
ClaSP - Time Series Segmentation
Patrick Schäfer

∗

Humboldt-Universität zu Berlin

patrick.schaefer@hu-berlin.de

Arik Ermshaus
∗

Humboldt-Universität zu Berlin

ermshaua@informatik.hu-berlin.de

Ulf Leser

Humboldt-Universität zu Berlin

leser@informatik.hu-berlin.de

ABSTRACT
The study of biological or physical processes often results in long se-

quences of temporally-ordered values, aka time series (TS). Changes

in the observed processes, e.g. as a cause of natural events or inter-

nal state changes, result in changes of the measured values. Time

series segmentation (TSS) tries to find such changes in TS to deduce

changes in the underlying process. TSS is typically approached as

an unsupervised learning problem aiming at the identification of

segments distinguishable by some statistical property. We present

ClaSP, a novel and highly accurate method for TSS. ClaSP hierarchi-

cally splits a TS into two parts, where each split point is determined

by training a binary TS classifier for each possible split point and

selecting the one with highest accuracy, i.e., the one that is best

at identifying subsequences to be from either of the partitions. In

our experimental evaluation using a benchmark of 98 datasets, we

show that ClaSP outperforms the state-of-the-art in terms of accu-

racy and is also faster than the second best method. We highlight

properties of ClaSP using several real-life time series.

CCS CONCEPTS
• Computing methodologies → Unsupervised learning; •
Mathematics of computing→ Time series analysis.

KEYWORDS
Unsupervised, Self-Supervised, Segmentation, Change Points

ACM Reference Format:
Patrick Schäfer, Arik Ermshaus, and Ulf Leser. 2021. ClaSP - Time Series

Segmentation. In Proceedings of the 30th ACM International Conference on
Information and Knowledge Management (CIKM ’21), November 1–5, 2021,
Virtual Event, QLD, Australia. ACM, New York, NY, USA, 10 pages. https:

//doi.org/10.1145/3459637.3482240

1 INTRODUCTION
Recent years brought an explosion in applications for low-cost high

resolution sensors, for instance in mobile devices, systems and man-

ufacturing monitoring, or environmental and medical surveillance.

These sensors produce large amounts of unlabelled temporally-

ordered, real-valued sequences, also referred to as data series or

time series (TS). This leads to increasing interest in TS analytics,

∗
The first two authors contributed equally.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8446-9/21/11. . . $15.00

https://doi.org/10.1145/3459637.3482240

such as classification [4, 16], similarity search [28], or motif dis-

covery [25]. An important field is unsupervised TS analysis, often

used to gain an initial understanding of the data at hand. Research

problems include motif discovery [25], discord discovery [22], and

anomaly/outlier detection [5]. A particularly interesting problem

which we study in this paper is time series segmentation (TSS).

TSS aims at discovering regions of a TS that are (semantically) dis-

similar to neighboring regions. TSS is an important technology, as

it allows to infer properties of the underlying system by analysis

of the measurements, because shifts from one segment to another

are often caused by state changes in the process being monitored,

such as a transition from one operational state to another or the

onset of an unusual event. Change point detection (CPD) [30] is

the task of finding such shifts in the underlying signal, and a seg-

mentation is an ordered sequence of change points. A variety of

CPD and TSS algorithms have been proposed, see [3] for a sur-

vey. Many examples of domain specific solutions exist for medical

condition monitoring [6], climate change detection [15], or human

activity analysis [7]. In contrast, only few domain-agnostic TSS

algorithms exist, including FLOSS [17], Autoplait [24], and HOG-

1D [35]. FLOSS is the-state-of-the-art for TSS and CPD. It annotates

a TS with a bespoke arc curve, which spans from each offset in the

TS to its 1-NN subsequence. The offsets with the least crossings of

arc curves indicate the potential change points.

We present ClaSP (Classification Score Profile), a new and highly

accurate algorithm for CPD and TSS. ClaSP approaches segmenta-

tion by adapting a TS classifier to identify regions of similar shape.

The underlying assumption is that two adjacent segments of a TS

are separated by a change point, separating the TS into two parts

that are self-similar but dissimilar from the other. By first finding

the strongest change point, additional change points increasingly

refine the segmentation of the TS. The central idea of ClaSP is to

iteratively determine change points by finding the point in the TS

where the performance of a binary classifier, trained to separate

subsequences either to belong to the left or the right part, is highest.

This allows to use established methods from supervised TS analysis

for solving an unsupervised TS problem. A potential drawback of

this approach is the runtime necessary for training and evaluating a

flood of classifiers for all hypothetical splits. However, we show that

ClaSP, by relying on a k-NN classifier, achieves both highly accurate

CPD and TSS results and is very fast, because most of the work can

be factored out into a split point-independent preprocessing phase

that is based on a fast pairwise distance matrix computation for

overlapping subsequences, for which efficient algorithms exist [36].

Using this pairwise distance matrix, ClaSP then creates a Classifi-

cation Score Profile (ClaSP) from which change points can easily

be identified using a bespoke peak detection algorithm.

Figure 1 illustrates such a ClaSP together with the underlying

TS. The dataset originates from [26] and was preprocessed by [17].

