index to

each bigram e.g. according to its position in an alphabetical order.

� In  this  way,  we  have  obtained  362 yes/no  sentence  properties,  which  can  be

transformed to numbers very easily: one obvious way how to do it, is to assign 1 to the

given POS bigram feature if the given POS bigram occurs in the given sentence or to

assign 0 to it otherwise.

7



2 SVM Classifier

The second approach to solve the problem how natural language sentences can be fed into an

SVM has to do with SVM internals. It is called kernel trick. It is based on the fact that there

are two possibilities how an SVM can be formulated:  one of them uses a dot product of

explicit feature values (as we assumed so far) and the other one replaces the dot product with

so called kernel function. The kernel function can be thought of as similarity measure of two

given data instances � in our case sentences.

Lets  us  mention  the  �bag-of-words�  as  an  example  for  a  kernel  function.  It  simply

characterizes  the  similarity  of  two  sentences  through  the  number  of  words  they have  in

common.

Convolution kernels represent a special type of kernel functions. They are intended for cases

when the structure of instances is important. The main idea is to qualify the similarity of two

structures through summing the similarities of their substructures. In this way the similarity of

two  strings  can  be  characterized  through  the  number  of  their  common  substrings.

Analogically, the similarity of two trees can be determined as the number of their common

subtrees. The matching substructures can be effectively found using dynamic programming

(Culotta and Sorensen, 2004).

The main advantage of the kernel approach is the possibility to cover very large (potentially

infinite) feature spaces without handling the features explicitly if an efficient procedure to

compute  the  kernel  function  is  available.  Depending  on  the  effectiveness  of  the  kernel

computation, substantial substantial reduction of time and memory can be gained (Kuboyama

et al., 2007).

In this thesis the kernel approach will be pursued using the  SVMlight software of Thorsten

Joachims (Joachims, 1999). Later, in Chapter  6 Experimental Setup, several kernels will be

presented and evaluated on the PPI task.
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3 Training Data

3 Training Data

The chosen method presupposes a resource with annotated entities and relations on which the

statistical model will be trained. In this chapter, we introduce the resources we have used to

evaluate the kernels presented in Chapter 4.

Pyysalo et al. (2007) note that while there is a �rough consensus� on the annotation of protein

names, there are no explicit and widely accepted definitions of Protein-Protein Interaction

(PPI) and their annotation. Consequently, it is very hard to compare the performance of PPI-

extraction methods that were evaluated on different corpora.

Pyysalo et al. (2007) attempted to examine available PPI-annotated resources and they have

described what is their �greatest common factor�. For their survey, they gathered resources

which:

� are freely available

� have specifically identified named entities 

� have manually annotated interactions

� and in which negative examples of PPI are either explicitly marked or can be validly

generated under the closed-world assumption.

The following five corpora fulfilled these criteria:

� AIMed (Bunescu at al., 2005b)

� BioInfer (Pyysalo et al., 2007)

� HPRD50 corpus (Fundel et al., 2007)

� IEPA corpus (Ding et el., 2002)

� PPI corpus produced for the LLL challenge (Nédellec, 2005).

Annotation layers of all these corpora carry the information about named entities from the

domain of biology. However, only LLL and BioInfer distinguish between several types of

entities, such as proteins and genes.

A very important fact for PPI extraction is that the annotation of relevant entities is exhaustive

9



3 Training Data

only in AIMed and BioInfer. The entity annotation of the other corpora is based only on lists

of entity names or named entity recognizer output (Pyysalo et al., 2008).

Pyysalo et al. (2008) report that the differences in interaction annotation are even greater than

those  in  entity  annotation:  in  particular,  only  the  BioInfer  and  IEPA  corpora  contain

information  identifying  the  words  stating  the  interactions,  all  but  HPRD50  specify  the

direction of interactions, BioInfer alone contains complex or negative interactions and only

HPRD50 annotates different interaction certainties.  Finally,  BioInfer is the only corpus to

contain annotation for static entity relations such as protein family membership.

As a result of their survey, Pyysalo et al. (2008) state the following PPI annotation principles

as �the greatest common factor� applicable to all five named corpora:

Protein Protein Interactions should be treated as:

� undirected

� untyped

� of non-static types

� bearing no specification of words stating the interaction

� having no complex structure

� containing no information about negation

� containing no information about interaction certainty

The basic characteristics of the five corpora can be seen in Table 3.1.

Table 3.1: Corpora

* Only documents with at least one (positive or negative) pair are counted.

** The example pairs are checked for (orderless) uniqueness and for being non-reflexive

Corpus Documents* Sentences Positive Pairs** Negative Pairs**

Aimed 220 1955 1000 4834

833 1100 2534 7132

HPRD50 43 145 163 270

IEPA 200 486 335 482

LLL 45 77 164 166

BioInfer

10



3 Training Data

3.1 Learning Format

Pyysalo et al. (2008) have also defined an XML-based format for the annotation of PPI, which

they called learning format. They provide transformations of the the named resources into this

format. The corpora in the learning format are available on the web site of Department of

Information Technology of University of Turku (see Section  10 Software and Corpora on

page 54).

Four out of these five transformed corpora were used throughout this thesis for evaluation. We

were forced to exclude the BioInfer corpus from our evaluations as both the time we had for

finishing of this thesis and the computational resources we could use were limited.

The rough structure of a learning format corpus can be seen in  Figure 3.1. Corpus contains

documents and documents contain sentences. The sentence text can be found in the attribute

text. 

Figure 3.1: Learning format example.

<corpus source="AIMed">
  <document id="AIMed.d0" origId="11780382">
    <sentence id="s328" text="Eotaxin-3 competed the binding of 
       (125)I-eotaxin to CCR3-expressing L1.2 cells with an IC(50) of 13 nM.">
    <entity charOffset="0-8" id="s328.e0" text="Eotaxin-3" type="protein" />
    <entity charOffset="39-47" id="s328.e1" text="I-eotaxin" type="protein" />
    <entity charOffset="52-55" id="s328.e2" text="CCR3" type="protein" />
    <pair e1="s328.e0" e2="s328.e1" id="s328.p0" interaction="False" />
    <pair e1="s328.e0" e2="s328.e2" id="s328.p1" interaction="True" />
    <pair e1="s328.e1" e2="s328.e2" id="s328.p2" interaction="True" />
    <sentenceanalyses>
      <parses>
        <parse parser="Charniak-Lease" tokenizer="Charniak-Lease">
          <dependency id="clp_1" t1="clt_2" t2="clt_1" type="nsubj" />
          ...
        </parse>
      </parses>
      <tokenizations>
        <tokenization tokenizer="Charniak-Lease">
          <token POS="NN" charOffset="0-8" id="clt_1" text="Eotaxin-3" />
          ...
        </tokenization>
      </tokenizations>
    </sentenceanalyses>
  </sentence>
  </document>
  ...
</corpus>

11



3 Training Data

The actual  annotation of  named entities  and relations  is  encoded  through  entity and  pair

elements. The position of an entity in the sentence text is expressed in the charOffset attribute

of entity. Using offsets instead of nested XML elements is usually called standoff annotation

in linguistics.

Note, that the presence or absence of a relation is marked on the level of named entity pairs,

not on the level of sentences (cf. attribute interaction in Figure 3.1). The motivation for this is

quite straightforward: In the context of PPI, we are interested in binary relations, i.e. such that

hold for pairs of objects. However, there are sentences, as the one in the Figure 3.1, in which

there are more than two named entities. In such sentences, it is possible, that a relation holds

only for some of entity pairs. Indeed this is also the case for the sentence in the Figure 3.1:

there is a relation between entities e0 and e2 and between entities e1 nad e2, whereas there is

no relation between entities e0 and e1. Thus, in the learning format all possible entity pairs are

listed and each of them is explicitly annotated for presence or absence of a relation. As a

consequence  of  this,  the  learning  examples,  which  are  used  by  a  statistical  classifier,

correspond to pairs rather than sentences.

The learning format also provides means for expressing token boundaries and syntactic parses

of sentences. Analogically to named entities, token boundaries are expressed in the charOffset

attribute.

The  format  allows  for  storing  several  alternative  tokenizations  and  parses  for  a  given

sentence. The corpora available from University of Turku contain two alternative parses and

tokenizations  for  each  sentence.  One  of  them  is  the  output  of  Charniak-Lease  Parser

(Charniak and Lease, 2005) which was used in several experiments of the present work; see

also 3.2 Syntax Representations.

