
ClaSP - Time Series Segmentation
Patrick Schäfer

∗

Humboldt-Universität zu Berlin

patrick.schaefer@hu-berlin.de

Arik Ermshaus
∗

Humboldt-Universität zu Berlin

ermshaua@informatik.hu-berlin.de

Ulf Leser

Humboldt-Universität zu Berlin

leser@informatik.hu-berlin.de

ABSTRACT
The study of biological or physical processes often results in long se-

quences of temporally-ordered values, aka time series (TS). Changes

in the observed processes, e.g. as a cause of natural events or inter-

nal state changes, result in changes of the measured values. Time

series segmentation (TSS) tries to find such changes in TS to deduce

changes in the underlying process. TSS is typically approached as

an unsupervised learning problem aiming at the identification of

segments distinguishable by some statistical property. We present

ClaSP, a novel and highly accurate method for TSS. ClaSP hierarchi-

cally splits a TS into two parts, where each split point is determined

by training a binary TS classifier for each possible split point and

selecting the one with highest accuracy, i.e., the one that is best

at identifying subsequences to be from either of the partitions. In

our experimental evaluation using a benchmark of 98 datasets, we

show that ClaSP outperforms the state-of-the-art in terms of accu-

racy and is also faster than the second best method. We highlight

properties of ClaSP using several real-life time series.

CCS CONCEPTS
• Computing methodologies → Unsupervised learning; •
Mathematics of computing→ Time series analysis.

KEYWORDS
Unsupervised, Self-Supervised, Segmentation, Change Points

ACM Reference Format:
Patrick Schäfer, Arik Ermshaus, and Ulf Leser. 2021. ClaSP - Time Series

Segmentation. In Proceedings of the 30th ACM International Conference on
Information and Knowledge Management (CIKM ’21), November 1–5, 2021,
Virtual Event, QLD, Australia. ACM, New York, NY, USA, 10 pages. https:

//doi.org/10.1145/3459637.3482240

1 INTRODUCTION
Recent years brought an explosion in applications for low-cost high

resolution sensors, for instance in mobile devices, systems and man-

ufacturing monitoring, or environmental and medical surveillance.

These sensors produce large amounts of unlabelled temporally-

ordered, real-valued sequences, also referred to as data series or

time series (TS). This leads to increasing interest in TS analytics,

∗
The first two authors contributed equally.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8446-9/21/11. . . $15.00

https://doi.org/10.1145/3459637.3482240

such as classification [4, 16], similarity search [28], or motif dis-

covery [25]. An important field is unsupervised TS analysis, often

used to gain an initial understanding of the data at hand. Research

problems include motif discovery [25], discord discovery [22], and

anomaly/outlier detection [5]. A particularly interesting problem

which we study in this paper is time series segmentation (TSS).

TSS aims at discovering regions of a TS that are (semantically) dis-

similar to neighboring regions. TSS is an important technology, as

it allows to infer properties of the underlying system by analysis

of the measurements, because shifts from one segment to another

are often caused by state changes in the process being monitored,

such as a transition from one operational state to another or the

onset of an unusual event. Change point detection (CPD) [30] is

the task of finding such shifts in the underlying signal, and a seg-

mentation is an ordered sequence of change points. A variety of

CPD and TSS algorithms have been proposed, see [3] for a sur-

vey. Many examples of domain specific solutions exist for medical

condition monitoring [6], climate change detection [15], or human

activity analysis [7]. In contrast, only few domain-agnostic TSS

algorithms exist, including FLOSS [17], Autoplait [24], and HOG-

1D [35]. FLOSS is the-state-of-the-art for TSS and CPD. It annotates

a TS with a bespoke arc curve, which spans from each offset in the

TS to its 1-NN subsequence. The offsets with the least crossings of

arc curves indicate the potential change points.

We present ClaSP (Classification Score Profile), a new and highly

accurate algorithm for CPD and TSS. ClaSP approaches segmenta-

tion by adapting a TS classifier to identify regions of similar shape.

The underlying assumption is that two adjacent segments of a TS

are separated by a change point, separating the TS into two parts

that are self-similar but dissimilar from the other. By first finding

the strongest change point, additional change points increasingly

refine the segmentation of the TS. The central idea of ClaSP is to

iteratively determine change points by finding the point in the TS

where the performance of a binary classifier, trained to separate

subsequences either to belong to the left or the right part, is highest.

This allows to use established methods from supervised TS analysis

for solving an unsupervised TS problem. A potential drawback of

this approach is the runtime necessary for training and evaluating a

flood of classifiers for all hypothetical splits. However, we show that

ClaSP, by relying on a k-NN classifier, achieves both highly accurate

CPD and TSS results and is very fast, because most of the work can

be factored out into a split point-independent preprocessing phase

that is based on a fast pairwise distance matrix computation for

overlapping subsequences, for which efficient algorithms exist [36].

Using this pairwise distance matrix, ClaSP then creates a Classifi-

cation Score Profile (ClaSP) from which change points can easily

be identified using a bespoke peak detection algorithm.

Figure 1 illustrates such a ClaSP together with the underlying

TS. The dataset originates from [26] and was preprocessed by [17].

It shows an EEG of a human brain with tonic-clonic seizure activity

https://doi.org/10.1145/3459637.3482240
https://doi.org/10.1145/3459637.3482240
https://doi.org/10.1145/3459637.3482240

500

0

500

1000

EEG recording of a Tonic-clonic Seizure

0 0.25 0.5 0.75 1s 1.25 1.5 1.75
Seconds

0.50

0.60

0.70

0.80

C
la

S
P

 M
et

a-
P

ro
fil

e

Pre-Seizure

P
re

d
ic

te
d

 C
ha

ng
e

Seizure Post-Seizure

P
re

d
ic

te
d

 C
ha

ng
e

P
re

d
ic

te
d

 C
ha

ng
e

Figure 1: A scalp right central electrode recording of an EEG
from a subject showing a tonic-clonic seizure [26]. It con-
tains three segments that capture pre-seizure, seizure and
post seizure EEG activity. The three local maxima in ClaSP
(bottom)highlight potential change points based on changes
in the underlying shapes of the divided segments, represent-
ing the three activities.

after about 1 minute of recordings. The three local maxima in ClaSP

(bottom) mark the change points between dissimilar segments. The

first segment captures the pre-seizure, the two following the seizure

(made of two distinct phases), and the last segment corresponds to

post-seizure activities. The global maximum is between the first

and second segment (first red vertical line) and matches the start

of the seizure. The specific contributions of this paper are:

(1) We present ClaSP, a novel method for CPD and TSS based on

annotating a TS with a bespoke classification score profile

using concepts of self-supervision [31].

(2) We provide an efficient implementation of ClaSP which

achieves a runtime as fast as its competitor methods.

(3) ClaSP has just a single hyper-parameter, which is the length

of subsequences used as features for the self-supervised clas-

sification. We describe methods to automatically determine

this hyper-parameter for a given TS.

(4) We performed a series of experiments on CPD and TSS us-

ing a benchmark of 98 datasets [17] and compare results to

five state-of-the-art competitors, namely Autoplait, FLOSS,

BinSeg-𝐿2, BOCD, and one simple baseline, namely Window-

L2 [30]. ClaSP exhibits the lowest overall segmentation error

and achieves best segmentations in 80 out of the 98 cases. Its

runtime is lower than that of its 2nd best competitor FLOSS.

(5) An additional advantage of ClaSP is that the classification

score profile allows for intuitive visualizations, making the

segmentation decisions easily interpretable for humans.

The remainder of this paper is organized as follows: Section 2

presents background and definitions. Section 3 introduces related

work. Section 4 presents the ClaSP method. Section 5 presents our

experimental evaluation and Section 6 concludes the paper.

2 BACKGROUND AND DEFINITIONS
In this section, we formally introduce the concepts of time series

(TS), subsequences, windows, and the change point detection (CPD)

and segmentation (TSS) problem.

