LOS: Level Order Sampling for Task Graph
Scheduling on Heterogeneous Resources

Carl Witt
Humboldt-Universitiit zu Berlin
Berlin, Germany
wittcarl @informatik.hu-berlin.de

Abstract—List scheduling is an approach to task graph
scheduling that has been shown to work well for scheduling
tasks with data dependencies on heterogeneous resources. Key
to the performance of a list scheduling heuristic is its method
to prioritize the tasks, and various ranking schemes have been
proposed in the literature. We propose a method that combines
multiple random rankings instead of a using a deterministic
ranking scheme.

We introduce L-Orders, which are a subset of all topological
orders of a directed acyclic graph. L-Orders can be used to
explore targeted regions of the space of all topological orders.
Using the observation that the makespans in one such region
are often approximately normal distributed, we estimate the
expected time to solution improvement in certain regions of the
search space. We combine targeted search and improvement
time estimations into a time budgeted search algorithm that
balances exploration and exploitation of the search space. In
40,500 experiments, our schedules are 5% shorter on average
and up to 40% shorter in extreme cases than schedules produced
by HEFT.

Index Terms—Distributed Computing, Task Graph Scheduling,
Scientific Workflows, Adaptive Sampling

I. INTRODUCTION

The amount of data routinely analyzed in scientific or
business contexts is ever growing. To keep up with the devel-
opment and to scale analyses to large input sets, distributed
and parallel computing is used.

A common approach to parallelizing compute workloads is
task-based computing. An application manages a set of tasks
representing discrete, often atomic units of work that can be
run in parallel on distributed and possibly heterogeneous com-
pute resources. We focus on scientific workflows, a paradigm
for defining data analyses where tasks produce output data that
is passed as input data to downstream tasks. This yields a set
of precedence constraints on the tasks that can be described
as a directed acyclic graph (dag). Passing data between tasks
also causes communication delays when tasks are executed on
different processors.

Dag scheduling is the problem of deciding which tasks
to run on which resources, and when. With precedence con-
straints and communication times, the problem of minimizing
the overall execution time is NP-complete, even on an unlim-
ited number of processors [1]. List scheduling methods are
a well-known class of scheduling heuristics that compute a
schedule for a given dag with known task runtimes and data

Sam Wheating
University of Victoria
Victoria, Canada
samwheating @ gmail.com

UIf Leser
Humboldt-Universitiit zu Berlin
Berlin, Germany
leser@informatik.hu-berlin.de

transfer times. They proceed in two phases: First, each task is
assigned a rank, often representing an estimate of how critical
the task is for advancing the execution of the dag. Tasks are
then considered for scheduling in order of their ranks, usually
greedily optimizing some criterion like the earliest start time
or the earliest finish time.

The Heterogeneous Earliest Finish Time (HEFT) algo-
rithm [2] is a well-known list scheduling method to solve the
scheduling problem with precedence constraints, communica-
tion times, and heterogeous resources. HEFT first averages
the computation and communication costs over all available
resources and then propagates combined computation and
communication costs from the bottom of the dag to the entry
tasks. This gives the length of a partial critical path starting at
each task that is used to prioritize tasks with more downstream
work. However, it has been shown that different ranking
schemes can yield significantly different results and may be
used to reduce schedule lengths by up to 3%-6%, although no
single ranking scheme always performs best [3]].

The idea behind our proposed Level Order Sampling (LOS)
method is to replace the ranking scheme in HEFT by a
randomized method that both allows for exploring a large
number of alternative rankings as well as considering long-
term dependencies between scheduling decisions by repeatedly
evaluating schedule variations affecting different portions of
the task graph.

Our contributions are the following: We present an efficient
way to randomly select topological orders of a dag from
specific regions of the search space and use it to build a time-
budgeted adaptive search algorithm for task graph scheduling
on heterogeneous resources. We propose a time time-budgeted
method to offer users more flexibility in balancing the conflict-
ing goals of scheduling quality and speed. We show that our
method outperforms HEFT by 5% on average to 40% and also
beats alternative ranking schemes from the literature. The code
is available on demand from the corresponding author.

The paper is structured as follows. Section 2 introduces the
scheduling problem and notation, as well as basics of list
scheduling and the HEFT algorithm in particular. Section 3
presents the LOS algorithm for randomized scheduling on a
time budget. Section 4 presents the results of the experimental
evaluation. Section 5 reviews related work. Finally, Section 6
discusses design alternatives and future work.