It shows an EEG of a human brain with tonic-clonic seizure activity

https://doi.org/10.1145/3459637.3482240
https://doi.org/10.1145/3459637.3482240
https://doi.org/10.1145/3459637.3482240

Figure 1: A scalp right central electrode recording of an EEG
from a subject showing a tonic-clonic seizure [26]. It con-
tains three segments that capture pre-seizure, seizure and
post seizure EEG activity. The three local maxima in ClaSP
(bottom) highlight potential change points based on changes
in the underlying shapes of the divided segments, represent-
ing the three activities.

after about 1 minute of recordings. The three local maxima in ClaSP
(bottom) mark the change points between dissimilar segments. The
�rst segment captures the pre-seizure, the two following the seizure
(made of two distinct phases), and the last segment corresponds to
post-seizure activities. The global maximum is between the �rst
and second segment (�rst red vertical line) and matches the start
of the seizure. The speci�c contributions of this paper are:

(1) We present ClaSP, a novel method for CPD and TSS based on
annotating a TS with a bespoke classi�cation score pro�le
using concepts of self-supervision [31].

(2) We provide an e�cient implementation of ClaSP which
achieves a runtime as fast as its competitor methods.

(3) ClaSP has just a single hyper-parameter, which is the length
of subsequences used as features for the self-supervised clas-
si�cation. We describe methods to automatically determine
this hyper-parameter for a given TS.

(4) We performed a series of experiments on CPD and TSS us-
ing a benchmark of98datasets [17] and compare results to
�ve state-of-the-art competitors, namely Autoplait, FLOSS,
BinSeg-! 2, BOCD, and one simple baseline, namely Window-
L2 [30]. ClaSP exhibits the lowest overall segmentation error
and achieves best segmentations in80out of the98cases. Its
runtime is lower than that of its 2nd best competitor FLOSS.

(5) An additional advantage of ClaSP is that the classi�cation
score pro�le allows for intuitive visualizations, making the
segmentation decisions easily interpretable for humans.

The remainder of this paper is organized as follows: Section 2
presents background and de�nitions. Section 3 introduces related
work. Section 4 presents the ClaSP method. Section 5 presents our
experimental evaluation and Section 6 concludes the paper.

2 BACKGROUND AND DEFINITIONS
In this section, we formally introduce the concepts of time series
(TS), subsequences, windows, and the change point detection (CPD)
and segmentation (TSS) problem.

Definition 1. A time series) is a sequence of= 2 N real values,
) = ¹C1• ” ” ” • C=º• C8 2 R. The values are also called data points.

Definition 2. A TS isstationaryif any of its values are indepen-
dent of the time they were observed.

Intuitively speaking, a stationary TS exhibits constant behavior,
leading to time-independent mean, variance, and auto-correlation.
There exists no trend or seasonality.

Definition 3. Given a TS) , asubsequence) B•4of) with start
o�set Band end o�set4 consists of the contiguous values of) from
position4 to positionB, i.e.,) B•4= ¹CB•. . .• C4º with 1 � B� 4 � =. The
length of) B•4is j) B•4j = 4 � B¸ 1.

We sometimes call subsequenceswindowsand their lengthwidth.

Definition 4. A segmentationof a TS) into � ¸ 1 segments
is an ordered sequence of change points (or splits)C81,...,C8� with
1 Ÿ 81 Ÿ � � � Ÿ 8� Ÿ =.

Definition 5. The problem of time series segmentation (TSS) is to
�nd a meaningful segmentation of a given TS) under the assumption
that) was generated by a process with discrete states. A segmenta-
tion is considered meaningful when the change points between two
subsequent segments correspond to state changes in the underlying
process.

Our de�nition follows [17] by making the underlying assumption
that a physical process has discrete states which lead to changes
in the measured values. This is opposed to problems such as trend
detection [30]. ClaSP, the method for TSS we propose in this pa-
per, is based ontime series classi�cation(TSC), though it solves the
unsupervised TSS problem. TSC is the task of predicting a class
label for a TS from a prede�ned set of labels [4]. A TS classi�er is
a function learned from a set of labeled TS (the training data). It
takes an unlabeled TS as input, and outputs a label. We apply TSC
to TSS based on the idea ofself-supervision[31]. Self-supervised
learning is a form of unsupervised learning in which the data gen-
erates the supervision (labels). In representation learning [23], for
example, self-supervision refers to learning representations of the
data without annotated labels, purely based on the data.

3 RELATED WORK
Truong et al. [30] present a review of selected domain-speci�c meth-
ods for CPD and TSS. They compare methods regarding their cost
function, search method, and additional constrains, e.g., whether the
number of change points is given beforehand. They discern three
main classes: (a) Likelihood-based methods, (b) Kernel-based meth-
ods, and (c) Graph-based methods. Likelihood-based methods split
TS into consecutive windows and compare the probability distribu-
tions of windows [21]. If these di�er signi�cantly, a change point is
introduced. Kernel-based methods also split the TS into windows
and then use a kernel-based statistical test to assess the homogene-
ity between subsequent windows [18]. Graph-based methods �rst
infer a graph by mapping observations (i.e. windows or sets of TS)
to nodes and connecting nodes by edges if their pairwise similarity
exceeds a prede�ned threshold. Next, a bespoke graph statistic is
applied to split the graph into sub-graphs leading to change points
in the TS [8]. So-far domain-agnostic segmentation solutions have