Definition 1. A time series 𝑇 is a sequence of 𝑛 ∈ N real values,
𝑇 = (𝑡1, . . . , 𝑡𝑛), 𝑡𝑖 ∈ R. The values are also called data points.

Definition 2. A TS is stationary if any of its values are indepen-
dent of the time they were observed.

Intuitively speaking, a stationary TS exhibits constant behavior,

leading to time-independent mean, variance, and auto-correlation.

There exists no trend or seasonality.

Definition 3. Given a TS 𝑇 , a subsequence 𝑇𝑠,𝑒 of 𝑇 with start
offset 𝑠 and end offset 𝑒 consists of the contiguous values of 𝑇 from
position 𝑒 to position 𝑠 , i.e.,𝑇𝑠,𝑒 = (𝑡𝑠 , . . . , 𝑡𝑒) with 1 ≤ 𝑠 ≤ 𝑒 ≤ 𝑛. The
length of 𝑇𝑠,𝑒 is |𝑇𝑠,𝑒 | = 𝑒 − 𝑠 + 1.

We sometimes call subsequences windows and their length width.

Definition 4. A segmentation of a TS 𝑇 into 𝐶 + 1 segments
is an ordered sequence of change points (or splits) 𝑡𝑖1 ,...,𝑡𝑖𝐶 with
1 < 𝑖1 < · · · < 𝑖𝐶 < 𝑛.

Definition 5. The problem of time series segmentation (TSS) is to
find a meaningful segmentation of a given TS𝑇 under the assumption
that 𝑇 was generated by a process with discrete states. A segmenta-
tion is considered meaningful when the change points between two
subsequent segments correspond to state changes in the underlying
process.

Our definition follows [17] bymaking the underlying assumption

that a physical process has discrete states which lead to changes

in the measured values. This is opposed to problems such as trend

detection [30]. ClaSP, the method for TSS we propose in this pa-

per, is based on time series classification (TSC), though it solves the

unsupervised TSS problem. TSC is the task of predicting a class

label for a TS from a predefined set of labels [4]. A TS classifier is

a function learned from a set of labeled TS (the training data). It

takes an unlabeled TS as input, and outputs a label. We apply TSC

to TSS based on the idea of self-supervision [31]. Self-supervised

learning is a form of unsupervised learning in which the data gen-

erates the supervision (labels). In representation learning [23], for

example, self-supervision refers to learning representations of the

data without annotated labels, purely based on the data.

3 RELATEDWORK
Truong et al. [30] present a review of selected domain-specific meth-

ods for CPD and TSS. They compare methods regarding their cost

function, searchmethod, and additional constrains, e.g., whether the

number of change points is given beforehand. They discern three

main classes: (a) Likelihood-based methods, (b) Kernel-based meth-

ods, and (c) Graph-based methods. Likelihood-based methods split

TS into consecutive windows and compare the probability distribu-

tions of windows [21]. If these differ significantly, a change point is

introduced. Kernel-based methods also split the TS into windows

and then use a kernel-based statistical test to assess the homogene-

ity between subsequent windows [18]. Graph-based methods first

infer a graph by mapping observations (i.e. windows or sets of TS)

to nodes and connecting nodes by edges if their pairwise similarity

exceeds a predefined threshold. Next, a bespoke graph statistic is

applied to split the graph into sub-graphs leading to change points

in the TS [8]. So-far domain-agnostic segmentation solutions have

seen less popularity than domain-specific methods. The three most

prominent of these algorithms are FLOSS [17], Autoplait [24], and

HOG-1D [35]. FLOSS [17] uses the proximity of a window to the

most similar other window to create a bespoke arc curve, which is

a vector that contains for each index 𝑖 the number of arcs that cross
over 𝑖 . Local minima of this number indicate boundaries (change

points) of self-similar regions. FLOSS also published a TSS/CPD

benchmark, which we use in our experiments (see Section 5). Au-

toplait [24] determines segments of a TS using the Minimum De-

scription Length (MDL) principle to recursively test if a region

should best be modelled by a single Hidden Markov Model (HMM)

or two HMMs. A recent survey compared CP methods [32]. The

best methods in their evaluation were Binary Segmentation (Bin-

Seg) [29] and Bayesian Online Changepoint Detection (BOCD) [1].

We compare ClaSP to these 5 competitors regarding accuracy and

runtimes in Section 5. In contrast to previous approaches, ClaSP

uses self-supervision to apply classification techniques to the prob-

lem of TSS. A similar technique is used in [20], but in this case

applied for detecting differences between two data sets. We use this

rationale for comparing potential binary splits of a TS. Note that

our idea is very different from supervised TSS, where a model is

trained on TS with annotated segments [10]; in unsupervised TSS,

no such annotation is required or given.

4 CLASP - CLASSIFICATION SCORE PROFILE
Classification Score Profile (ClaSP) is a novel method for TS segmen-

tation based on self-supervision. Segments may vary in length and

are divided by change points (CP) – short: splits. We first give an

intuitive overview of our method, before we explain its individual

steps in detail in Sections 4.1 to 4.5, using CPD as running motiva-

tion. We then describe the extensions necessary for approaching

the general segmentation problem in Section 4.6. The workflow is

shown graphically in Figure 2. Pseudo code is shown in Algorithm 1.

Given a TS𝑇 with length |𝑇 | = 𝑛, ClaSP first computes a classifi-

cation score profile. To this end, we first partition𝑇 into overlapping

windows of a fixed length𝑤 (Algorithm 1, line 4). Next, hypothetical

splits are generated for increasing offsets 𝑖 ∈ [𝑤 + 1, . . . , 𝑛 −𝑤 − 1],
and certain characteristics are extracted for each window as fea-

tures for the later used classifier (line 5). We transform each such

split into a binary classification problem 𝑌 = {0, 1} by attaching

label 0 (1) to all windows to the left (right) of the split point. A

binary k-Nearest-Neighbour classifier (k-NN) is trained on these

features and evaluated in a cross-evaluation setting (lines 6-9). We

interpret the cross-validation score of the classifier as a measure

of how dissimilar windows from the left are to windows from the

right, where a high score means low similarity between segments.

This degree of intra-segment similarity (self-similarity) is recorded

for each offset 𝑖 (line 8), together forming the classification score

profile for 𝑇 . Every local maximum in this profile represents a po-

tential change point, as it is a point where the distinction between

the TS part to the left and that to the right is the highest (compare

Figure 1). ClaSP has a single hyper-parameter, the window-length

𝑤 used to generate labelled windows for training and evaluation.

Definition 6. Given a TS 𝑇 and a window-length 𝑤 , a ClaSP
is a real-valued sequence 𝑆 of length 𝑛. The 𝑖-th value in 𝑆 is the
cross-validation score 𝑠 ∈ [0, 1] of a classifier 𝐶 trained on a binary

...
...
...

...
...
...

...
...
...

...
...
...

...
...
...

...
...
...

...
...
...

...
...
...

...
...

(a) Windowing

w0
0

...

w600
0

...

w1.2k
0

...

w1.8k
1

...

w2.4k
1

...

w3.0k
1

...

w3.6k
1

...

w4.2k
1

...

w4.8k
1

...

split point s=1.8k

(b) Labeling splits

0

...

0

...

0

...

0

...

0

...

1

...

1

...

1

...