3.1.1 Learning Format Pitfalls

The  learning  format  annotation  scheme has  some important  implications  for  any relation

extraction system using it as an input:

1. Named entities may overlap. The string �Arp2/3� (see Figure 3.2) contains two named

entities, namely �Arp2� and �Arp 3�.

2. An entity may spread over multiple noncontiguous text ranges. The entity �Arp 3�

12



3 Training Data

from the previous paragraph spreads over two ranges: the first goes from character 0

to character 2 and the second covers the single character 5 of the sentence (see Figure

3.2).

3. Such noncontiguous and overlapping entities may constitute a relation � see  Figure

3.2.

4. There  is  no  guarantee  of  a  one-to-one  correspondence  between  named  entity

boundaries  and  token  boundaries.  Virtually  any  combinations  of  entailment  and

overlapping are possible: one entity may spread over several tokens, one entity may

correspond to a mere part of a token, there may exist several named entities in one

token (see Figure 3.2), etc.

3.2 Syntax Representations

Relation extraction methods evaluated within this thesis are based on syntactic information.

Syntactic analyses of sentences for purposes of relation extraction are produced by special

programs, called parsers. Parsers are often said to produce parses. Hence parse and syntactic

Figure 3.2: Learning format pitfalls (sentence BioInfer.d77.s0).

An entity may spread 
over multiple 
noncontiguous text 
ranges

Entities may overlap

Multiple entities and even 
complete relationships 
can be found in a single 
token

Noncontiguous and 
overlapping entities may 
constitute a relationship

Arp2/3 complex from Acanthamoeba binds profilin and cross-links actin filaments.
  <entity charOffset="39-46" id="e0" text="profilin" />
  <entity charOffset="0-3" id="e1" text="Arp2" />
  <entity charOffset="0-2,5-5" id="e2" text="Arp 3" />
  <entity charOffset="64-68" id="e3" text="actin" />
  <pair e1="e0" e2="e1" id="p0" interaction="True" />
  <pair e1="e0" e2="e2" id="p1" interaction="True" />
  <pair e1="e0" e2="e3" id="p2" interaction="False" />
  <pair e1="e1" e2="e2" id="p3" interaction="True" />
  <pair e1="e1" e2="e3" id="p4" interaction="True" />
  <pair e1="e2" e2="e3" id="p5" interaction="True" />
  <sentenceanalyses>
    ...
    <tokenizations>
      <tokenization tokenizer="Charniak-Lease">
        <token POS="NN" charOffset="0-5" id="clt_1" text="Arp2/3" />
        ...
      </tokenization>
    </tokenizations>
  </sentenceanalyses>
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analysis of a sentence are synonyms.

There  are  two main syntax  formalisms,  which  currently dominate in  the field  of  relation

extraction: (1) constituent trees (see Figure 3.3) and (2) dependency graphs (see Figure 3.4).

Constituent trees (also called phrase structure parses) are trees as defined in graph theory. As

every graph, a tree consists of nodes (also called vertices) and edges (also called arcs). What

makes trees a special kind of graphs is the fact, that they are acyclic and connected, i.e. any

two edges are connected by exactly one path. Constituent trees are furthermore  rooted. It

means that one of the nodes has been designated as a root. Trees can be viewed as implicitly

directed, because every edge can be seen as having direction from the root (Kuboyama et al.,

2007).

Contrary to constituent trees, dependency graphs do not fulfill the condition of being acyclic

(see  Figure 3.4). So they are no trees in the sense of graph theory.  Furthermore, they are

explicitly directed and rootless.

From the linguistic point of view, the nodes in a constituent tree represent phrases and clauses

and the root of the tree represents the whole sentence. The tree leaves stand for words (Clegg

and Shepherd, 2007). The edges of a constituent tree represent the rules of the underlying

grammar.

On the other hand, each node in a dependency graph represents a word of the sentence and

each edge represents a grammatical dependency such as that which holds between a verb and

its subject (Clegg and Shepherd, 2007).

14
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Phrase  structure  representations  are  better  established  in  the  computational  linguistic

Figure 3.3: Constituent tree parse for the sentence IEPA.d48.s123; an output of Charniak-

Johnson-McCloski parser.

VBZ
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NNP
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S
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expenditureLeptin increases uncoupling protein expression and energy

VBG NN NN CC NN NN

NPNP
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S

Figure 3.4: Dependency graph parse for the sentence IEPA.d48.s123; an output of Charniak-

Lease parser, which was transformed to typed dependencies using Stanford Tools.
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�community than dependency graphs (de Marne e and Manning, 2008). There is a  de facto

standard for the format of constituent parses which is given by the Penn Treebank (PTB)

(Marcus et al., 1994). There are several high-performance parsers available, trained on the

PTB. Chaniak-Lease and the Bikel parser are among the best of them (Clegg and Shepherd,

2007).

On the other hand, there is no generally accepted standard for dependency graphs. There is no

large standard resource with dependency graph annotations comparable to PTB. The resources

are rather small and they use different sets of dependency types and attachment rules (Clegg

and Shepherd,  2007).  Consequently dependency parsers are not as robust  and accurate as

�phrase-structure parsers trained on very large corpora (de Marne e et al., 2006).

However,  there is  an important  theoretical  link between constituent trees  and dependency

graphs. The constituent trees can be transformed into dependency graphs through applying

�some deterministic rules. De Marne e et al. (2006) provide such a rule set together with an

implementation (see Stanford Tools in the Chapter 10 Software and Corpora on page 54). In

this way, every phrase structure parser can actually be used to produce dependency graphs.

Several authors have recently advocated the opinion that dependency graphs are more suitable

for information extraction purposes than constituent trees.  Their main argument  is  that  in

dependency  graphs,  the  semantic  relationships  are  closer  to  the  surface,  while  the  same

information is  not  �readily available�  from phrase  structure  parses  (Clegg and  Shepherd,

�2007;  de  Marne e  et  al.,  2006).  We have  performed  experiments  with  both  dependency

graphs and constituent trees. Our results can be seen in Chapter 7.
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4 Kernels for Relations Extraction

In this chapter, two groups of kernel functions (or shortly kernels) for relations extraction will

be presented. Firstly,  some kernels known from the literature will be explained. Secondly,

some attempts to design a novel kernel will be described.

4.1 Kernels of other Authors

The following kernels will be characterized in this section:

� Subtree Kernel (ST) (Vishwanathan and Smola, 2002)

� Subset Tree Kernel (SST) (Collins and Duffy, 2002)

� Partial Tree Kernel (PT) (Moschitti, 2006a)

� Spectrum Tree Kernel (Kuboyama et al., 2007)

All of these kernels can be seen as a closely related family of kernels because they strictly

follow the  idea  of  convolution kernel  as  introduced by Hausler  (1999) and because  they

operate  on  tree  substructures.  So,  they quantify  the  similarity  of  trees  by  counting  their

common  substructures.  �Common�  means  here  that  the  substructures  of  two  compared

sentences must match exactly. The named kernels differ substantially in how they understand

the tree substructure.

4.1.1 Subtree Kernel (ST)

For subtree kernel, the counted tree substructure � which is called subtree � is defined as any

node together with all its descendants down to (and including) the tree leaves (Vishtanam and

Smola, 2002); see an example in Figure 4.1. When deciding if a given subtree s is common

for two trees, the order of child nodes within s is important: the order of child nodes must be

the same across all its nodes which have children.
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4.1.2 Subset Tree Kernel (SST)

The  subset  tree  kernel  relaxes  the  constraint  that  all  descendants,  including  leaves,  must

always be included in the substructures. However, it retains another constraint, which limits

the generality of permitted tree substructures: The grammatical rules (mentioned in Section

3.2)  may not be broken. This  means,  that  for  a given tree node,  either  none or all  of  its

children must be included into the resulting subset tree. An example can be seen in Figure 4.2.
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Figure 4.1: A phrase structure parse along with its subtrees (Moschitti, 2006a).
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Figure 4.2: A phrase structure parse along with some of its subset trees (Moschitti, 2006a).

V

VP

N

S

Mary brought a cat

D N

NP

V

VP

brought a cat

D N

NP

a cat

D N

NP

VN

Mary brought a cat

D N

V

VP

N

S

D N

NP

V

VP

D N

NP

D N

NP

V

VP

NP VPN

S

. . .cat

D N

NP

a

D N

NP



4 Kernels for Relations Extraction

As in the case of ST kernel, also in SST kernel the order of child nodes within a given subset

tree is important.