seen less popularity than domain-speci�c methods. The three most
prominent of these algorithms are FLOSS [17], Autoplait [24], and
HOG-1D [35]. FLOSS [17] uses the proximity of a window to the
most similar other window to create a bespoke arc curve, which is
a vector that contains for each index8the number ofarcsthat cross
over8. Local minima of this number indicate boundaries (change
points) of self-similar regions. FLOSS also published a TSS/CPD
benchmark, which we use in our experiments (see Section 5). Au-
toplait [24] determines segments of a TS using the Minimum De-
scription Length (MDL) principle to recursively test if a region
should best be modelled by a single Hidden Markov Model (HMM)
or two HMMs. A recent survey compared CP methods [32]. The
best methods in their evaluation were Binary Segmentation (Bin-
Seg) [29] and Bayesian Online Changepoint Detection (BOCD) [1].
We compare ClaSP to these5 competitors regarding accuracy and
runtimes in Section 5. In contrast to previous approaches, ClaSP
uses self-supervision to apply classi�cation techniques to the prob-
lem of TSS. A similar technique is used in [20], but in this case
applied for detecting di�erences between two data sets. We use this
rationale for comparing potential binary splits of a TS. Note that
our idea is very di�erent from supervised TSS, where a model is
trained on TS with annotated segments [10]; in unsupervised TSS,
no such annotation is required or given.

4 CLASP - CLASSIFICATION SCORE PROFILE
Classi�cation Score Pro�le (ClaSP)is a novel method for TS segmen-
tation based on self-supervision. Segments may vary in length and
are divided by change points (CP) � short: splits. We �rst give an
intuitive overview of our method, before we explain its individual
steps in detail in Sections 4.1 to 4.5, using CPD as running motiva-
tion. We then describe the extensions necessary for approaching
the general segmentation problem in Section 4.6. The work�ow is
shown graphically in Figure 2. Pseudo code is shown in Algorithm 1.

Given a TS) with length j) j = =, ClaSP �rst computes a classi�-
cation score pro�le. To this end, we �rst partition) into overlapping
windows of a �xed lengthF (Algorithm 1, line 4). Next, hypothetical
splits are generated for increasing o�sets82 »F ¸ 1• ” ” ” •=� F � 1¼,
and certain characteristics are extracted for each window as fea-
tures for the later used classi�er (line 5). We transform each such
split into a binary classi�cation problem. = f 0•1g by attaching
label0 (1) to all windows to the left (right) of the split point. A
binary k-Nearest-Neighbour classi�er (k-NN) is trained on these
features and evaluated in a cross-evaluation setting (lines 6-9). We
interpret the cross-validation score of the classi�er as a measure
of how dissimilar windows from the left are to windows from the
right, where a high score means low similarity between segments.
This degree ofintra-segment similarity(self-similarity) is recorded
for each o�set8(line 8), together forming the classi�cation score
pro�le for) . Every local maximum in this pro�le represents a po-
tential change point, as it is a point where the distinction between
the TS part to the left and that to the right is the highest (compare
Figure 1). ClaSP has a single hyper-parameter, the window-length
F used to generate labelled windows for training and evaluation.

Definition 6. Given a TS) and a window-lengthF , a ClaSP
is a real-valued sequence(of length=. The8-th value in(is the
cross-validation scoreB2 »0•1¼of a classi�er� trained on a binary

Figure 2: (a) A TS (in red) is split into overlapping windows
(in black). (b) These windows are labelled with 0for windows
to the left and 1 to the right of hypothetical split points, ex-
emplary depicted for indexes 1800and 3000. (c) For each hy-
pothetical split, a binary classi�er is trained and evaluated
using cross-validation. (d) Finally, the ClaSP is created from
the cross-validation score of the classi�ers.

classi�cation problem with labels. = f 0•1g. For index82 »F ¸ 1•=�
F � 1¼training samples are created by assigning label~ = 0 to all
windows to the left, ! =

Ð

92»1•”””•8� F ¼
) 9•9̧F and~ = 1to all windows

to the right, ' =
Ð

92»8� F ¸ 1•”””•=� F ¸ 1¼
) 9•9̧F . Values(»1• ” ” ” •F¼and

(»= � F � 1• ” ” ” •=¼are set to 0, giving a very small blind spot.

In the following subsections we elaborate on (4.1) the choice of
using a k-NN classi�er to achieve high classi�cation speed, (4.2)
the pre-computation phase of ClaSP, (4.3) the computation of cross-
validations for hypothetical split points, (4.4) the choice of a scoring
metric for a classi�er, and (4.5) the problem of selecting the proper
values for hyper-parameterF . Section 4.6 describes the applica-
tion of ClaSP for TSS, and Section 4.7 studies the computational
complexity of our method.