1

...

split point s‘=3k

Time
Series:

Train
Windows

Test
Windows​

Train
Windows

Train
Windows

Train
Windows

Test
Windows

Test
Windows

Train
Windows

(c) Cross-Validation for each Split, e.g. s’=3k

(d) ClaSP

0.5
0.6
0.7
0.8
0.9

C
la

S
P

 S
co

re

e.g. ROC/AUC=0.8
at s’=3k

s‘=3k
ROC/AUC=0.8

s=1.8k
ROC/
AUC=0.65

Figure 2: (a) A TS (in red) is split into overlapping windows
(in black). (b) Thesewindows are labelledwith 0 forwindows
to the left and 1 to the right of hypothetical split points, ex-
emplary depicted for indexes 1800 and 3000. (c) For each hy-
pothetical split, a binary classifier is trained and evaluated
using cross-validation. (d) Finally, the ClaSP is created from
the cross-validation score of the classifiers.

classification problem with labels 𝑌 = {0, 1}. For index 𝑖 ∈ [𝑤 + 1, 𝑛−
𝑤 − 1] training samples are created by assigning label 𝑦 = 0 to all
windows to the left𝑊𝐿 =

⋃
𝑗 ∈[1,...,𝑖−𝑤]

𝑇𝑗, 𝑗+𝑤 and𝑦 = 1 to all windows

to the right𝑊𝑅 =
⋃

𝑗 ∈[𝑖−𝑤+1,...,𝑛−𝑤+1]
𝑇𝑗, 𝑗+𝑤 . Values 𝑆 [1, . . . ,𝑤] and

𝑆 [𝑛 −𝑤 − 1, . . . , 𝑛] are set to 0, giving a very small blind spot.

In the following subsections we elaborate on (4.1) the choice of

using a k-NN classifier to achieve high classification speed, (4.2)

the pre-computation phase of ClaSP, (4.3) the computation of cross-

validations for hypothetical split points, (4.4) the choice of a scoring

metric for a classifier, and (4.5) the problem of selecting the proper

values for hyper-parameter 𝑤 . Section 4.6 describes the applica-

tion of ClaSP for TSS, and Section 4.7 studies the computational

complexity of our method.

4.1 k-NN classifier in ClaSP
ClaSP is computed using the k-nearest-neighbour (NN) classifier,

which has some nice properties that can be exploited to reduce com-

putations when training and evaluating models again and again for

the different split points. Recall that a 𝑘-NN classifier classifies a

given sample by finding the 𝑘 nearest samples in the training data

Algorithm 1 Classification Score Profile

1: procedure calc_clasp(T, clf,𝑤)

2: ClaSP← initialize array of length |𝑇 | with 0

3: 𝑌𝑡 ← initialize array of length |𝑇 | with 1 ⊲ all in𝑊𝑅

4: 𝑊 =
⋃

𝑗 ∈[1,...,𝑛−𝑤+1]
𝑇𝑗, 𝑗+𝑤 ⊲ all windows from 𝑇

5: 𝑘𝑁𝑁𝑠 = knn_profile(clf,𝑊)
6: for 𝑖 ∈ [𝑤 + 1, . . . , |𝑇 | −𝑤 − 1) do ⊲ For each split

7: 𝑌𝑡 [𝑖 −𝑤] ← 0 ⊲ add current window to𝑊𝐿

8: ClaSP[𝑖] ← cross_validate(clf, 𝑘𝑁𝑁𝑠,𝑌𝑡)

9: end for
10: return ClaSP

11: end procedure

using a predefined distance function. It then determines the pre-

dicted label by aggregating the labels of the 𝑘-NN training samples.

The important property of this procedure is that the pairwise

distances between windows and thus the 𝑘-NNs for any window

are independent of the ground truth labels of the windows. This
means that we can actually precompute the 𝑘-NNs of any window

once (Algorithm 2). The training and evaluation at a split point

𝑖 then boils down to looking up the labels of these 𝑘 neighbors

in the train split of the cross-validation for every window in the

test split, and aggregating them into a majority label. Thus, the

expensive distance calculations have to be performed only once,

and relabelling is performed on demand for every split point.

Figure 3 illustrates this idea for 𝑘 = 3. First, 3-NNs are computed

for each window. Note that an NN is represented by the offset of a

window, i.e. 302 for 𝑇302,302+𝑤 . At the left of the split (e.g. 1.2k in

the centre and 3k in the bottom), we assign class label 0 (blue), and

label 1 (orange) to the right of the split. For the split at 1.2k (centre)

there are five windows, two to the left of the split and three to the

right that have their 3-NN windows outside of their own segment,

indicated by the orange and blue color. This leads to a classification

error, as the classifier predicts the label of the windows in the wrong

segment. When moving the split from 1.2k to 3k the ground truth

𝑌𝑡 changes for some windows (but not their distances), indicated

by the change in colors. At the same time, the labels of the 3-NN of

those windows, which were previously mislabeled, change in the

left and right segment. Thus, for the bottom split, all 3-NN point to

windows within the same segments, i.e. class label, resulting in a

high classifier accuracy.

knn_profile(clf,𝑊) (line 5 of Algorithm 1) computes the k-

NNs and assigns these to 𝐹 . Once we have pre-computed these

k-NN offsets for each window, we only need to change the ground

truth labels of the NN windows (line 7) to be able to compute a new

cross-validation score. We only have to change one label, equal to

flipping one bit, when moving the split point from 𝑖 to 𝑖 + 1.

4.2 Precompute k-NN-Profile
We discuss the details of knn_profile() (Algorithm 1 line 5) which

pre-computes the 𝑘-NNs for every window from 𝑇 using the z-

normalized Euclidean distance on the raw values. Algorithm 2 takes

the set𝑊 of windows and the k-NN classifier CLF as input, and

returns an array of the offsets of the 𝑘-NNs for each window. First,

it computes the pairwise window distance matrix (line 5). It then

w0

...
w600

...
w1.2k

...
w1.8k

...
w2.4k

...
w3.0k

...
w3.6k

...
w4.2k

...
w4.8k

...
w5.4k

...

153NN1

450NN2

302NN3

2.4k

1.4k

1.2k

1.4k

601

2.4k

2.1k

2.6k

1.5k

597

1.4k

1.2k

4.1k

3.4k

3.4k

4.2k

4.2k

3.2k

3.1k

3.8k

3.6k

4.3k

4.3k

4.3k

6.2k

6.0k

6.0k

Relabeling the Ground Truth Y
t

split point s=1.2k

yt ...0 ...0 ...1 ...1 ...1 ...1 ...1 ...1 ...1 ...1

split point s‘=3k

yt ...0

153NN1

450NN2

302NN3

...0

2.4k

1.4k

1.2k

...0

1.4k

601

2.4k

...0

2.1k

2.6k

1.5k

...0

597

1.4k

1.2k

...1

4.1k

3.4k

3.4k

...1

4.2k

4.2k

3.2k

...1

3.1k

3.8k

3.6k

...1

4.3k

4.3k

4.3k

...1

6.2k

6.0k

6.0k

NN1 NN2NN3

Figure 3: For each window the 3-NNs are computed. When
iterating different splits 𝑠 and 𝑠 ′ the ground truth labels 𝑌𝑡
are modified (centre and bottom). The 3-NNs for each win-
dow reference new labels, leading to altered predictions for
different splits - illustrated in blue and orange for the NNs.

Algorithm 2 k-Nearest-Neighbour Profile

1: procedure feature_extraction(CLF, W)

2: 𝑘 ← CLF.𝑘 ⊲ k-nn hyper-parameter

3: 𝑘𝑁𝑁𝑠 ← array of shape|𝑊 | × 𝑘
4: ⊲ Computes distance matrix of shape |𝑊 | × |𝑊 |
5: 𝐷 ← clf.compute_distance_matrix(𝑊)
6: 𝐷 ← apply_exclusion_zone(𝐷)
7: for 𝑖 ∈ [1, . . . , |𝑊 |] do
8: 𝐴← argsort(𝐷 [𝑖]) ⊲ sort row by distance

9: 𝑘𝑁𝑁𝑠 [𝑖] ← first 𝑘 offsets from 𝐴

10: end for
11: return kNNs

12: end procedure

selects the offsets of those 𝑘 windows with the lowest distances

(lines 7–10), which are returned. We make use of an exclusion zone

around each window of length𝑤 , so that all windows overlapping

with more than 𝑤/2 points are not considered during the search

for NNs (line 6). This effectively sets the distances of windows

within ±𝑤/2 of the diagonal of the distance matrix to infinity. The

distance matrix can be computed using the dot-product. We use

a fast implementation (line 5), outlined in [14, 36], requiring only

O(𝑛2)-time (see Section 5.6). SCRIMP [36] implements this idea for

computing pairwise z-normalized distances, but only for the overall

1-NN (and not the 𝑘-NN as used in ClaSP). Using advanced feature

extraction techniques like ROCKET [11] is part of our future work.