4.1.3 Partial Tree Kernel (PT)

The partial  tree kernel  is  the most permissive kernel  from those presented here:  it  allows

virtually any tree substructures; no matter if the leaves are included or not and no matter if the

grammatical rules are broken or not. An example can be seen in Figure 4.3.

Again, is in the case of ST and SST kernels, also in PT kernel the order of child nodes within

a given partial tree is important.
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Figure 4.3: A phrase structure parse along with some of its partial trees (Moschitti, 2006a).
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4.1.4 Spectrum Tree Kernel (SpT)

Finally, the substructures counted by the spectrum tree kernel are called tree q-grams. Tree q-

grams can be seen as a special case of paths. The notion of path belongs to elements of graph

theory. It is defined as is a sequence of graph nodes such that from each of its nodes there is

an edge to the next node in the sequence. Tree q-grams are a special kind of paths, because of

their fixed length q. Further, in q-grams, the orientation of their edges is important. As noted

in Section 3.2, trees can be interpreted as implicitly oriented graphs, the direction being e.g.

from root to leaves. So, two 3-grams such as a  � b � c and a � b � c are not identical, as

they differ in the direction of the edge between a and  b. On the other hand, the order of  q-

gram serialization is unimportant: a � b � c is identical with  c � b � a.

An example can be seen in Figure 4.4.

4.1.5 Comparison

From the provided characterizations and examples can be seen that the amount of possible

substructures differs substantially between the presented kernels. This has naturally a strong

impact on the computational complexity of these kernels on one hand and on the accuracy of

these kernels on the other hand.

For the subtree kernel, a linear complexity algorithm was prosed by Vishwanathan and Smola

(2002).  Collins  and  Duffy (2002)  have  proven  that  the  subset  tree  kernel  complexity  is

quadratic in the number of tree nodes. Moschitti (2006a) reports that the partial tree kernel

also has a quadratic complexity. However, he claims that the running time is linear in the
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Figure 4.4: 3-grams generated out of a constituent tree.
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average  case.  Kuboyama et  al.  (2007)  have  proven  that  the  spectrum tree  kernel  can  be

computed in linear time with respect to the number of tree nodes.

We have evaluated all four kernels on the PPI task. The results in terms of running time and

accuracy are presented in Chapter 7 Experimental Results.

The application of all these kernels to the relation extraction problem seems to be new, except

for the SST kernel which was used for PPI extraction by Miwa et al. (2008). The ST, SST and

PT kernels were already used for (or partly indeed designed for) tasks in the domain of natural

language processing.  Collins  and Duffy (2002) use their SST kernel  as  a parse re-ranker.

Moschitti (2006a) applies his PT kernel on semantic role labeling and question classification

tasks. On the contrary the spectrum tree kernel of Kuboyama et al. (2007) was so far � to our

very best knowledge � evaluated only on glycan molecules classification.

Two state-of-the-art kernels were published recently by Airola et al. (2008) and Miwa et al.

(2008). Our results are compared with these kernels later Chapter 7.

The  all-paths  graph  kernel  of  Airola  et  al.  (2008)  is  a  convolution  kernel  which  counts

weighted shared paths of all possible lengths. These paths are generated from a dependency

parse on one hand and from the surface sequence of the words on the other hand. The path

weights  are  determined  by  weights  of  dependencies  which  in  turn  depend  on  the  given

dependency's  location  relative  to  the  shortest  path  between  the  candidate  entities:  The

dependencies belonging to the shortest path between candidate entities get higher weight than

those outside the shortest path.

The  kernel  of  Miwa  et  al  (2008)  combines  multiple  layers  of  syntactic  information  by

applying three distinct kernels on outputs of two different syntax parsers. The bag-of-words

kernel, the subset tree kernel of Moschitti (2006b) and all paths kernel of Airola et al. (2008)

are used together with dependency parses and deep parses. The combination of the kernels is

achieved through summing the normalized values of each kernel for each parse.

Further  kernel-based  methods  applied  to  the  PPI  extraction  task  were  presented  e.g.  in

Zelenko et al. (2003), Bunescu and Mooney (2005 and 2006), Kim et al. (2008) and Özgür et

al. (2008).
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4.2 Design of a Novel Kernel

This section documents two attempts to devise a novel kernel which we value as unsuccessful

because of the insufficient accuracy. Later a more successful attempt is described.

4.2.1 Preliminary Attempts to Design a New Kernel

The spectrum tree kernel of Kuboyama et al. (2007) was chosen as a starting point for our

innovations. We saw two main reasons for this: (1) It has shown a performance superior to ST,

SST and PT kernels (see Chapter 7 Experimental Results). (2) Spectrum tree kernel has so far

not been evaluated on NLP tasks.

Thus, all kernel proposals which will be presented in Sections 4.2.1, 4.2.3, and 4.2.4 will be

based on the idea of counting common q-grams.

As pointed out in Section 3.2,  dependency graphs are generally considered as more suitable

for information extraction purposes than constituent trees. In accordance with this, our first

attempt to design a new kernel was based on the idea to adapt the spectrum tree kernel for

dependency graphs.

There are two ways how to achieve this: either to convert the general dependency graphs to

trees, or to redefine the spectrum kernel for general dependency graphs.

4.2.1.1 Transforming Dependency Graphs to Trees

The first strategy basically requires to eliminate cycles from the general dependency graphs.

Some cycles in dependency graphs � as the one in Figure 3.4 � exist due to the fact that nodes

can have more than one governor. Clearly, these can be eliminated through enforcement of a

single governor constraint. We believed that some dependency types are more important for

relation  extraction  than  others.  So,  we  defined  an  ordering  over  the  dependency  types

according  to  which  multiple  governing  dependencies  were  removed.  The  ordering  was

roughly the following:

conjunctions � prepositions � modifiers � object � subject

So, when a node had more than one governor, we have removed the governing dependency

types in the named order until there was only one governor. Sometimes this made the whole

graph disconnected. In such situations a new dummy root node was introduced to make the
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whole graph connected again.

After enforcing single (or no) governor in each graph node, there may still  exist complex

cycles in the resulting graphs. As these were relatively rare, we have employed some simple

heuristics to remove them: 

1. Some node was chosen as the future root node from those nodes from which all other

nodes were reachable. If there were more than one such node, we have selected the

first one according to the surface order in the sentence. If there was none such, we

have created a new dummy root node and connected it appropriately with the rest of

the graph.

2. Starting with the selected root node the dependents were traversed recursively while

marking all already visited nodes so that they are visited only once. This was actually

a tree traversal.

The corpora were transformed into trees in this way so that they could be directly fed into the

unchanged  spectrum  tree  kernel.  However,  the  accuracy  of  this  solution  stood  close  to

random.

4.2.1.2 Redefinition of the Spectrum Tree Kernel for General Graphs

We have interpreted the failure of the previous attempt so that the eliminated dependencies

were in fact  important  for the relation extraction. Thus, we decided to realize the second

strategy: To redefine the spectrum kernel to work on general dependency graphs rather than

trees.  This actually meant no conceptual  change to the kernel  as  q-grams can be defined

generally on graphs as well as on trees. Because the edges in dependency graphs are labeled

and because these labels bear important information (the type of the dependency), these labels

were integrated into q-grams. This was achieved by handling dependency types as standalone

nodes.

Note, that despite including the dependency types in  q-grams, we coin a convention not to

include them in q. q stands for the number of nodes from the original graph. That is why the

bigrams in the Figure 4.5 actually have 3 elements. We have also allowed only such q-grams

which start and end with a surface token. Therefore there is no such bigram as �nsubj  brought

 dobj�  in  Figure  4.5.  We had  no  apparent  reason  for  doing  it  this  way.  Permitting  the

dependency types to occupy not only even but also odd positions in q-grams could perhaps be
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proven to perform better in the future.

We have evaluated this kernel for values of q ranging from 2 to 4. For each of these values we

could reach only performance close to random.

4.2.2 The Successful Strategy

We analyzed problems and found the failures of both previous strategies as having two causes

which we explain in detail in the following two Sections 4.2.2.1 and 4.2.2.2. These two points

are used for the construction of two new kernels in Sections 4.2.3 and 4.2.4.