4.1 k-NN classi�er in ClaSP
ClaSP is computed using the k-nearest-neighbour (NN) classi�er,
which has some nice properties that can be exploited to reduce com-
putations when training and evaluating models again and again for
the di�erent split points. Recall that a: -NN classi�er classi�es a
given sample by �nding the: nearest samples in the training data

Algorithm 1 Classi�cation Score Pro�le

1: procedure calc_clasp (T, clf , F)
2: ClaSP initialize array of lengthj) j with 0
3: . C initialize array of lengthj) j with 1 • all in , '
4: , =

Ð

92»1•”””•=� F ¸ 1¼
) 9•9̧F • all windows from)

5: :# #B = knn_profile ¹clf •, º
6: for 82 »F ¸ 1• ” ” ” •j) j � F � 1º do • For each split
7: . C»8� F ¼ 0 • add current window to, !
8: ClaSP»8¼ cross_validate ¹clf • :# #B• .C)
9: end for

10: return ClaSP
11: end procedure

using a prede�ned distance function. It then determines the pre-
dicted label by aggregating the labels of the: -NN training samples.

The important property of this procedure is that the pairwise
distances between windows and thus the: -NNs for any window
are independent of the ground truth labels of the windows. This
means that we can actually precompute the: -NNs of any window
once (Algorithm 2). The training and evaluation at a split point
8 then boils down to looking up thelabelsof these: neighbors
in the train split of the cross-validation for every window in the
test split, and aggregating them into a majority label. Thus, the
expensive distance calculations have to be performed only once,
and relabelling is performed on demand for every split point.

Figure 3 illustrates this idea for: = 3. First,3-NNs are computed
for each window. Note that an NN is represented by the o�set of a
window, i.e.302for) 302•302̧ F . At the left of the split (e.g. 1.2k in
the centre and 3k in the bottom), we assign class label0 (blue), and
label1 (orange) to the right of the split. For the split at 1.2k (centre)
there are �ve windows, two to the left of the split and three to the
right that have their3-NN windows outside of their own segment,
indicated by the orange and blue color. This leads to a classi�cation
error, as the classi�er predicts the label of the windows in the wrong
segment. When moving the split from 1.2k to 3k the ground truth
. Cchanges for some windows (but not their distances), indicated
by the change in colors. At the same time, the labels of the 3-NN of
those windows, which were previously mislabeled, change in the
left and right segment. Thus, for the bottom split, all 3-NN point to
windows within the same segments, i.e. class label, resulting in a
high classi�er accuracy.

knn_profile ¹clf •, º (line 5 of Algorithm 1) computes the k-
NNs and assigns these to� . Once we have pre-computed these
k-NN o�sets for each window, we only need to change the ground
truth labels of the NN windows (line 7) to be able to compute a new
cross-validation score. We only have to change one label, equal to
�ipping one bit, when moving the split point from8to 8¸ 1.

4.2 Precompute k-NN-Pro�le
We discuss the details ofknn_profile ¹º (Algorithm 1 line 5) which
pre-computes the: -NNs for every window from) using the z-
normalized Euclidean distance on the raw values. Algorithm 2 takes
the set, of windows and the k-NN classi�erCLFas input, and
returns an array of the o�sets of the: -NNs for each window. First,
it computes the pairwise window distance matrix (line 5). It then

Figure 3: For each window the 3-NNs are computed. When
iterating di�erent splits Band B0 the ground truth labels . C
are modi�ed (centre and bottom). The 3-NNs for each win-
dow reference new labels, leading to altered predictions for
di�erent splits - illustrated in blue and orange for the NNs.

Algorithm 2 k-Nearest-Neighbour Pro�le

1: procedure feature_extraction (CLF, W)
2: : CLF”: • k-nn hyper-parameter
3: :# #B array of shapej, j � :
4: • Computes distance matrix of shapej, j � j , j
5: � clf.compute_distance_matrix ¹, º
6: � apply_exclusion_zone¹� º
7: for 82 »1• ” ” ” •j, j¼do
8: � argsort ¹� »8¼º • sort row by distance
9: :# #B »8¼ �rst : o�sets from �

10: end for
11: return kNNs
12: end procedure

selects the o�sets of those: windows with the lowest distances
(lines 7�10), which are returned. We make use of an exclusion zone
around each window of lengthF , so that all windows overlapping
with more thanF •2 points are not considered during the search
for NNs (line 6). This e�ectively sets the distances of windows
within � F •2 of the diagonal of the distance matrix to in�nity. The
distance matrix can be computed using the dot-product. We use
a fast implementation (line 5), outlined in [14, 36], requiring only
O¹=2º-time (see Section 5.6). SCRIMP [36] implements this idea for
computing pairwise z-normalized distances, but only for the overall
1-NN (and not the: -NN as used in ClaSP). Using advanced feature
extraction techniques like ROCKET [11] is part of our future work.

4.3 Cross Validation
Line 8 in Algorithm 1 performs a leave-one-out cross-validation for
a given o�set8using the pre-computed: -NN o�sets. Algorithm 3
illustrates the computation of a single score in ClaSP given the self-
supervised ground truth labels. Cand all: -NN o�sets. It collects
the : -NN o�sets for each window (line 4), performs a lookup for
their current class labels, and �nally picks the majority label (line 5).
The set of ground truth labels and the set of predicted labels are

Algorithm 3 Leave-One-Out Cross-Validation Score

1: procedure cross_validate (clf ,kNNs,. C)
2: . ?A43 array of lengthjkNNsj, initialized to zero
3: for 82 »1• ” ” ” •j. ?A43j¼do • Iterate all windows
4: offsets kNNs»8¼ • k-NN o�sets
5: . ?A43»8¼ majority_label ¹

Ð

92offsets
. C»9¼º

6: end for
7: return scoring_function ¹. C• .?A43º
8: end procedure

Figure 4: The averaged ClaSP computed from 10randomly
generated TS, i.e. without self-similar regions. The ClaSP us-
ing the optimal score should result in a straight line to avoid
any bias, which is the case for F1 and ROC/AUC.

next passed to a scoring function (line 7). When a split moves, only
. Cchanges, potentially resulting in a new score.