4.3 Cross Validation
Line 8 in Algorithm 1 performs a leave-one-out cross-validation for

a given offset 𝑖 using the pre-computed 𝑘-NN offsets. Algorithm 3

illustrates the computation of a single score in ClaSP given the self-

supervised ground truth labels 𝑌𝑡 and all 𝑘-NN offsets. It collects

the 𝑘-NN offsets for each window (line 4), performs a lookup for

their current class labels, and finally picks the majority label (line 5).

The set of ground truth labels and the set of predicted labels are

Algorithm 3 Leave-One-Out Cross-Validation Score

1: procedure cross_validate(clf,kNNs,𝑌𝑡)
2: 𝑌𝑝𝑟𝑒𝑑 ← array of length |kNNs|, initialized to zero

3: for 𝑖 ∈ [1, . . . , |𝑌𝑝𝑟𝑒𝑑 |] do ⊲ Iterate all windows

4: offsets← kNNs[𝑖] ⊲ k-NN offsets

5: 𝑌𝑝𝑟𝑒𝑑 [𝑖] ← majority_label (⋃
𝑗 ∈offsets

𝑌𝑡 [𝑗])

6: end for
7: return scoring_function(𝑌𝑡 , 𝑌𝑝𝑟𝑒𝑑)
8: end procedure

0 200 400 600 800 1000
split point s

0.5
0.6
0.7
0.8
0.9
1.0

pe
rfo

rm
an

ce

ClaSP computed on 10 random TS using different scoring functions
accuracy_score
f1_score
roc_auc_score

Figure 4: The averaged ClaSP computed from 10 randomly
generated TS, i.e. without self-similar regions. The ClaSP us-
ing the optimal score should result in a straight line to avoid
any bias, which is the case for F1 and ROC/AUC.

next passed to a scoring function (line 7). When a split moves, only

𝑌𝑡 changes, potentially resulting in a new score.

4.4 Classification Score Selection
ClaSP determines change points by finding local maxima in the

classification score profile. To identify the most disruptive event,

as required for solving CPD, we need to identify the global max-

imum; for solving the problem of TSS, we need to find the 𝐶 − 1
highest local maxima, when 𝐶 is the desired number of segments

(see Section 4.6). However, special care has to be taken to make

scores of different splits comparable, because for every potential

split point in a TS the number of windows in the left and right

segments differs. Accordingly, the binary classification problems

are often highly class-imbalanced. This class-imbalance changes

over the TS, with more severe imbalance towards the ends of the

TS and low imbalance at the centre. As class imbalance can influ-

ence the performance of classifiers, a bias may emerge making the

comparison of scores of different splits meaningless
1
. The impact

of this bias is directly related to the particular evaluation metric

being used. To illustrate this, we built a macro-averaged ClaSP from

the profiles of 10 randomly generated TS and plotted the results of

different evaluation metrics. These random TS should not contain

self-similar segments, thus the optimal evaluation function should

result in a constant line. Figure 4 shows results for accuracy, F1 and

ROC/AUC. Accuracy is highly sensitive to class-imbalances and

thus leads to a profile similar to a parabola, with high values on

the left and right corners. F1 and ROC/AUC both perform much

better as shown by the flat line even at the corners of ClaSP. This

leads to the conclusion that macro F1 and macro ROC/AUC are

both suitable.

1
Note that FLOSS also has this issue which it solves using score normalization

20

10

0

10

20
Segmentation of Walking Motions

0.5

0.6

0.7

0.8

0.9

C
la

S
P

S
co

re

Global ClaSP

Fi
rs

t
C
h
an

g
e

Po
in

t

0 2000 4000 6000 8000 10000
time in ms

0.5

0.6

0.7

0.8

0.9

C
la

S
P

S
co

re

Left Local ClaSP Right Local ClaSP

Walking Jogging Running

2
n
d
 C

h
an

g
e

Po
in

t

Figure 5: ClaSP is computed, and its global maximum de-
fines the first change point. For each resulting disjoint seg-
ment a (local) ClaSP is computed, and its global maximum
is chosen. This process is recursively repeated until the re-
quired number of change points (i.e. segments) is reached.

4.5 Window Size Selection
ClaSP takes the window size𝑤 as its only hyper-parameter. This pa-

rameter has data-dependent effects on ClaSP’s performance. When

chosen too small, all windows tend to appear similar; when cho-

sen too large, windows have a higher chance to overlap adjacent

segments, blurring their discriminative power. It is thus non-trivial

to pick a suitable window size for a given TS. The ideal window

size should correlate with the inherent statistical properties of the

given dataset. In the literature, it is common to have the window

size being set manually by a domain expert [17]. This implicitly

allows for the usage of background knowledge, but is costly and

slow, as such experts first have to be identified. An alternative is to

perform window size selection automatically. In the experiments

section, we compare manually defined window sizes with three

automatic methods: Ensembling ClaSPs: The first approach is to

use different window sizes, leading to multiple ClaSP scores per

offset. The final ClaSP score for each offset is computed as the

average over its ClaSP scores. Highest maxima: The second ap-

proach also calculates sets of ClaSP scores using different window

sizes. It then chooses a change point as the offset with the overall

highest value, i.e., the global maximum over all scores. Dominant
Frequency: The third approach first transforms a TS using the

Discrete Fourier Transform. It then selects the dominant Fourier co-

efficients with the highest magnitude. The corresponding frequency

can be transformed to a window size.

4.6 Segmentation
Using ClaSP for the CPD problem is straightforward: We first com-

pute the profile and then choose its global maximum as the change

point. Application of the idea to TSS is more complicated. Let us

assume one would want to segment a TS 𝑇 into 𝐶 segments. A

naive idea is to run the algorithm once and then return the 𝐶 − 1
highest values as change points. However, these are typically no

Algorithm 4 Segmentation

1: procedure segmentation(𝑇 , 𝑛_𝑐𝑝𝑡𝑠)
2: 𝑐𝑝𝑡𝑠 ← initialize List

3: 𝑝𝑞← initialize Max-Priority-Queue

4: (𝑐𝑝𝑡_𝑖𝑑𝑥, 𝑐𝑝𝑡_𝑣𝑎𝑙) =← calc_cpt(𝑇)

5: pq.insert(𝑐𝑝𝑡_𝑣𝑎𝑙, (𝑐𝑝𝑡_𝑖𝑑𝑥,𝑇))
6: for 𝑖 ∈ [1, . . . , n_cps] do ⊲ desired number of cp

7: (𝑐𝑝𝑡_𝑖𝑑𝑥 , 𝑆)← pq.removeMax()

8: 𝑐𝑝𝑡𝑠 .append(𝑐𝑝𝑡_𝑖𝑑𝑥) ⊲ keep global maximum

9: 𝑇𝐿 = 𝑆𝑏𝑒𝑔𝑖𝑛:𝑐𝑝𝑡_𝑖𝑑𝑥 ⊲ left+right segment

10: 𝑇𝑅 = 𝑆𝑐𝑝𝑡_𝑖𝑑𝑥 :𝑒𝑛𝑑
11: (idx𝐿 , val𝐿) =← calc_cpt(𝑇𝐿)

12: pq.insert(val𝐿 , (𝑖𝑑𝑥𝐿 , 𝑇𝐿))

13: (idx𝑅 , val𝑅) =← calc_cpt(𝑇𝑅)

14: pq.insert(val𝑅 , (𝑖𝑑𝑥𝑅 , 𝑇𝑅))

15: end for
16: return 𝑐𝑝𝑡𝑠

17: end procedure
18: procedure calc_cpt(T) ⊲ index+value of change-pt

19: 𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒 ← calc_clasp(𝑇)

20: return (argmax(𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒), max(𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒))

21: end procedure

local optima, but instead all very close to the highest value (global

maximum). Another idea is to use a peak finding algorithm, such

as those implemented in scipy.signal.find_peaks, and then return

the 𝐶 − 1 highest peaks. However, this again often leads to clusters

of peaks around the highest point; furthermore, it requires to deter-

mine parameters of the peak finder, such as minimal gap between

peaks or minimal elevation over the local neighborhood.