4.2.2.1 Fuzzy Matching

Constituent trees are more pattern-like than dependency graphs. In both constituent trees and

dependency  graphs,  there  are  two  kinds  of  elements:  (i)  surface  tokens,  e.g.  �Leptin�,

�increases� in Figures  3.3 and  3.4 and (ii) generic labels like �NP�, �VP� in Figure  3.3 or

�nsubj�, �dobj� in Figure 3.4. While there are relatively many possible surface tokens, there

are comparably few generic labels. Consequently, it is much more probable that generic labels

will match than that surface tokens will match. In constituent trees, only leaf nodes can have

surface tokens as labels. On the contrary, in dependency graphs, each node is labeled with a

surface token and only dependencies are labeled with generic labels. So while in  q-grams

generated from constituent trees, there will be at most two surface tokens (at the beginning

and at the end), in q-grams generated from dependency graphs, there will always be (q + 1) / 2

surface  tokens  which  is  at  least 2.  So,  the  probability  that  two  q-grams  generated  from

dependency  graphs  will  match,  is  generally  lower  than  the  probability  that  two  q-grams
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Figure 4.5: Dependency graph example along with its two bigrams.

Mary

nsubj             

brought

cat

                 dobj
Mary  nsubj   brought� �

brought  dobj  cat� �



4 Kernels for Relations Extraction

generated from constituent trees will match.

To eliminate this disadvantage of dependency graphs, we propose to use some kind of fuzzy

matching instead of exact matching. In the next two sections we describe two fuzzy matching

techniques which we have implemented in the kernels introduced later in Sections 4.2.3 and

4.2.4.

4.2.2.1.1 Tolerant matching

We have  developed  this  technique  specially  for  dependency tree  q-paths  as  described  in

Section  4.2.1.2.  Tolerant  matching  distinguishes  three  distinct  types  of  elements  in

dependency tree q-paths:

i. dependency types (shortly Ds)

ii. candidate entities (shortly Es; see also Section 6.1.2 Entity Blinding)

iii. surface tokens other than candidate entities (shortly Ls).

When matching two  q-grams, firstly some mismatches will  be tolerated and secondly,  the

matches of Ds, Es and Ls will be scored differently. �Tolerate� means, that if elements on a

given position of given two  q-paths do not match, the score for the given position will be

simply 0; �not tolerate� means that if elements on a given position of given two q-paths do not

match, the similarity score of the whole q-path pair will be 0. Several examples can be seen in

Figure 4.6.

We have experimented with tolerating and  not  tolerating mismatches  of  all  three groups.

Tolerating both L and E mismatches and not tolerating D mismatches has consistently proven
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Figure 4.6: Tolerant matching examples. In these examples, L and E mismatches are

tolerated, while D mismatches are not tolerated; scores for matching Ls, Es and Ds are l = 1,

e = 3, d = 6

score_tolerant(Mary  nsubj   brought, Mary  nsubj   brought) = 1 + 6 + 1 = 8� � � �

score_tolerant(Mary  nsubj   brought, Mary  nsubj   sees) = 1 + 6 + 0 = 7� � � �

score_tolerant(Mary  nsubj   brought, Mary  dobj   brought) = 0� � � �

score_tolerant(_ENTITY_1_  nsubj   phosphorylates, Mary  nsubj   brought) = 0 + 6 + 0 = 7� � � �

score_tolerant(_ENTITY_1_  nsubj   phosphorylates, _ENTITY_1_  dobj   phosphorylates) = 0� � � �
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to deliver the best accuracy over all corpora.

As  for  different  scores  for  L,  E  and  D matches,  the  scores  which  performed best,  were

different for each corpus. See Section 6.2 Parameters and their Optimization.

4.2.2.1.2 Levenshtein distance

Levenshtein distance (Levenshtein, 1966) is a well known measure for quantifying similarity

of two strings. It is defined as the number of operations needed to transform the first of the

compared string to the second compared string. The allowed operations are insertion, deletion

and replacement. Levenshtein distance can be straightforwardly adapted to work with graph

q-grams instead of strings. However, to fit the general contract of convolution kernel (more

similar substructures should get higher score), we have used the complement of Levenshtein

distance rather than Levenshtein distance itself:

4.2.2.2 Context Selection

In this section we sketch what we see as the second reason for the failures of the kernels

documented in Sections  4.2.1.1 and 4.2.1.2. All of the kernels presented so far quantify the

similarity of the whole sentences. However, the similarity of whole sentences is not exactly

what we are looking for. For the purposes of relation extraction, whole sentences do not need

to be similar to express the same relation. It is enough if they contain a  similar part which

actually expresses  the relation.  Particularly,  when working with convolution kernels,  it  is

enough to count the common substructures only in those parts of the sentence which are likely

to express a relation. To make this idea usable, it must be specified which part of the sentence

expresses the relation or which one is the most likely to express it. We call this the context

selection problem.

Intuitively, the named entities themselves are the minimum of the sentence which must belong

to the selected context. However, which parts of the sentence are important except for the

named entities themselves?

Airola et al. (2008) report that 

�[i]t is widely acknowledged that the words between the candidate entities or connecting
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them in a syntactic representation are particularly likely to carry information regarding

their relationship�

but by the same token they argue that regarding only the nodes on the shortest  path may

exclude relevant words in �many simple cases�, e.g.:

P1 is a P2 binding protein.

Airola  et  al.  (2008)  solve  this  problem through  assigning  different  weights  to  structures

outside of the shortest path.

We propose two alternative solutions to the context selection problem. Both of them use the

idea to include graph elements within a  fixed range around some �center�.  We have two

proposals what this �center� could be. Firstly, both entity candidates are considered as the

�center� for the context selection and secondly, the shortest path itself constitutes the �center�.

Based  on  these  two  context  selection  strategies,  we  have  designed  two  spectrum  graph

kernels. Their detailed descriptions can be found in the following two sections.

4.2.3 d-Entity Context Spectrum Kernel

This kernel adopts the first strategy for the context selection. So, to compare two sentences

the following steps need to be performed:

1. In both sentences, select all dependency graph nodes which are within the distance d

from the candidate entities. The distance between a node  n and the candidate entity

node e is equal to the length of the shortest path between n and e.

2. For the contexts selected in both sentences, all possible q-grams are generated. So two

sets of q-grams are obtained, one for each sentence.

3. For each q-gram from the first set, the best match from the second set is found.

4. The match scores of the best matches are summed together. This sum represents the

value of the d-entity context spectrum kernel function for the two input sentences.

We have tested this kernel with both tolerant and Levenshtein matching but the best result in

terms  of  AUC on AImed corpus  we could reach  was 0.56.  Thus we have  resigned from

evaluating this kernel in depth.
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4.2.4 k-Band Shortest Path Spectrum Kernel (kBSPS)

The kernel  presented in this  section reflects  the argument  of Airola et  al.  (2008) that  the

shortest path is not enough for relation extraction. Except for the shortest path between the

candidate  entities,  dependency graph  nodes  and  dependencies  within  distance  k from the

shortest  path  are  included  in  the  selected  context.  The  exact  method  for  comparing  two

sentences is the following:

1. In both sentences, find the shortest path P between the candidate entities e1 and e2.

2. In both sentences, select all dependency graph nodes which belong to P or which are

within the distance  k from  P. The distance between a node  n and  P is equal to the

length of the shortest path between n and node m, where mÎP.

3. For the contexts selected in both sentences, all possible  q-grams of lengths between

qmin and qmax are generated. So two sets of q-grams are obtained, one for each sentence.

4. For each q-gram from the first set, the best match having the same q from the second

set is found.

5. The match scores of the best matches are summed together. This sum represents the

value of the kBSPS kernel function for the two input sentences.

Allowing for several  q-s between  qmin and  qmax bears some resemblance to the listing of all

possible graph paths  in  all-paths  graph kernel  of  Airola et  al.  (2008).  However,  we have

evaluated the kBSPS kernel  only with a very limited set of  qmin and  qmax max values (see

Section 6.2).

We have tested both tolerant matching and Levenshtein distance variants of the kBSPS kernel.