4.4 Classi�cation Score Selection
ClaSP determines change points by �nding local maxima in the
classi�cation score pro�le. To identify the most disruptive event,
as required for solving CPD, we need to identify the global max-
imum; for solving the problem of TSS, we need to �nd the� � 1
highest local maxima, when� is the desired number of segments
(see Section 4.6). However, special care has to be taken to make
scores of di�erent splits comparable, because for every potential
split point in a TS the number of windows in the left and right
segments di�ers. Accordingly, the binary classi�cation problems
are often highly class-imbalanced. This class-imbalance changes
over the TS, with more severe imbalance towards the ends of the
TS and low imbalance at the centre. As class imbalance can in�u-
ence the performance of classi�ers, a bias may emerge making the
comparison of scores of di�erent splits meaningless1. The impact
of this bias is directly related to the particular evaluation metric
being used. To illustrate this, we built a macro-averaged ClaSP from
the pro�les of 10randomly generated TS and plotted the results of
di�erent evaluation metrics. These random TS should not contain
self-similar segments, thus the optimal evaluation function should
result in a constant line. Figure 4 shows results for accuracy, F1 and
ROC/AUC. Accuracy is highly sensitive to class-imbalances and
thus leads to a pro�le similar to a parabola, with high values on
the left and right corners. F1 and ROC/AUC both perform much
better as shown by the �at line even at the corners of ClaSP. This
leads to the conclusion that macro F1 and macro ROC/AUC are
both suitable.

1Note that FLOSS also has this issue which it solves using score normalization

Figure 5: ClaSP is computed, and its global maximum de-
�nes the �rst change point. For each resulting disjoint seg-
ment a (local) ClaSP is computed, and its global maximum
is chosen. This process is recursively repeated until the re-
quired number of change points (i.e. segments) is reached.

4.5 Window Size Selection
ClaSP takes the window sizeF as its only hyper-parameter. This pa-
rameter has data-dependent e�ects on ClaSP's performance. When
chosen too small, all windows tend to appear similar; when cho-
sen too large, windows have a higher chance to overlap adjacent
segments, blurring their discriminative power. It is thus non-trivial
to pick a suitable window size for a given TS. The ideal window
size should correlate with the inherent statistical properties of the
given dataset. In the literature, it is common to have the window
size being set manually by a domain expert [17]. This implicitly
allows for the usage of background knowledge, but is costly and
slow, as such experts �rst have to be identi�ed. An alternative is to
perform window size selection automatically. In the experiments
section, we compare manually de�ned window sizes with three
automatic methods:Ensembling ClaSPs:The �rst approach is to
use di�erent window sizes, leading to multiple ClaSP scores per
o�set. The �nal ClaSP score for each o�set is computed as the
average over its ClaSP scores.Highest maxima: The second ap-
proach also calculates sets of ClaSP scores using di�erent window
sizes. It then chooses a change point as the o�set with the overall
highest value, i.e., the global maximum over all scores.Dominant
Frequency: The third approach �rst transforms a TS using the
Discrete Fourier Transform. It then selects the dominant Fourier co-
e�cients with the highest magnitude. The corresponding frequency
can be transformed to a window size.

4.6 Segmentation
Using ClaSP for the CPD problem is straightforward: We �rst com-
pute the pro�le and then choose its global maximum as the change
point. Application of the idea to TSS is more complicated. Let us
assume one would want to segment a TS) into � segments. A
naive idea is to run the algorithm once and then return the� � 1
highest values as change points. However, these are typically no

Algorithm 4 Segmentation

1: procedure segmentation () , =_2?CB)
2: 2?CB initialize List
3: ?@ initialize Max-Priority-�eue
4: (2?C_83G•2?C_E0;) = calc_cpt())
5: pq.insert (2?C_E0;•¹2?C_83G•)º)
6: for 82 »1• ” ” ” •n_cps¼do • desired number of cp
7: (2?C_83G, () pq.removeMax()
8: 2?CB.append(2?C_83G) • keep global maximum
9:) ! = (1468=:2?C_83G • left+right segment

10:) ' = (2?C_83G:4=3
11: (idx! , val!) = calc_cpt() !)
12: pq.insert (val! , (83G! ,) !))
13: (idx' , val') = calc_cpt() ')
14: pq.insert (val' , (83G' ,) '))
15: end for
16: return 2?CB
17: end procedure
18: procedure calc_cpt (T) • index+value of change-pt
19: ?A>5 8;4 calc_clasp())
20: return (argmax(?A>5 8;4), max(?A>5 8;4))
21: end procedure

local optima, but instead all very close to the highest value (global
maximum). Another idea is to use a peak �nding algorithm, such
as those implemented inscipy.signal.�nd_peaks, and then return
the� � 1 highest peaks. However, this again often leads to clusters
of peaks around the highest point; furthermore, it requires to deter-
mine parameters of the peak �nder, such as minimal gap between
peaks or minimal elevation over the local neighborhood.