Instead, we propose and evaluate a different parameter-free strat-
egy. Our idea is to apply a recursive splitting algorithm. Given 𝑇 ,

the algorithm first computes ClaSP and selects the maximal peak as

the first change point. Next, it computes two new ClaSPs, one for

the left and one for the right segment of the first split. Within these

profiles, it picks the larger peak of the two as a second change point.

It then computes ClaSP for the resulting three segments, computes

three maxima, chooses the highest, etc. This process is recursively

repeated until the desired number of change points is derived. Note

that in every iteration, only two ClaSPs have to be computed, as all

but one segment remain unchanged compared to the last iteration.

Pseudocode is shown in Algorithm 4, which takes as input a

TS 𝑇 and the desired number of change points 𝐶 = 𝑛_𝑐𝑝𝑡𝑠 . It first

calculates the ClaSP over the entire𝑇 (line 4) and stores the index of

the peak with the highest score in a priority queue (line 5). Within

a loop (line 6) the offset of the largest local maximum 𝑐𝑝𝑡_𝑖𝑑𝑥 is

extracted and the two left and right segments of the split 𝑐𝑝𝑡_𝑖𝑑𝑥

are derived (lines 9-10), for which the corresponding ClaSPs are

computed (lines 11,13), and added to the priority queue (lines 12,14).

The loop ends when the desired number of CP has been extracted.

An example is shown in Figure 5. The TS (top) shows the rota-

tion of a subject’s left calf while first walking, then jogging, and

finally running (taken from [17]). Each type of activity represents

one rather homogeneous segment, whereas different activities ex-

hibit different frequencies of rotational deflections. The first profile

(Figure 5, centre) already contains clear peaks for both CPs, but the

second peak becomes more precise through the second iteration.

The main advantage of this iterative process is that it is parameter-

free and does not require to set an exclusion zone around peaks.

4.7 Computational Complexity
The computational complexity of ClaSP (Algorithm 1) using k-NN

classifiers is dominated by the cost of knn_profile() and O(𝑛)
calls to cross_validation(). knn_profile() is dominated by the

time needed to compute the distance matrix (line 5). The distance

matrix can be computed in O(𝑛2) by a reformulation using the

dot-product [14, 36], for TS of length 𝑛. Retrieving the k smallest

window offsets (line 8) can be solved in O(𝑘 · 𝑛) using k sequential

searches or O(𝑛 + 𝑘 log𝑛), when using a min-heap. Thus, a total of

O(𝑛2+𝑛 ·𝑘 log𝑛) for lines 7–9. cross_validation can be performed

in O(𝑛) for a single split index, with a total of O(𝑛) splits. Thus,
the total complexity is in O(𝑛2).

The time complexity to find a single change point using ClaSP

is thus in O(𝑛2 + 𝑛 · 𝑘 log𝑛). Segmentation() into 𝑐 = 𝑛_𝑐𝑝𝑡𝑠 + 1
different segments involves O(𝑐) calls to ClaSP. This has an overall

worst case complexity of O(𝑐 · (𝑛2 +𝑛 ·𝑘 log𝑛)). In the best case

however we always halve the segments after each split, therefore

result in a complexity of O(𝑛2 + 2(𝑛/2)2 + 2(𝑛/4)2 + ...) = O(𝑛2).

5 EXPERIMENTAL EVALUATION
We compare the accuracy and runtime of ClaSP with four state-of-

the-art competitors and a simple baseline using a publicly available

dataset of 98 TS annotated with change points. We also perform

experiments to study the influence of the only hyper-parameter

of ClaSP, the window size (see Section 5.3), and the influence of

evaluation metrics and segment numbers (see Section 5.1). Finally,

we discuss three challenging real-life data sets. To ensure repro-

ducible results and to foster follow-up works, we provide the ClaSP

source code, Jupyter-Notebooks, visualizations of the datasets, and

the raw measurement sheets on our website [9].

5.1 Benchmark Setup
Datasets. Overall we use 98 benchmark datasets to asses the per-

formance of ClaSP and to compare it to rivalling methods, which

is the largest collection of datasets considered so far for change

point detection. 32 datasets stem from public segmentation bench-

mark datasets [17] that capture biological, mechanical or synthetic

processes. Change points as well as period sizes were annotated

by human experts as described in [17]. Furthermore, these dataset-

dependent period sizes were used in all experiments as window

sizes for all competitors that set this parameter.

We created a semi-synthetic dataset from the UCR archive [34].

From the about 120 datasets (DS) we first removed all DS with

missing values, too many classes, too little TS per class label, or

too large DS. We finally visually inspected the remaining DS and

selected a subset of 66. All of the remaining DS have in common

that they show some obvious periodicity (compare our assumptions

in Section 2). Each UCR dataset contains multiple labelled TS. We

group TS by class label and concatenate all TS to create segments

with repeating temporal patterns and characteristics. The location

at which different classes were concatenated are marked as change

123456

1-NN F1
1-NN ROC-AUC

5-NN F1 5-NN ROC-AUC
3-NN F1
3-NN ROC-AUC

CD

Figure 6: Influence of different design choices on average
rank for 98 benchmark datasets.

points. We resample the resulting TS to control the TS resolution.

The window sizes for these datasets are hand-selected to capture

temporal patterns but are approximate and limited to the values

[10,20,50,100] to avoid over-fitting. We have uploaded a Jupyter-

Notebook to generate the benchmark to our website [9]. Out of

all 98 datasets: 49 TS have 2 segments (1 CP), 22 datasets have 3

segments, 10 datasets have 4 segments, 11 datasets have 5 segments,

1 dataset has 6 segments, and 5 datasets have 7 segments. We used

the pre-defined window sizes for our comparison results, but also

study the performance of our suggested methods for determining

this parameter automatically (see Section 5.3).

Competitors. We publish the results on these benchmark datasets

for Autoplait [24], FLOSS [17], and the best performing twomethods

from [32], namely Binary Segmentation (BinSeg) [29] and Bayesian

Online Changepoint Detection (BOCD) [1]. Additionally, we evalu-

ated the dynamic programming, bottom-up segmentation, as well

as the window-based change point algorithm from [30] with L1, L2,

auto-regressive, kernel, and Gaussian cost functions using default

parameters. In our comparison, we include as a simple baseline

the results of the best-performing one of these, the window-based

algorithm with L2 cost function (Window-𝐿2).

Evaluation Metric. We use the metric as defined in [17] for mea-

suring the quality of a method: Given a TS 𝑇 and sets of predicted

CPs 𝑐𝑝𝑡𝑠𝑝𝑟𝑒𝑑 and of ground truth CPs 𝑐𝑝𝑡𝑠𝑇 , with each location in

[1 . . . 𝑛], we compute the normed 𝑒𝑟𝑟𝑜𝑟 ∈ [0 . . . 1] as:

error =
1

𝑛 · |𝑐𝑝𝑡𝑠𝑝𝑟𝑒𝑑 |
·

∑
𝑝∈𝑐𝑝𝑡𝑠𝑝𝑟𝑒𝑑

min

𝑝′∈𝑐𝑝𝑡𝑠𝑇
|𝑝 − 𝑝 ′ |

This measure sums up and normalizes the relative distances be-

tween every predicted change point 𝑝 ∈ 𝑐𝑝𝑡𝑠𝑝𝑟𝑒𝑑 and the closest

ground truth change point. Note that this measure does not perform

a bipartite matching, as multiple predicted CP may be matched to

the same ground truth CP. This can be seen as a disadvantage, but

we stick to this definition to allow comparisons with previously

published results. We also use critical difference diagrams (as in-

troduced in [12]) to compare ranks between approaches. The best

approaches scoring the lowest (average) ranks are shown to the

right of the diagram. Groups of approaches that are not significantly

different in their ranks are connected by a bar, based on a Nemenyi

two tailed significance test with 𝛼 = 0.05.