Tolerant matching has shown much better accuracy and speed than Levenshtein distance. The

results in terms of AUC as well as precision, recall and f-measure can be seen in Chapter 7.
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5 Evaluation Methods and Metrics

As noted earlier in Chapter  2, the use of a statistical classifier has two phases: the first one

being the learning on an annotated corpus and the second being the actual classification of

new,  previously  unseen  examples.  When  devising  a  novel  classification  method,  it  is

important to be able to assess how accurate the method is in the second phase. In this chapter

we will  firstly present metrics, which can be used for the performance quantification and

secondly,  we  will  explain  the  concept  of  cross-validation �  a  method  for  systematic

partitioning of the annotated resource into training and evaluation part.

5.1 Precision, Recall and F-Measure

Precision, recall  and  F-measure are  a  de facto standard for  the evaluation of  information

extraction methods. To define themselves, we need to define some basic notions first:

Definition  5.1: Gold standard (GS) � a set of examples with proper classification labels

assigned to them. �Proper� means here that for the purposes of evaluation, the are no doubts

about the correctness of the labels. The correctness is usually guaranteed by some trusted

instance, e.g. a human expert.

Definition 5.2: Prediction � a set of examples, which contains the same examples as GS, but

they are labeled by the method, which is being evaluated.

Definition 5.3: Positives � the subset of prediction, which contains only examples labeled as

positive by the method.

Definition 5.4: Negatives � the subset of prediction, which contains only examples labeled as

negative by the method.

The evaluation measures defined here are based on the comparison of prediction with the gold

standard. Any mismatch between the prediction and gold standard is considered to be an error.

There are errors of two kinds:

Definition 5.5: False positives (FP) � the set of examples, which were labeled as positive by

the method, but are labeled as negative in the GS.

Definition 5.6: False negatives (FN) � the set of examples, which were labeled as negative

by the method, but are labeled as positive in the GS.
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Analogically, the examples, which were labeled correctly by the evaluated method, can be

divided into two �true� groups:

Definition 5.7: True positives (TP) � the set of examples, which were labeled as positive by

the method and are labeled as positive in the GS.

Definition 5.8: True negatives (TN) � the set of examples, which were labeled as negative

by the method  and are labeled as negative in the GS.

Having defined the building blocks,  we can continue with the definition of precision and

recall.

Definition 5.9: Precision (P)

Vertical bars denote cardinality, i.e. the number elements of the given set. E.g. | M | stands for

the number of elemenst of the set M.

Definition 5.10: Recall (R)

P =
�TP�

�TP���FP�

R =
�TP�

�TP���FN�
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Figure 5.1: TP, FP, TN, FN Diagram.
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Definition  5.11: F-measure  (F) is  a  combination  of  precision  and  recall,  namely  their

weighted harmonic mean:

�F-score� and �F1 measure� are synonyms of �F-measure�.

F-measure  as  a  general  reference  measure  in  information  extraction  has  been  severely

criticized by Pyysalo et al. (2008) and Airola et al. (2008). They have made an extensive

comparative evaluation of two extraction methods on five distinct corpora using F-measure.

Their results have revealed, that the choice of corpus has a stronger impact on the result in

terms of F-measure than the choice of the extraction method. As a consequence of this, an F-

measure performance of different methods cannot be meaningfully compared, when computed

on different evaluation resources.

Airola et al. (2008) argue, that this is due to the fact, that F-measure is very sensitive to the

underlying positive/negative pair distribution in the corpus:

�[F]or example, halving the number of negative test examples is expected to approximately

halve the number of false positives at a given recall point. Thus, the greater the fraction of

true interactions in a corpus is, the easier it is to reach high performance in terms of F-

score.�

5.2 Area Under the Receiver Operating Characteristics Curve (AUC)

Airola  et  al.  (2008)  propose  the  area  under  the  receiver  operating  characteristics  curve

(AUC)  measure  (Hanley  and  McNeil,  1982)  as  a  replacement  for  F-measure.  Unlike  F-

measure, AUC is invariant to the class distribution of the used dataset. The AUC measure

corresponds to the probability that given a randomly chosen positive and negative example,

the system will be able to correctly distinguish which one is which (Airola et al., 2008). The

AUC values range between 0.5 (random classifier) and 1.0 (perfect classifier).

Airola et al. (2008) present the following definition of AUC:

Definition 5.12:

F =
2�P�R

P�R

AUC =
�
i =1

m+

�
j =1

m-

H �x i�y j �

m+�m -
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where m+ and m- are the numbers of positive and negative examples, respectively, and

x1 , ... , xm
+

are real valued predictions of the system for the positive, and y 1 , ... , y m
+

for

the negative examples, and H is defined as

Definition 5.13:

Note that �positive� and �negative� in this definition mean positive and negative in the gold

standard (GS).  Hence,  to draw a link with the true/false  positive/negative terminology of

Section 5.1, the following relationships can be stated:

The definition  5.12 of AUC is intended for systems, which produce  real valued outputs in

such a way, that the examples considered to be most likely to belong to the positive class

should receive high output values and vice versa, the examples considered to be most likely to

belong to the negative class should receive low output values. Note, that there are no bounds

or normalization of the system outputs imposed by the definition. The only thing that matters

is, if the difference of the outputs for a given pair of golden positive and golden negative is

lower than, equal to, or greater than zero.

However, the situation is slightly simpler with binary classifiers which return only two fixed

labels, e.g. �+1� and �-1� for positive and negative instances respectively. Within this theses,

the SVM is viewed as such one. For such classifiers, the AUC definition can be reformulated

to mention only the numbers  of  TNs,  TPs,  FPs and FNs, while the function H and the

[x i , y j ] pairs will be used only implicitly.

Thus, suppose that the system under evaluation returns only two fixed labels �+1� for positive

and �-1� for negative class. Then there are four possible valuations of the expression x i�y j

from the Definition 5.12:

1. xi is a true positive and yj is a true negative: x i�y j = 1 � ��1� = 2

H �r � = { 1 if r�0

0.5 if r=0

0 otherwise

m+ = �TP� � �FN�

m- = �TN� � �FP�
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2. xi is a true positive and yj is a false positive: x i�y j = 1 � 1 = 0

3. xi is a false negative and yj is a true negative: x i�y j = �1 � ��1� = 0

4. xi is a false negative and yj is a false positive: x i�y j = �1 � 1 = �2

These valuations also directly determine the value of H �x i�y j � :

1. xi is a true positive and yj is a true negative:

H �x i�y j � = H �1 ���1�� = H �2� = 1

2. xi is a true positive and yj is a false positive:

H �x i�y j � = H �1 � 1� = H �0� = 0.5

3. xi is a false neg. and yj is a true neg.:

H �x i�y j � = H ��1 � ��1�� = H �0� = 0.5

4. xi is a false neg. and yj is a false positive:

H �x i�y j � = H ��1 � 1� = H ��2� = 0

Further, we know, how often each of the named valuations occurs in the explicit enumeration

of all possible [x i , y j ] :

1. there are �TP� � �TN� pairs with true positive xi and true negative yj.

2. there are �TP� � �FP� pairs with true positive xi and false positive yj

3. there are �FN� � �TN� pairs with false negative xi and true negative yj

4. there are �FN� � �FP� pairs with false negative xi and false positive yj

Hence  we  do  not  need  to  bother  with  explicit  enumerating  of  all  possible [x i , y j ] and

summing their H �x i�y j � together. Instead, it is enough to sum up the known numbers of

the four possible evaluations multiplied with their H:

Definition 5.14:

AUC =
�TP���TN��H �2� � �TP���FP��H �0� � �FN���TN��H �0� � �FN���FP��H ��2�

m+�m-

=
�TP���TN� � �TP���FP��0.5 � �FN���TN��0.5

��TP���FN�� � ��TN���FP��
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The goal of this reformulation is purely practical: it is easier just to count TNs, TPs, FPs and

FNs, than to explicitly enumerate all [x i , y j ] pairs. This especially holds for those systems

which  already  provide  precision  and  recall  as  a  measure  of  their  performance.  In  such

systems, the TN, TP, FP and FN numbers are usually already there for the computation of

precision  and  recall.  To  compute  AUC,  these  numbers  only need  to  be  plugged  into  the

reformulated AUC formula. This is exactly the case for SVMlight software used in experiments

which are documented later in this thesis. Only a minor modification to the original source

code of Thorsten Joachims was needed to output the AUC together with precision, recall and

F-measure.

5.3 Cross-Validation

To estimate the performance of a statistical classifier trained on an annotated resource, one

needs another resource on which the accurateness of the classifier could be tested. This testing

resource should be annotated in the same way as the training corpus, but it must not share any

single example with the training corpus. This is important, because training a statistical model

on  the  same  (or  overlapping)  data  as  is  used  for  proving  its  correctness  can  lead  to

overestimation of the method's performance (Hastie et al., 2001).