Instead, we propose and evaluate a di�erentparameter-freestrat-
egy. Our idea is to apply a recursive splitting algorithm. Given) ,
the algorithm �rst computes ClaSP and selects the maximal peak as
the �rst change point. Next, it computes two new ClaSPs, one for
the left and one for the right segment of the �rst split. Within these
pro�les, it picks the larger peak of the two as a second change point.
It then computes ClaSP for the resulting three segments, computes
three maxima, chooses the highest, etc. This process is recursively
repeated until the desired number of change points is derived. Note
that in every iteration, only two ClaSPs have to be computed, as all
but one segment remain unchanged compared to the last iteration.

Pseudocode is shown in Algorithm 4, which takes as input a
TS) and the desired number of change points� = =_2?CB. It �rst
calculates the ClaSP over the entire) (line 4) and stores the index of
the peak with the highest score in a priority queue (line 5). Within
a loop (line 6) the o�set of the largest local maximum2?C_83Gis
extracted and the two left and right segments of the split2?C_83G
are derived (lines 9-10), for which the corresponding ClaSPs are
computed (lines 11,13), and added to the priority queue (lines 12,14).
The loop ends when the desired number of CP has been extracted.

An example is shown in Figure 5. The TS (top) shows the rota-
tion of a subject's left calf while �rst walking, then jogging, and
�nally running (taken from [17]). Each type of activity represents
one rather homogeneous segment, whereas di�erent activities ex-
hibit di�erent frequencies of rotational de�ections. The �rst pro�le

(Figure 5, centre) already contains clear peaks for both CPs, but the
second peak becomes more precise through the second iteration.
The main advantage of this iterative process is that it is parameter-
free and does not require to set an exclusion zone around peaks.

4.7 Computational Complexity
The computational complexity ofClaSP(Algorithm 1) using k-NN
classi�ers is dominated by the cost ofknn_profile () andO¹=º
calls tocross_validation ().knn_profile() is dominated by the
time needed to compute the distance matrix (line 5). The distance
matrix can be computed inO¹=2º by a reformulation using the
dot-product [14, 36], for TS of length=. Retrieving the k smallest
window o�sets (line 8) can be solved inO¹: � =º using k sequential
searches orO¹= ¸ : log=º, when using a min-heap. Thus, a total of
O¹=2¸ =�: log=º for lines 7�9.cross_validation can be performed
in O¹=º for a single split index, with a total ofO¹=º splits. Thus,
the total complexity is inO¹=2º.

The time complexity to �nd a single change point usingClaSP
is thus inO¹=2 ¸ = � : log=º. Segmentation () into 2 = =_2?CB̧1
di�erent segments involvesO¹2º calls toClaSP. This has an overall
worst case complexity ofO¹2� ¹=2 ¸ = � : log=ºº. In thebest case
however we always halve the segments after each split, therefore
result in a complexity ofO¹=2 ¸ 2¹=•2º2 ¸ 2¹=•4º2 ¸ ”””º = O¹=2º.

5 EXPERIMENTAL EVALUATION
We compare the accuracy and runtime of ClaSP with four state-of-
the-art competitors and a simple baseline using a publicly available
dataset of 98 TS annotated with change points. We also perform
experiments to study the in�uence of the only hyper-parameter
of ClaSP, the window size (see Section 5.3), and the in�uence of
evaluation metrics and segment numbers (see Section 5.1). Finally,
we discuss three challenging real-life data sets. To ensure repro-
ducible results and to foster follow-up works, we provide the ClaSP
source code, Jupyter-Notebooks, visualizations of the datasets, and
the raw measurement sheets on our website [9].

5.1 Benchmark Setup
Datasets.Overall we use98benchmark datasets to asses the per-

formance of ClaSP and to compare it to rivalling methods, which
is the largest collection of datasets considered so far for change
point detection.32datasets stem from public segmentation bench-
mark datasets [17] that capture biological, mechanical or synthetic
processes. Change points as well as period sizes were annotated
by human experts as described in [17]. Furthermore, these dataset-
dependent period sizes were used in all experiments as window
sizes for all competitors that set this parameter.

We created a semi-synthetic dataset from the UCR archive [34].
From the about120datasets (DS) we �rst removed all DS with
missing values, too many classes, too little TS per class label, or
too large DS. We �nally visually inspected the remaining DS and
selected a subset of66. All of the remaining DS have in common
that they show some obvious periodicity (compare our assumptions
in Section 2). Each UCR dataset contains multiple labelled TS. We
group TS by class label and concatenate all TS to create segments
with repeating temporal patterns and characteristics. The location
at which di�erent classes were concatenated are marked as change

Figure 6: In�uence of di�erent design choices on average
rank for 98benchmark datasets.

points. We resample the resulting TS to control the TS resolution.
The window sizes for these datasets are hand-selected to capture
temporal patterns but are approximate and limited to the values
[10,20,50,100] to avoid over-�tting. We have uploaded a Jupyter-
Notebook to generate the benchmark to our website [9]. Out of
all 98datasets:49TS have2 segments (1 CP),22datasets have3
segments,10datasets have4segments,11datasets have5segments,
1 dataset has6 segments, and5 datasets have7 segments. We used
the pre-de�ned window sizes for our comparison results, but also
study the performance of our suggested methods for determining
this parameter automatically (see Section 5.3).