ClaSP Parameter Settings. There are three main design choices

for ClaSP: (a) the evaluation metric and its treatment of class im-

balance, (b) the number of 𝑘 neighbours used for classification,

and (c) the window size 𝑤 . We performed ablation studies to fix

values for parameters (a) and (b). We tested all combinations of

123456

Autoplait
BinSeg-L2

BOCD Window-L2
FLOSS
ClaSP

CD

Figure 7: Segmentation ranks on 98 benchmark datasets for
ClaSP (lowest rank) and the 5 state-of-the art competitors.

ClaS
P

Auto
pla

it

FLO
SS

W
ind

ow
-L 2

BinS
eg

-L 2

BOCD

0

10
0

10
1

10
2

re
la

tiv
e

er
ro

r
Figure 8: Boxplot on segmentation error on 98 benchmark
datasets for ClaSP and the state-of-the art competitors.

Table 1: Summary wins/ties/losses of ClaSP over rivals.

Autoplait FLOSS Window-𝐿2 BinSeg-𝐿2 BOCD

ClaSP 93/0/5 88/1/9 94/0/4 96/0/2 96/0/2

F1 versus ROC/AUC and neighbours 𝑘 ∈ [1, 3, 5]. Figure 6 shows
the results. Overall, we found no significant differences between

these settings. Because 3-NN in combination with ROC/AUC has

the lowest average rank, we use this configuration in all subsequent

experiments. Regarding (c) we primarily used the expert defined

values, but also performed experiments with automatic selection

strategies (see Section 5.3).

5.2 Segmentation Errors on Benchmark Set
The critical difference diagram in Figure 7 shows the average ranks

for ClaSP, Autoplait, Window-𝐿2, BinSeg-𝐿2, BOCD, and FLOSS

based on their errors for the segmentation task on each of the 98

benchmark TS. Note that Autoplait fails to return any result on

68 datasets (compare [17]). Overall, ClaSP shows by far the lowest

rank (average 1.22), followed by FLOSS (average 2.16). ClaSP is

significantly better than all other competitors. On the entire data set,

ClaSP has 80 wins or ties (first position in error), followed by FLOSS

(10), Autoplait (4) Window-𝐿2 (3), BOCD (2) and BinSeg-𝐿2 (0)

(counts do not sum up to 98 due to ties). When looking at the results

for the two classes of tasks in this benchmark individually, namely

strong CPD (one change point, 49 instances) and TSS (more than

two change points, 49 instances), the situation remains essentially

the same (data not shown): ClaSP has the overall lowest rank.

ClaSP also scores the lowest median error and standard deviation

over all TS (Figure 8). It has a 2.24 percentage points (pp) smaller

1234

FFT-ClaSP
Max-ClaSP Mean-ClaSP

ClaSP

CD

Figure 9: Results of different window size selection strate-
gies on the benchmark datasets.

average error and 6 pp smaller standard deviation compared to its

second best competitor FLOSS. On average, both algorithms score

much less errors than the other methods, with more than 15%. In

a pairwise comparison of ClaSP against every competitor, ClaSP

achieves between 88 (vs FLOSS) and 96 (vs BOCD) wins (Table 1).

For instance, it achieves a lower error than FLOSS for 88 of the 98

datasets, the same error in 1 case, and is beaten by FLOSS in 9 cases.

5.3 Effect of Window Size Selection
Results so far were obtained with window sizes as provided by the

benchmark, which were manually determined by domain experts

using domain knowledge [17]. Thus an approach probably leads

to favorable results, but requires the availability of such domain

experts that are also familiar with TS analysis, which often poses an

obstacle to data analysis. In Section 4.5, we described three strate-

gies for alleviating the problem of manual window size selection.

We performed an experiment to study the quality of these strate-

gies and whether they can beat domain experts. We applied the

three strategies with a set of window sizes [10, 20, 50, 100]. Mean-
ClaSP refers to an ensembles of ClaSPs of different window sizes,

Max-ClaSP refers to the highest global maximum, and FFT-ClaSP
is the dominant Fourier Frequency approach. Figure 9 shows the

results. ClaSP with domain expert annotations shows the lowest

average rank. It achieves 60 first ranks, whereas the Mean-ClaSP

leads to only 11 wins. The median errors of the two best strategies,

Mean-ClaSP and ClaSP, are close by with 0.47% and 0.9%. In con-

trast, the mean errors differ, with 4.3% for Mean-ClaSP and 1.2% for

ClaSP, which is in parts caused by a single outlier on the WalkJo-

gRun2 dataset, where Mean-ClaSP scored an error greater than

30%. We believe these results indicate that further research into

parameter-free methods is promising, and that human annotation

of window sizes might not be necessary in future applications.

5.4 Complex Classifiers in ClaSP
We have focused on a 3-NN-based approach in this paper, and

presented optimizations to avoid expensive distance calculations for

every split that result in a complexity of O(𝑛2). We also performed

initial experiments evaluating more complex TS classifiers with

𝑟 -fold CV including BOSS [27], TS-Forest [13] and ROCKET [11]

but without any accuracy gains on the given 98 benchmark TS.

These TS classifiers also result in much higher runtimes of O(𝑟 · 𝑛 ·
(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔+ 𝑡𝑒𝑠𝑡𝑖𝑛𝑔)). Nonetheless, we have published the results to
our supporting website [9]. Optimizing complex classifiers is part

of our future work.

5.5 Runtime Comparison on Benchmark Set
Figure 10 shows runtimes of FLOSS, ClaSP, BinSeg-𝐿2, BOCD, and

Window-𝐿2 on each of the 98 benchmark TS. Window-𝐿2 has the

lowest overall runtime, followed by BinSeg-𝐿2. FLOSS and ClaSP

both have the same computational complexity. Nevertheless, ClaSP

is always faster than FLOSS, often by a factor of at least 2. The

marked peak in runtime for TiltABP and TiltECG for FLOSS and

ClaSP are due to their much greater length (length 40k compared

to length 19k of the next-longest TS InsectEPG4) and the quadratic

runtime complexity of FLOSS and ClaSP. We published plots on

scalability regarding length 𝑛 or number of CPs to [9].

5.6 Results on Specific Use Cases
We describe results on three TS in more detail to show the strengths

and limitations of ClaSP. Two (Insect EPG and Tilt Table) are also

part of the benchmark used above, while NYC Taxi is not.

Insect EPGs. Monitoring the feeding behavior of sucking insects can

reveal important insights into the transmission of pathogens [33].

Figure 11 shows the recording of an electrical penetration graph

(EPG), for which an insect is tethered to an electrode while feeding

from a food source. Different phases in the feeding lead to changes

in electric flow through the electrodes, which are recorded and

transformed into a TS. The TS in the figure contains one annotated

change point, indicated by the transition in colors. From top to

bottom, we highlight the segmentation given by ClaSP, FLOSS and

Window-L2
2
. While ClaSP detects the change point very precisely,

the other two methods predict it further to the left, i.e., too early.

Very small Segments. The New York City taxi passenger TS [2]

contains six months of taxi passenger volumes aggregated at 30

minute intervals, annotated with windows that point to the NYC

marathon, Labor Day, Thanksgiving, Christmas, and New Year Eve.

This is a challenging dataset for TSS algorithms as all these events

are very short, leading to very short phases of distortion in the TS.