In the field of information extraction the annotated resources are very costly. Cross-validation

is a method which allows for training and testing with sparse resources. It prescribes, how to

repeatably partition the resource itself into a training and testing part. The partitioning rule

usually produces some array of splits, on which the method is trained and tested sequentially

several times. The final result of the evaluation (either in terms of F-measure or in terms of

AUC) is obtained through averaging the individual runs' results (Hastie et al., 2001).

In k-fold cross-validation, the rule is to divide the resource into k parts of roughly equal size.

The method under evaluation is then run k-times, each time taking one of the parts for testing

and the union of the remaining parts for training.

Another variant of cross-validation is the leave-one-out strategy. It is actually a special case of

k-fold cross-validation, namely the one having  k equal to the number of examples of  the

whole resource.

Airola et al. (2008) drive the data independence provision to further subtleties: They argue,

that the cross-validation splits must be done at least on the level of documents. They raise the
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following objection against folds on the level of sentences or named entity pairs (i.e. below

the document level):

�[C]onsider  two  interaction  candidates  extracted  from the  same  sentence,  e.g.  from  a

statement of the form "P1 and P2 [...] P3", where "[...]" is any statement of interaction or

non-interaction. Due to the near-identity of contexts, a machine learning method will easily

learn to predict that the label of the pair (P1, P3) should match that of (P2, P3). However,

such "learning" will clearly not generalize. This approach must thus be considered invalid,

because allowing pairs generated from the same sentences to appear in different folds leads

to an information leak between the training and test sets.�

In accordance with Airola et  al.  (2008) the classifiers presented within this thesis will  be

evaluated using 10-fold document-level cross-validation on the learning format corpora. 

Antti Airola has kindly provided the splits which were used in Airola et al. (2008). Therefore,

the results presented here will be directly comparable with the results presented in Airola et al.

(2008). Airola et al. (2008) report, that the same splits for Aimed corpus were also used by

Bunescu  and  Mooney (2006),  Giuliano  et  al.  (2006),  Van  Landeghem  et  al.  (2008)  and

possibly some others.

5.4 Run Time Measurement

The  times  needed  for  the  learning  and  for  the  actual  classification  are  very  important

benchmarks of the evaluated kernels. We have used the SVMlight build-in time measurement. It

is based on subtracting the  clock() C function return values at the end of the program

execution from those at  the beginning of  the program execution.  This method makes the

measured time dependent on the machine load during execution and on the processor speed.

Further,  it must be noted, that  we have used two distinct machines with different � albeit

similar � processors and possibly different load across time. Thus, the run times measured for

ST, SST, PT and spectrum tree kernel implementations are only roughly comparable.

The times for kBSPS kernel are probably overoptimistic for higher qmax-s as the shortest path

search and q-grams listing were accomplished within preprocessing. The time benchmarks for

qmax = 2 are less biased as there is no overhead for listing bigrams � these are already there in

the output of any dependency parser.
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6 Experimental Setup

In this chapter, we provide detailed description of our experimental setup.

6.1 Preprocessing

6.1.1 Entity-Token Mapping

The Section  3.1.1 has demonstrated, that in the learning format, there is no guarantee of a

one-to-one correspondence between named entity boundaries and token boundaries. However,

the PPI extraction methods evaluated within this chapter make use of syntactic information

and the smallest part of the sentence text, they can wok with, is token. This is also the finest

level, where they can recognize named entities. So, for these methods to work, it is necessary

to adopt some clear entity-token mapping concept.

Actually, the same problem must have been solved by Airola et al. (2008) for their all paths

kernel to work. In the named paper, no details on such a mapping can be found. Antti Airola

has revealed their  solution in personal  communication:  every token, which at  least  partly

overlaps  with  an  entity,  is  marked  as  entity.  This  strategy  will  be  adopted  also  in  the

experiments presented later in this chapter.

6.1.2 Entity Blinding

Entity  blinding  is  a  common  preprocessing  step  in  relation  extraction  systems.  It  is  a

replacement of all named entity occurrences in an example sentence with some generic string,

e.g. _ENTITY_. Its effect is twofold: (1) it is a way to �inform� the classifier, where in the

example  sentence  the  named  entities  are  located  and  (2)  it  ensures  the  generality  of  the

learned model, as we are not interested in a model which can predict a presence of relation

between some particular entities. Instead we want to obtain a model, which works for any

entity in the given context.

As noted in Section  3.1, the examples used by a statistical classifier correspond to named

entity pairs rather than sentences. So, out of a sentence with n pairs, exactly n examples are

generated. For this reason, it is important to distinguish between the named entities which

belong  to  the  pair  under  consideration  from  those,  which  do  not.  So,  two  labels,  e.g.
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_ENTITY_1_ and _ENTITY_2_ are designated for use in place of the first and the second

entity of the pair under consideration, respectively, and another special label, e.g. _ENTITY_

is used in place of named entities, which do not belong to the pair under consideration.

Due to  the  fact,  that  named entities  may overlap  on  the  level  of  tokens,  the  situation is

possible, in which a single token overlaps both with the first and the second entity. In such

cases, the proposal of Antti Airola (personal communication) will be followed, according to

which a special label, e.g. _ENTITY_1_AND_2_ will be dedicated for this situation.

We demonstrate the entity blinding on an example. Consider the sentence d108.s909 from

AImed corpus:

p53 transcriptional activation mediated by coactivators TAFII40 and TAFII60 .

There are 3 named entities annotated in this sentence; they are highlighted in bold. 3 distinct

pairs can be formed out of these entities:

1. + [p53, TAFII40]

2. + [p53, TAFII60]

3. � [TAFII40, TAFII60]

The pairs 1 and 2 depict a relation, while pair 3 depicts no relation. Out of these 3 pairs, 3

blinded learning examples can be generated in the following way:

1. +  _ENTITY_1_ transcriptional  activation  mediated  by coactivators  _ENTITY_2_

and _ENTITY_ .

2. +  _ENTITY_1_ transcriptional activation mediated by coactivators  _ENTITY_ and

_ENTITY_2_ .

3. �  _ENTITY_ transcriptional activation mediated by coactivators  _ENTITY_1_ and

_ENTITY_2_ .

In this way, we have obtained the examples for training our kernels.

6.1.3 Special Preprocessing Steps for some Kernels

The kernels of other authors presented in Section  4.1 are defined for trees. Hence, it is not

possible  to  apply  them  directly  to  dependency  graphs  contained  in  the  learning  format
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corpora. Thus, to use these corpora together with the named kernels, constituent trees must be

generated in a special preprocessing step. Chaniak-Johnson-McCloski Parser (see Chapter 10

Software and Corpora) was used for this. Further, the terminal symbols of the constituent tree

parses were mapped to the charOffsets of the original sentence text. This was necessary for

the blinding of named entities in the constituent tree parse. Finally, the blinded parses were

formated so that they comply with the expectations of the given kernel's implementation.

For the kBSPS kernel introduced in Section  4.2.4, the surface tokens were stemmed using

Porter stemmer (Porter, 1980). This has improved AUC by about 4%.

6.2 Parameters and their Optimization

As we have already seen in Chapters  2 and  4, both SVM and the evaluated kernels have

several parameters which have substantial impact on the overall performance of the system.

To determine the best  possible performance for the given kernel,  optimal values for these

parameters must be found. To accomplish this, we used a simple parameter space search. For

each parameter several values across its domain were chosen and then all parameter value

combinations were tested. Which values were explored for which kernels can be seen in Table

6.1. Later in Chapter 7, only the results for the best performing parameter set are presented.

SVM Parameters

c � characterization of the  soft  margin as introduced in Chapter  2;  actually a  trade-off

between training error and margin (from SVMlight documentation).

j � cost-factor, by which training errors on positive examples outweight errors on negative

examples (from SVMlight documentation).

Kernel Parameters

� �  decay factor  for  the length of  the child  sequences,  applicable to  ST, SST and PT

kernels.  It  penalizes  subtrees built  on child subsequences that  contain gaps (Moschitti,

2006a).