Competitors.We publish the results on these benchmark datasets
for Autoplait [24], FLOSS [17], and the best performing two methods
from [32], namely Binary Segmentation (BinSeg) [29] and Bayesian
Online Changepoint Detection (BOCD) [1]. Additionally, we evalu-
ated the dynamic programming, bottom-up segmentation, as well
as the window-based change point algorithm from [30] with L1, L2,
auto-regressive, kernel, and Gaussian cost functions using default
parameters. In our comparison, we include as a simple baseline
the results of the best-performing one of these, the window-based
algorithm with L2 cost function (Window-! 2).

Evaluation Metric.We use the metric as de�ned in [17] for mea-
suring the quality of a method: Given a TS) and sets of predicted
CPs2?CB?A43and of ground truth CPs2?CB) , with each location in
»1” ” ” =¼, we compute the normed4AA>A2 »0” ” ”1¼as:

error=
1

= � j2?CB?A43j
�

Õ

?22?CB?A43

min
?022?CB)

j? � ?0j

This measure sums up and normalizes the relative distances be-
tween every predicted change point? 2 2?CB?A43and the closest
ground truth change point. Note that this measure does not perform
a bipartite matching, as multiple predicted CP may be matched to
the same ground truth CP. This can be seen as a disadvantage, but
we stick to this de�nition to allow comparisons with previously
published results. We also use critical di�erence diagrams (as in-
troduced in [12]) to compare ranks between approaches. The best
approaches scoring the lowest (average) ranks are shown to the
right of the diagram. Groups of approaches that are not signi�cantly
di�erent in their ranks are connected by a bar, based on a Nemenyi
two tailed signi�cance test withU = 0”05.

ClaSP Parameter Settings.There are three main design choices
for ClaSP: (a) the evaluation metric and its treatment of class im-
balance, (b) the number of: neighbours used for classi�cation,
and (c) the window sizeF . We performed ablation studies to �x
values for parameters (a) and (b). We tested all combinations of

Figure 7: Segmentation ranks on 98benchmark datasets for
ClaSP (lowest rank) and the 5 state-of-the art competitors.

Figure 8: Boxplot on segmentation error on 98 benchmark
datasets for ClaSP and the state-of-the art competitors.

Table 1: Summary wins/ties/losses of ClaSP over rivals.

Autoplait FLOSS Window-! 2 BinSeg-! 2 BOCD
ClaSP 93•0•5 88•1•9 94•0•4 96•0•2 96•0•2

F1 versus ROC/AUC and neighbours: 2 »1•3•5¼. Figure 6 shows
the results. Overall, we found no signi�cant di�erences between
these settings. Because3-NN in combination with ROC/AUC has
the lowest average rank, we use this con�guration in all subsequent
experiments. Regarding (c) we primarily used the expert de�ned
values, but also performed experiments with automatic selection
strategies (see Section 5.3).

5.2 Segmentation Errors on Benchmark Set
The critical di�erence diagram in Figure 7 shows the average ranks
for ClaSP, Autoplait, Window-! 2, BinSeg-! 2, BOCD, and FLOSS
based on their errors for the segmentation task on each of the98
benchmark TS. Note that Autoplait fails to return any result on
68datasets (compare [17]). Overall, ClaSP shows by far the lowest
rank (average 1.22), followed by FLOSS (average 2.16). ClaSP is
signi�cantly better than all other competitors. On the entire data set,
ClaSP has80wins or ties (�rst position in error), followed by FLOSS
(10), Autoplait (4) Window-! 2 (3), BOCD (2) and BinSeg-! 2 (0)
(counts do not sum up to98due to ties). When looking at the results
for the two classes of tasks in this benchmark individually, namely
strong CPD (one change point,49instances) and TSS (more than
two change points,49instances), the situation remains essentially
the same (data not shown): ClaSP has the overall lowest rank.

ClaSP also scores the lowest median error and standard deviation
over all TS (Figure 8). It has a2”24percentage points (pp) smaller

Figure 9: Results of di�erent window size selection strate-
gies on the benchmark datasets.

average error and6 pp smaller standard deviation compared to its
second best competitor FLOSS. On average, both algorithms score
much less errors than the other methods, with more than15%. In
a pairwise comparison of ClaSP against every competitor, ClaSP
achieves between88(vs FLOSS) and96(vs BOCD) wins (Table 1).
For instance, it achieves a lower error than FLOSS for88of the 98
datasets, the same error in1case, and is beaten by FLOSS in9cases.

5.3 E�ect of Window Size Selection
Results so far were obtained with window sizes as provided by the
benchmark, which were manually determined by domain experts
using domain knowledge [17]. Thus an approach probably leads
to favorable results, but requires the availability of such domain
experts that are also familiar with TS analysis, which often poses an
obstacle to data analysis. In Section 4.5, we described three strate-
gies for alleviating the problem of manual window size selection.