Furthermore, the background signal is complex, with strong but

somewhat repetitive changes over the course of a day. We ran ClaSP

and FLOSS on this dataset with a 8 hour window size to evaluate

how they perform in such a difficult setting. Figure 12 shows the

classification score profile and the CPs as detected by ClaSP and

FLOSS, respectively. Events that last an entire day or more, like

Labour Day, are clearly visible as distinctive local peaks. On the

other hand, shorter events like the NYC marathon do not lead to

clear peaks. Both methods find Labor Day as their first CP. ClaSP

positions its second and third CP near New Year and Christmas

and finds Thanksgiving as fourth CP. FLOSS predicts its second

to fourth CPs in close proximity to its first CP, probably because

the default setting of the exclusion zone is not appropriate for this

dataset. Together, the segmentation by ClaSP is clearly meaningful

yet certainly not optimal, while FLOSS with default parameters

produces a much worse result.

Gradual vs Discrete Changes. Finally, we study a use case showing

the limits of TSS algorithms for cases where changes are gradual

and not sudden. We analyse TS data from an experiment where the

arterial blood pressure of a person lying on a tilt table with foot rest

2
Autoplait and HOG-1D had significantly worse results than ClaSP and FLOSS.

TwoL
ea

dE
CG

ECGFive
Day

s
CBF
Coff

ee
W

afe
r

Lig
htn

ing
2

W
orm

s

Ins
ec

tW
ing

be
at

Diat
om

Size

Son
yA

IB
ORob

otS
urf

ac
e1
Adia

c
Bee

f

Dist
alP

ha
lan

x

Arro
wHea

d

Ita
lyP

ow
erD

em
an

d

Mote
Stra

in

Son
yA

IB
ORob

otS
urf

ac
e2

Gun
Poin

t

Sym
bo

ls

EEGRat

EEGRat2

ECG50
00

OSULe
afCar

W
ord

Syn
on

ym
s

ECG20
0

Med
ica

lIm
ag

es

Bird
Chic

ke
n

Bee
tle

Fly

Dist
alP

ha
lan

xT
W

Cric
ke

tZ

Toe
Seg

men
tat

ion
1

UW
av

eG
es

tur
eL

ibr
ary

Z

UW
av

eG
es

tur
eL

ibr
ary

Y

UW
av

eG
es

tur
eL

ibr
ary

X

Cric
ke

tY

Toe
Seg

men
tat

ion
2

Cric
ke

tX

Star
Lig

htC
urv

es
Mea

t

Syn
the

tic
Con

tro
l

Plan
e

Mall
at

Prox
im

alP
ha

lan
xT

W

Prox
im

alP
ha

lan
x

Swed
ish

Le
af

Grea
tB

arb
et2

Grea
tB

arb
et1

Inl
ine

Ska
te
Trac

e

Fifty
W

ord
s

Can
e

Hap
tic

s

Sha
pe

sA
ll

Fac
es

UCR

Lig
htn

ing
7

Ins
ec

tE
PG3

CinC
ECGTors

o

Nog
un

Gun

Oliv
eO

il

Pow
erd

em
an

d

Chlo
rin

e

TwoP
att

ern
s

Sim
ple

Syn
the

tic

Fac
eF

ou
r

La
rge

Kitc
he

n

UW
av

eG
es

tur
eL

ibr
ary

All

Dutc
hF

ac
tor

y

Fac
eA

ll

W
alk

Jo
gR

un
2

Ins
ec

tE
PG2

W
alk

Jo
gR

un
1
Fish

Eart
hq

ua
ke

s

Gran
dM

alS
eiz

ure
s2

Rob
oti

cD
og

Acti
vit

yZ

Com
pu

ter
s

Elec
tric

Dev
ice

s

Sud
de

nC
ard

iac
Dea

th1

Sud
de

nC
ard

iac
Dea

th3

Sud
de

nC
ard

iac
Dea

th2

ECGTho
rax

1

Rob
oti

cD
og

Acti
vit

yX

ECGTho
rax

2

Rob
oti

cD
og

Acti
vit

yY

PigC
VP

PigF
lui

dF
ille

d

PigA
irw

ay
Pres

su
re
Yog

a

Ins
ec

tE
PG1

Puls
us

Para
do

xu
sE

CG1

Puls
us

Para
do

xu
sE

CG2

Puls
us

Para
do

xu
sS

P02

Feta
l20

13

Gran
dM

alS
eiz

ure
s

Ins
ec

tE
PG4

TiltA
BP

TiltE
CG

10
1

10
0

10
1

10
2

ru
nt

im
e

in
 s

ec
on

ds

ClaSP
FLOSS
Window-L2
BinSeg-L2
BOCD

Figure 10: Runtime of ClaSP in comparison to its competitors. Data sets are ordered by size with highly irregular increases.

0
5000

10000
15000
20000
25000
30000
35000
40000

NAB NYC Taxi

0.5

0.6

0.7

0.8

0.9

C
la

S
P

 S
co

re

1. CP
2. CP

3. CP4. CP

Jul 2014 Aug 2014 Sep 2014 Oct 2014 Nov 2014 Dec 2014 Jan 2015
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

FL
O

S
S

 S
co

re

1. - 4. CP
Predicted Change Point

Figure 12: The New York City taxi passenger dataset shows
the fluctuation of the number of passengers. Known anom-
alies closely resemble ClaSP’s local maxima [2].

3000

4000

5000

6000

7000

TiltABP

Start of Tilt

Predicted Change Point

0 5000 10000 15000 20000 25000 30000 35000 40000
split point s

0.5

0.6

0.7

0.8

0.9

1.0

ro
c_

au
c_

sc
or

e

Figure 13: Segmentation of arterial blood pressure from a
subject laying on a tilt table. The CP at 25s represents the
start of the tilt to stand-up position.

0.1
0.0
0.1
0.2
0.3
0.4
0.5

ClaSP

Predicted Change Point

0.1
0.0
0.1
0.2
0.3
0.4
0.5

FLOSS

0 2000 4000 6000 8000

0.1
0.0
0.1
0.2
0.3
0.4
0.5

Window-L2

Figure 11: Segmentation of an EPG from a fluid-feeding in-
sect. There is one annotated change point, indicated by the
transition in colors at which the feeding state changes.

is measured [19]. The table is rapidly turned up, leading to a sudden

rise in blood pressure. However, once reaching the upright position,

the blood pressure only slowly goes back to normal. Figure 13

shows that ClaSP detects the point in time when the table started

tilting, i.e., it detects the rapid change. However, it cannot detect

the point where the upright position is reached and blood pressure

starts to decrease, as this does not lead to sudden changes in the TS,

but happens only gradually. Note that the detection of such slow

changes is actually outside the scope of current TSS methods by

their very definition (see Section 2).

6 CONCLUSION
We have introduced ClaSP, a new method for CPD and TSS based

on the principle of self-supervision. ClaSP produces and analyses

a classification score profile, which is also amendable to human

inspection. Our experimental evaluation shows that ClaSP sets the

new state-of-the-art on the benchmark set of [17] and is also faster

than its second best competitor. Open research questions are how

to extend ClaSP for more powerful classifiers and methods for the

automatic detection of a suitable number of segments in a TS. One

limitation of ClaSP is that it does not allow online segmentation in

a streaming setting, unlike than e.g. FLOSS. We plan to investigate

this in future work.

REFERENCES
[1] Ryan Prescott Adams and David JC MacKay. 2007. Bayesian online changepoint

detection. arXiv preprint arXiv:0710.3742 (2007).
[2] Subutai Ahmad, Alexander Lavin, Scott Purdy, and Zuha Agha. 2017. Unsuper-

vised real-time anomaly detection for streaming data. Neurocomputing 262 (2017),
134–147.

[3] Samaneh Aminikhanghahi and Diane J Cook. 2017. A survey of methods for

time series change point detection. KAIS 51, 2 (2017), 339–367.
[4] Anthony Bagnall, Jason Lines, Aaron Bostrom, James Large, and Eamonn Keogh.