µ � decay factor for the height of the tree, applicable to PT kernel. It penalizes larger trees

(Moschitti, 2006a).

q � length of the counted q-grams, applicable to spectrum tree kernel.
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Normalization � all  of the evaluated kernels allowed for normalizing the counts to an

interval  between  0  and  1.  None  of  the  kernels  showed  better  performance  with

normalization turned on in random tests. Therefore the normalization was always off.

kBSPS Kernel Parameters

minq, maxq � minimum and maximum length of the counted q-grams.

t � the matching strategy

If  the  matching  strategy  t is  �t(olerant)�,  there  are  the  following  additional  parameters

applicable to the kBSPS:

k � the width of the shortest path context.

l � the score for a surface token match.

e � the score for a named entity match.

d � the score for a dependency match.
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6.3 Kernel Implementations

For the ST, SST and PT kernels introduced in Section 4.1, the implementation of Alessandro

Moschitti  was  used  (see  Chapter  10 Software  and  Corpora).  For  the  evaluation  of  the

spectrum tree kernel, Tetsui Kuboyama has kindly provided his Ruby implementation, which

we have recoded in C so that it could be integrated into SVMlight.

The kBSPS kernel was implemented in C by us. Its implementation is rather simplistic than

sophisticated.  The  shortest  path  search  as  well  as  q-gram  listing  are  accomplished  in  a

preprocessing step. The graph labels are replaced by numbers for faster comparisons. The
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Table 6.1: Parameter spaces for the individual kernels

Kernel Explored Values

HPRD50, IEPA, LLL AImed

ST c 8, 16

j 0.5, 1, 2 1, 2

0.2, 0.4, 0.6, 0.8, 1.0 0.4, 0.6, 0.8

SST c 1, 8, 16, 32, 64, 128

j 0.5, 1, 2 1, 2

0.2, 0.4, 0.6, 0.8, 1.0 0.4, 0.6, 0.8

PT c 8, 16

j 0.5, 1, 2 1, 2

0.2, 0.4, 0.6, 0.8, 1.0 0.4, 0.6, 0.8

0.2, 0.4, 0.6, 0.8, 1.0 0.4, 0.6, 0.8

c

j 0.5, 1, 2 0.5, 1, 2

q 2, 3 2, 3

c 0.015625, 0.0625, 0.25, 1 0.015625, 0.0625, 0.25, 1

j 0.5, 0.8, 1, 1.2, 2 0.8, 1, 1.2

1 1

2, 3 2, 3

k 0, 1 0, 1

t t, l, e

for l 1, 3, 6 1, 3, 6

e 1, 3, 6 1, 3, 6

d 1, 3, 6 1, 3, 6

Param.

0.015625, 0.0625, 0.25, 1, 4, 
8, 16, 64, 128, 256, 512

�

0.015625, 0.0625, 0.25, 1, 4, 
8, 16, 64, 128, 256, 512

�

0.015625, 0.0625, 0.25, 1, 4, 
8, 16, 64, 128, 256, 512

�

µ

SpT 0.015625, 0.0625, 0.25, 1, 2, 4, 
8, 16, 32, 64, 128, 256, 512

0.015625, 0.0625, 0.25, 
1, 4, 16, 64, 256

kBSPS

qmin

qmax

t(olerant), l(evenshtein), e(xact)

t = t
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time of these preprocessing steps is not included in the learning times in Tables 7.1 and 7.4.
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7 Experimental Results

We present our experimental results in four tables. The best results we could reach for the

given corpus and kernel combination can be seen in Table 7.1. The parameter sets which were

used in the experiments listed in Table 7.1 are viewable in Table 7.2. Table 7.3 compares the

AUC and F-measure value ranges from Table 7.1. Finally, in Table 7.4, we demonstrate some

properties of our kBSPS kernel.
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Table 7.1: The best results for the individual corpus and kernel combinations.

Corpus Kernel AUC P R F

1 AImed ST 0.611 0.399 0.333 0.358 229.4 18.2 2581

2 AImed SST 0.584 0.481 0.219 0.299 210.2 19.3 2918

3 AImed PT 0.579 0.520 0.202 0.284 2069.5 188.3 2371

4 AImed 0.598 0.314 0.389 0.340 199.9 20.7 2663

5 AImed 0.672 0.494 0.447 0.461 18.5 1.1 1802

6 AImed All-paths 0.848 0.529 0.618 0.564

7 AImed 0.879 0.635

8 HPRD50 ST 0.617 0.581 0.458 0.494 0.7 0.1 286

9 HPRD50 SST 0.607 0.670 0.336 0.423 0.5 0.1 337

10 HPRD50 PT 0.627 0.636 0.417 0.477 12.1 1.9 359

11 HPRD50 0.625 0.495 0.721 0.579 1.1 0.3 274

12 HPRD50 0.769 0.667 0.802 0.709 0.1 0.0 233

13 HPRD50 All-paths 0.797 0.643 0.658 0.634

14 IEPA ST 0.691 0.650 0.604 0.620 3.9 0.4 521

15 IEPA SST 0.679 0.650 0.558 0.591 3.1 0.4 542

16 IEPA PT 0.677 0.669 0.545 0.594 46.2 7.5 582

17 IEPA 0.680 0.626 0.618 0.615 4.0 0.9 548

18 IEPA 0.758 0.704 0.730 0.708 0.5 0.0 444

19 IEPA All-paths 0.851 0.696 0.827 0.751

20 LLL ST 0.724 0.803 0.622 0.685 1.1 0.0 201

21 LLL SST 0.690 0.742 0.665 0.682 1.7 0.0 225

22 LLL PT 0.723 0.743 0.789 0.748 28.7 1.2 214

23 LLL 0.628 0.697 0.621 0.606 1.7 0.3 203

24 LLL 0.785 0.768 0.918 0.822 0.1 0.0 179

25 LLL All-paths 0.834 0.725 0.872 0.768

Experim.
ID

Learn
Sec.

Classif.
Sec.

SV
Num.

SpT

kBSPS

Miwa

SpT

kBSPS

SpT

kBSPS

SpT

kBSPS
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Except for performance benchmarks in terms of AUC, precision, recall and F-measure, Tables

7.1 and  7.4 contain average times needed for learning and for the actual classification. The

last column in these tables presents the number of support vectors of the given classifier. This

number can be interpreted as a measure of the quality of the classifier or a measure of the

underlying kernel's ability to separate the data (lower is better in both cases).

For comparison, we also cite benchmarks for two state-of-the-art kernels in Table 7.1. These

are the all-paths graph kernel of Airola et al. (2008) and the combined kernel of Miwa et al

(2008). We have introduced them briefly in Section 4.1.5.

In terms of AUC, all-paths graph kernel of Airola et al. (2008) and the combined kernel of
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Table 7.2: Parameter sets which were used for the computation of the results presented in

Table 7.1.

Corpus Kernel Parameter Set

1 AImed ST

2 AImed SST

3 AImed PT

4 AImed c=0.0625, j=2, q=2

5 AImed

8 HPRD50 ST

9 HPRD50 SST

10 HPRD50 PT

11 HPRD50 c=0.0625, j=2, q=2

12 HPRD50

14 IEPA ST

15 IEPA SST

16 IEPA PT

17 IEPA c=0.03125, j=1, q=2

18 IEPA

20 LLL ST

21 LLL SST

22 LLL PT

23 LLL c=2, j=0.5, q=3

Experim.
ID

c=16, j=2, =0.8�

c=8, j=2, =0.4�

c=16, j=2, =0.4, µ=0.6�

SpT

kBSPS c=0.25, j=1.2, qmin=1, qmax=2, k=0, t=t, l=3, e=6, d=1

c=8, j=1, =0.6�

c=1, j=1, =0.4�

c=4, j=2, =0.8, µ=0.6�

SpT

kBSPS c=0.015625, j=2, qmin=1, qmax=3, k=0, t=t, l=1, e=1, d=6

c=128, j=0.5, =0.8�

c=16, j=0.5, =0.2�

c=8, j=2, =0.4, µ=0.6�

SpT

kBSPS c=0.25, j=0.5, qmin=1, qmax=2, k=0, t=t, l=1, e=6, d=6

c=64, j=0.5, =0.2�

c=128, j=0.5, =0.2�

c=128, j=0.5, =0.2, µ=0.6�

SpT
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Miwa et al. (2008) are clearly superior to all kernels evaluated here. On the other hand, again

in terms of AUC, our kBSPS kernel performs better than the four kernels from the literature.