We performed an experiment to study the quality of these strate-
gies and whether they can beat domain experts. We applied the
three strategies with a set of window sizes»10•20•50•100¼. Mean-
ClaSPrefers to an ensembles of ClaSPs of di�erent window sizes,
Max-ClaSPrefers to the highest global maximum, andFFT-ClaSP
is the dominant Fourier Frequency approach. Figure 9 shows the
results. ClaSP with domain expert annotations shows the lowest
average rank. It achieves60�rst ranks, whereas the Mean-ClaSP
leads to only11wins. The median errors of the two best strategies,
Mean-ClaSP and ClaSP, are close by with0”47%and0”9%. In con-
trast, the mean errors di�er, with4”3%for Mean-ClaSP and1”2%for
ClaSP, which is in parts caused by a single outlier on the WalkJo-
gRun2 dataset, where Mean-ClaSP scored an error greater than
30%. We believe these results indicate that further research into
parameter-free methods is promising, and that human annotation
of window sizes might not be necessary in future applications.

5.4 Complex Classi�ers in ClaSP
We have focused on a 3-NN-based approach in this paper, and
presented optimizations to avoid expensive distance calculations for
every split that result in a complexity ofO¹=2º. We also performed
initial experiments evaluating more complex TS classi�ers with
A-fold CV including BOSS [27], TS-Forest [13] and ROCKET [11]
but without any accuracy gains on the given98benchmark TS.
These TS classi�ers also result in much higher runtimes ofO¹A� = �
¹CA08=8=6¸ C4BC8=6ºº. Nonetheless, we have published the results to
our supporting website [9]. Optimizing complex classi�ers is part
of our future work.

5.5 Runtime Comparison on Benchmark Set
Figure 10 shows runtimes of FLOSS, ClaSP, BinSeg-! 2, BOCD, and
Window-! 2 on each of the98benchmark TS. Window-! 2 has the
lowest overall runtime, followed by BinSeg-! 2. FLOSS and ClaSP
both have the same computational complexity. Nevertheless, ClaSP
is always faster than FLOSS, often by a factor of at least2. The
marked peak in runtime for TiltABP and TiltECG for FLOSS and
ClaSP are due to their much greater length (length 40k compared
to length 19k of the next-longest TS InsectEPG4) and the quadratic
runtime complexity of FLOSS and ClaSP. We published plots on
scalability regarding length= or number of CPs to [9].

5.6 Results on Speci�c Use Cases
We describe results on three TS in more detail to show the strengths
and limitations of ClaSP. Two (Insect EPG and Tilt Table) are also
part of the benchmark used above, while NYC Taxi is not.

Insect EPGs.Monitoring the feeding behavior of sucking insects can
reveal important insights into the transmission of pathogens [33].
Figure 11 shows the recording of an electrical penetration graph
(EPG), for which an insect is tethered to an electrode while feeding
from a food source. Di�erent phases in the feeding lead to changes
in electric �ow through the electrodes, which are recorded and
transformed into a TS. The TS in the �gure contains one annotated
change point, indicated by the transition in colors. From top to
bottom, we highlight the segmentation given by ClaSP, FLOSS and
Window-L22. While ClaSP detects the change point very precisely,
the other two methods predict it further to the left, i.e., too early.

Very small Segments.The New York City taxi passenger TS [2]
contains six months of taxi passenger volumes aggregated at 30
minute intervals, annotated with windows that point to the NYC
marathon, Labor Day, Thanksgiving, Christmas, and New Year Eve.
This is a challenging dataset for TSS algorithms as all these events
are very short, leading to very short phases of distortion in the TS.
Furthermore, the background signal is complex, with strong but
somewhat repetitive changes over the course of a day. We ran ClaSP
and FLOSS on this dataset with a 8 hour window size to evaluate
how they perform in such a di�cult setting. Figure 12 shows the
classi�cation score pro�le and the CPs as detected by ClaSP and
FLOSS, respectively. Events that last an entire day or more, like
Labour Day, are clearly visible as distinctive local peaks. On the
other hand, shorter events like the NYC marathon do not lead to
clear peaks. Both methods �nd Labor Day as their �rst CP. ClaSP
positions its second and third CP near New Year and Christmas
and �nds Thanksgiving as fourth CP. FLOSS predicts its second
to fourth CPs in close proximity to its �rst CP, probably because
the default setting of the exclusion zone is not appropriate for this
dataset. Together, the segmentation by ClaSP is clearly meaningful
yet certainly not optimal, while FLOSS with default parameters
produces a much worse result.

Gradual vs Discrete Changes.Finally, we study a use case showing
the limits of TSS algorithms for cases where changes are gradual
and not sudden. We analyse TS data from an experiment where the
arterial blood pressure of a person lying on a tilt table with foot rest

2Autoplait and HOG-1D had signi�cantly worse results than ClaSP and FLOSS.

	Abstract
	1 Introduction
	2 Background and Definitions
	3 Related Work
	4 ClaSP - Classification Score Profile
	4.1 k-NN classifier in ClaSP
	4.2 Precompute k-NN-Profile
	4.3 Cross Validation
	4.4 Classification Score Selection
	4.5 Window Size Selection
	4.6 Segmentation
	4.7 Computational Complexity

	5 Experimental Evaluation
	5.1 Benchmark Setup
	5.2 Segmentation Errors on Benchmark Set
	5.3 Effect of Window Size Selection
	5.4 Complex Classifiers in ClaSP
	5.5 Runtime Comparison on Benchmark Set
	5.6 Results on Specific Use Cases

	6 Conclusion
	References