2016. The Great Time Series Classification Bake Off: An Experimental Evaluation

of Recently Proposed Algorithms. Extended Version. DMKD (2016), 1–55.

[5] Ane Blázquez-García, Angel Conde, Usue Mori, and Jose A Lozano. 2021. A

Review on outlier/Anomaly Detection in Time Series Data. ACM Computing
Surveys (CSUR) 54, 3 (2021), 1–33.

[6] Marcel Bosc, Fabrice Heitz, Jean-Paul Armspach, Izzie Namer, Daniel Gounot,

and Lucien Rumbach. 2003. Automatic change detection in multimodal serial

MRI: application to multiple sclerosis lesion evolution. NeuroImage 20, 2 (2003),
643–656.

[7] Sofiane Brahim-Belhouari and Amine Bermak. 2004. Gaussian process for non-

stationary time series prediction. Computational Statistics & Data Analysis 47, 4
(2004), 705–712.

[8] Hao Chen, Nancy Zhang, et al. 2015. Graph-based change-point detection. The
Annals of Statistics 43, 1 (2015), 139–176.

[9] ClaSP Code and Raw Results. 2021. https://sites.google.com/view/ts-clasp/.

[10] Diane J Cook and Narayanan C Krishnan. 2015. Activity learning: discovering,
recognizing, and predicting human behavior from sensor data. John Wiley & Sons.

[11] Angus Dempster, François Petitjean, and Geoffrey I Webb. 2020. ROCKET: Excep-

tionally fast and accurate time series classification using random convolutional

kernels. Data Mining and Knowledge Discovery 34, 5 (2020), 1454–1495.

[12] Janez Demšar. 2006. Statistical Comparisons of Classifiers over Multiple Data

Sets. The Journal of Machine Learning Research 7 (2006), 1–30.

[13] Houtao Deng, George Runger, Eugene Tuv, and Martyanov Vladimir. 2013. A

time series forest for classification and feature extraction. Information Sciences
239 (2013), 142–153.

[14] Ivan Dokmanic, Reza Parhizkar, Juri Ranieri, and Martin Vetterli. 2015. Euclidean

distance matrices: essential theory, algorithms, and applications. IEEE Signal
Processing Magazine 32, 6 (2015), 12–30.

[15] Jean-François Ducré-Robitaille, Lucie A Vincent, and Gilles Boulet. 2003. Com-

parison of techniques for detection of discontinuities in temperature series. In-
ternational Journal of Climatology 23, 9 (2003), 1087–1101.

[16] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar,

and Pierre-Alain Muller. 2018. Deep Learning for Time Series Classification: a

Review. arXiv preprint arXiv:1809.04356 (2018).
[17] Shaghayegh Gharghabi, Yifei Ding, Chin-Chia Michael Yeh, Kaveh Kamgar, Liud-

mila Ulanova, and Eamonn Keogh. 2017. Matrix profile VIII: domain agnostic

online semantic segmentation at superhuman performance levels. In ICDM. IEEE,

117–126.

[18] Zaid Harchaoui, Félicien Vallet, Alexandre Lung-Yut-Fong, and Olivier Cappé.

2009. A regularized kernel-based approach to unsupervised audio segmentation.

In ICASSP. IEEE, 1665–1668.
[19] T Heldt, MB Oefinger, M Hoshiyama, and RG Mark. 2003. Circulatory response

to passive and active changes in posture. In Computers in Cardiology, 2003. IEEE,
263–266.

[20] Shohei Hido, Tsuyoshi Idé, Hisashi Kashima, Harunobu Kubo, and Hirofumi

Matsuzawa. 2008. Unsupervised change analysis using supervised learning. In

PKDD. Springer, 148–159.
[21] Yoshinobu Kawahara and Masashi Sugiyama. 2012. Sequential change-point

detection based on direct density-ratio estimation. Statistical Analysis and Data
Mining: The ASA Data Science Journal 5, 2 (2012), 114–127.

[22] Eamonn Keogh, Jessica Lin, and Ada Fu. 2005. Hot SAX: Efficiently finding the

most unusual time series subsequence. In ICDM. Ieee, 8–pp.

[23] Timothée Lesort, Natalia Díaz-Rodríguez, Jean-Franois Goudou, and David Filliat.

2018. State representation learning for control: An overview. Neural Networks
108 (2018), 379–392.

[24] Yasuko Matsubara, Yasushi Sakurai, and Christos Faloutsos. 2014. Autoplait:

Automatic mining of co-evolving time sequences. In SIGMOD. 193–204.
[25] Abdullah Mueen, Eamonn Keogh, Qiang Zhu, Sydney Cash, and Brandon West-

over. 2009. Exact discovery of time series motifs. In ICDM. SIAM, 473–484.

[26] R Quian Quiroga, S Blanco, OA Rosso, H Garcia, and A Rabinowicz. 1997. Search-

ing for hidden information with Gabor Transform in generalized tonic-clonic

seizures. Electroencephalography and clinical Neurophysiology 103, 4 (1997), 434–

439.

[27] Patrick Schäfer. 2015. The BOSS is Concerned with Time Series Classification

in the Presence of Noise. Data Mining and Knowledge Discovery 29, 6 (2015),

1505–1530.

[28] Patrick Schäfer and Mikael Högqvist. 2012. SFA: A Symbolic Fourier Approxi-

mation and Index for Similarity Search in High Dimensional Datasets. In EDBT.
ACM, 516–527.

[29] Andrew Jhon Scott and M Knott. 1974. A cluster analysis method for grouping

means in the analysis of variance. Biometrics (1974), 507–512.
[30] Charles Truong, Laurent Oudre, and Nicolas Vayatis. 2020. Selective review of

offline change point detection methods. Signal Processing 167 (2020), 107299.

[31] Yao-Hung Hubert Tsai, Yue Wu, Ruslan Salakhutdinov, and Louis-Philippe

Morency. 2020. Demystifying self-supervised learning: An information-

theoretical framework. arXiv preprint arXiv:2006.05576 (2020).
[32] Gerrit JJ van den Burg and Christopher KI Williams. 2020. An evaluation of

change point detection algorithms. arXiv preprint arXiv:2003.06222 (2020).
[33] Denis S Willett, Justin George, Nora S Willett, Lukasz L Stelinski, and Stephen L

Lapointe. 2016. Machine learning for characterization of insect vector feeding.

PLoS computational biology 12, 11 (2016), e1005158.

[34] Y Chen, E Keogh, B Hu, N Begum, A Bagnall, A Mueen and G Batista . 2015. The

UCR Time Series Classification Archive. http://www.cs.ucr.edu/~eamonn/time_

series_data.

[35] Jiaping Zhao and Laurent Itti. 2016. Decomposing time series with application

to temporal segmentation. In WACV. IEEE, IEEE, 1–9.
[36] Yan Zhu, Chin-Chia Michael Yeh, Zachary Zimmerman, Kaveh Kamgar, and

Eamonn Keogh. 2018. Matrix profile XI: SCRIMP++: time series motif discovery

at interactive speeds. In ICDM. IEEE, 837–846.

https://sites.google.com/view/ts-clasp/
http://www.cs.ucr.edu/~eamonn/time_series_data
http://www.cs.ucr.edu/~eamonn/time_series_data

	Abstract
	1 Introduction
	2 Background and Definitions
	3 Related Work
	4 ClaSP - Classification Score Profile
	4.1 k-NN classifier in ClaSP
	4.2 Precompute k-NN-Profile
	4.3 Cross Validation
	4.4 Classification Score Selection
	4.5 Window Size Selection
	4.6 Segmentation
	4.7 Computational Complexity

	5 Experimental Evaluation
	5.1 Benchmark Setup
	5.2 Segmentation Errors on Benchmark Set
	5.3 Effect of Window Size Selection
	5.4 Complex Classifiers in ClaSP
	5.5 Runtime Comparison on Benchmark Set
	5.6 Results on Specific Use Cases

	6 Conclusion
	References