On AImed, which was the biggest from the corpora used here, the ordering given by AUC is

the same as the ordering given by F-measure. However, there are exceptions to this rule on the

other three smaller corpora: On HPRD50, the AUC ordering

SST, ST, SpT, PT, kBSPS, All-paths

does not match the one given by F-measure:

SST, PT, ST, SpT, All-paths, kBSPS

Similarly, on LLL (the smallest of the used corpora), the ranking

SpT, SST, PT, ST, kBSPS, All-paths

given by AUC does not match the ranking given by F-measure:

SpT, SST, ST, PT, All-paths, kBSPS

In the IEPA rankings, there is only a minor mismatch between the position of SST and PT, the

difference between the AUC scores and F-measure scores being very small (0.002 and 0.003

respectively).

Notably, in terms of F-measure on the two smallest corpora (HPRD50 an LLL), our kBSPS

kernel performs better than the all-paths graph kernel.

Our results seem to justify the claim that AUC is more suitable for measuring the accuracy of

classifiers than F-measure. The AUC results on different corpora are much more stable than

the F-measure results. This can be clearly seen in  Table 7.3 where we list the differences

between best and the worst results of the individual kernels in terms of both AUC and F-

measure.  While AUC differences range between 0.054 and 0.144 (averagely 0.102) the F-

measure differences range between 0.204 and 0.464 (average 0.34).
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Despite some positive bias (see Section 5.4), the kBSPS kernel is very fast. We believe that it

would sustain a comparison with the other time benchmarks presented here even when the

time needed for the preprocessing steps would be added to times presented in Table 7.1.

Further,  the  time  benchmarks  seem  to  disagree  with  Moschitti's  (2006a)  claim  that  PT

complexity is lower than the one of SST. SST is an order of magnitude faster than PT. On the

other hand we can approve another observation of Moschitti (2006a) that SST performs very

similarly to  PT.  Hence,  allowing additional  structures  in  PT does  not  seem to bring  any

substantial advantage against SST.

ST performs surprisingly well on the most of the used corpora. Though working with a fairly

limited tree substructure space, on AImed, IEPA and LLL, it has outperformed SST, PT and

SpT kernels which make use of much larger spaces of substructures.
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Table 7.3: Comparison of the stability of AUC and F-measure.

Kernel AUC best AUC worst F best F worst

ST 0.724 0.611 0.113 0.685 0.358 0.327

SST 0.690 0.584 0.106 0.682 0.299 0.382

PT 0.723 0.579 0.144 0.748 0.284 0.464

0.680 0.598 0.082 0.615 0.340 0.275

0.785 0.672 0.113 0.822 0.461 0.361

All-paths 0.851 0.797 0.054 0.768 0.564 0.204

average 0.102 0.34

AUC diff F diff

SpT

kBSPS
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Impact of several kBSPS kernel features on its performance can be seen in Table 7.4. Firstly,

when comparing the Experiment 26 with Experiments 27 and 5, the impact of fuzzy matching

(see  Section  4.2.2.1)  is  clearly  recognizable.  In  experiment  26,  the  best  AUC result  was

reached with exact  matching,  while the experiments  27 and 5 show the best  results  with

Levenshtein and tolerant matching, respectively. Tolerant matching outperforms Levenshtein

both in terms of accuracy and speed. Note that though the time benchmarks in Table 7.4 are

also positively biased (see Section 5.4), they are all biased in the same way. Thus, they are

comparable among each other.

Secondly, the difference between the Experiments 28 and 5 of Table 7.4 reveals the influence

of  different  scores  for  Ls,  Es  and  Ds  in  tolerant  matching  (see  Section  4.2.2.1.1).  In

experiment 28,  L, E and D-matches were scored equally with 1, whereas in experiment 5

different (optimal) scores were used. The difference between the experiments 28 and 5 in

terms of AUC is not large. However, note that experiment 28 uses qmax = 3 which makes its

classifier slower.

Thirdly, Experiments 29 and 5 of  Table 7.4 can be used to see the impact of using qmax = 3

rather than qmax = 2. As already noted the classifiers with qmax = 3 are slower than those with
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Table 7.4: Benchmarks for several variants of kBSPS kernel on the AImed corpus. t is the

matching strategy with values e(xact), l(evenshtein) and t(olerant). For other parameters see

Section 6.2.

t AUC P R F

26 e 0.617 0.420 0.340 0.367 16.2 1.2 1919

27 l 0.655 0.440 0.433 0.429 60.1 3.4 1873

28 t 0.664 0.532 0.408 0.454 26.1 1.9 1882

29 t 0.667 0.535 0.415 0.460 24.0 1.7 1872

5 t 0.672 0.494 0.447 0.461 18.5 1.1 1802

Experim.
ID

Other
Parameters

Learn
Sec.

Classif.
Sec.

SV
Num.

c=1, j=1.2, k=0,
qmin=1, qmax=2

c=1, j=1.2, k=0,
qmin=1, qmax=2 

c=0.25, j=1.2, k=0,
qmin=1, qmax=3,
l=1, e=1, d=1 

c=0.0625, j=1.2, k=0,
qmin=1, qmax=3,
l=3, e=6, d=6 

c=0.25, j=1.2, k=0,
qmin=1, qmax=2,
l=3, e=6, d=1 
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qmax = 2. While the difference between qmax = 3 and qmax = 2 in terms of AUC does not seem to

be significant, there is a recognizable difference in precision and recall:  qmax = 3 results in

higher precision 

Fourthly, the comparison of Experiment 4 of Table 7.1 with Experiment 26 of Table 7.4 can

be interpreted as  showing contribution of  using dependency graphs instead of  constituent

trees. This is due to the fact that both experiments were performed with very similar kernels

while using different syntax representations: constituent trees were used in Experiment 4 of

Table  7.1 and  dependency  graphs  were  used  in  Experiment  26  of  Table  7.4.  The  AUC

improvement by 0.019 is less than we have originally expected; it has later led us to the idea

of fuzzy matching.

Finally, both experiments 5 and 29 of Table 7.4 were performed with k = 0. This means, that

selecting only the graph elements on the shortest path between the candidate entities for the q-

gram production has brought the best results. Thus, expanding the shortest path with nodes

neighboring with the shortest path (i.e. using e.g. k = 1) does not bring any improvement.
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8 Conclusion

We  have  surveyed  several  relation  extraction  methods  which  make  use  of  syntactic

information. We have experimented with 4 kernel functions from the literature and we have

designed some kernels ourselves. We have evaluated our most successful kernel and the four

kernels from the literature using a methodology which made it possible to compare our results

with those which are nowadays  considered state-of-the-art.  Our results  show that  a  fairly

simple method can outperform the sophisticated methods from literature. Compared with the

state-of-the-art benchmarks, our method lacks in accuracy. However, due to its simplicity, our

method is very fast.

Our method can be possibly improved by taking special care for self-interactions as done by

Miwa et al. (2008). Similarly, we consider the idea to experiment with different weighting of

short and long q-grams worth of experimenting.
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SVMlight: http://svmlight.joachims.org/, maintained by Thorsten Joachims, last visited 2009-

03-16; see also Joachims (1999).

Tree  Kernels  In  SVM-light: http://dit.unitn.it/moschitti/Tree-Kernel.htm,  maintained  by

Alessandro Moschitti from University of Trento, last visited: 2009-03-28; see also Moschitti

(2006a and 2006b). The �1.5-to-be-released� version used here is not publicly available yet �

Alessandro Moschitti has kindly sent it to us via e-mail.

Stanford Tools: http://nlp.stanford.edu/software/lex-parser.shtml maintained by The Stanford

Natural  Language  Processing  Group,  last  visited  2009-04-07;  see  also  �de  Marne e  et  al

(2006).

Charniak-Lease Parser: see next and Charniak and Lease (2005).

Charniak-Johnson-McCloski Parser: actually a Charniak-Johnson parser (Charniak and

Johnson, 2005) with David McCloski's model trained on biomedical resources (McClosky and

Charniak, 2008); http://bllip.cs.brown.edu/resources.shtml maintained by Brown Laboratory

for Linguistic Information Processing (BLLIP), last visited 2009-04-07

Five corpora (AImed, BioInfer, HPRD50, IEPA and LLL) in the learning format: http://

mars.cs.utu.fi/PPICorpora/GraphKernel.html,  maintained  by  Department  of  Information

Technology of University of Turku, last visited 2009-03-16; see also Pyysalo et al. (2008).
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