II. BACKGROUND

A. Scheduling Problem Terms and Definitions

We consider the problem of scheduling a communication
dag on heterogeneous resources subject to minimizing the
overall execution time (makespan). Let P = {p1, p2, ..., pp } be
a set of processors. A communication dag is a directed acyclic
graph G = (V, E, w, ¢) that describes a workflow’s tasks V' =
{T1,T>,...,T,}, the dependency relationships £ C V x V
between tasks, their computation times w: V x P — R™, and
the amount of data to be transferred from a task to another
c: E — R*. Note that the task execution times do not have
to be consistent [4] with respect to processors, i.e., certain
processor might be better suited to certain tasks, e. g., p; could
be the fastest processor for 7 but another processor is fastest
for T5.

We use the standard network model in dag scheduling, a
fully connected network with heterogeneous data transfer rates
between processors, but without network contention. Data
transfer rates and communication startup times between all
pairs of processors can be defined and affect the data transfer
times, but we do not introduce symbols for them here, as we
do not use them later on. Tasks being executed on the same
processor communicate for free.

The transitive closure of the precedence constraints E gives
a strict partial order <. T; < T} denotes that there is a path
from T; to T;. We say T} is a descendant of T;. Equivalently,
we may write T; > T; to denote that T; is an ancestor
of T;. If neither T; < T; nor T; > 1T}, the tasks are
called incomparable. In the context of scheduling, T; < T}
means that 7; has to finish execution before T} can start. If
(T;,T;) € E then ¢(T;,T}) data has to be transferred between
the processors on which 7; and T} are executed. If T; and T}
are incomparable, they can potentially be executed in parallel.

We use < to define the lastest precedence value [3], or
level for short, of each task. The level of a task is defined
recursively based on the levels of its descendants. A task
without descendants is called a leaf.

level(T;) = {0 T; is a leaf M

1 + maxr,, 7, level(Tj) otherwise

According to this definition, level(T;) equals the longest path
from T; to a leaf. Note that in the literature, the level of a task
often takes into account the runtimes of the tasks on a longest
path to a leaf node, e. g., the b-level [6]]. Here, the level of a
task is based only on the number of tasks on a longest path
to a leaf.

We define an order of the tasks as a permutation 7: V' —
{1, ...,n} such that tasks with higher ranks are either ancestors
of tasks with lower ranks or can be executed in parallel with
them, i.e., Vi, j: m(T;) > n(T;) = T; < T, V(T; A T;NT; £
T;). We refer to 7(T;) as the rank of T;. An order can be found
using topological sorting. Thus, there is usually more than one
order of the tasks of a dag. We refer to the set of all orders
as the order space. Figure |1| exemplifies these concepts.

level=2
=4
level=1 level=1

level=0
=1

Fig. 1: Example dag, its task levels, and an ordering w. We
have 77 < 15,1y < Ty, Ts < Ty, T5 < T}y. For example, since
neither 77 < T3 nor T3 < T4, both tasks can be executed in
parallel. The order space consists of the following three per-
mutations: (Tl, Tg, Tg, 1—‘4)7 (T17 T3, Tg, 7—14)7 (Tg, T17 TQ, T4)

B. List Scheduling and Task Weighting

List scheduling [6] is a well-known approach to dag
scheduling that divides the problem into a task prioritization
phase and a processor assignment phase. During the priori-
tization phase, a priority for each of the tasks is computed
according to some weighting method. In the processor assign-
ment phase, the scheduler considers the tasks in decreasing
order of priority to decide on which processor the processor
should run.

A weighting scheme V' — R is a method to map the
tasks to weights representing their priority. Weighting method
are usually chosen such that sorting by descending weight
produces an order of the tasks. In case tasks have equal
weights, ties are often broken arbitrarily.

Sometimes, a slightly different definition of a list scheduling
algorithm is used [[L], which requires the scheduler to always
run as many tasks as possible in parallel, i.e., not holding
tasks back when processors are idle. For dags without com-
munication times, such a strategy can be shown to always
produce a schedule of length at most 2 — % times the optimal
makespan [7]], where p is the number of processors. However,
this does not hold for the more complex problem that arises
when considering communication times between processors.
With communicaton times, it can be better to keep processors
idle in case the incurred communication times are larger than
the gains from parallelizing computation.

C. Heterogeneous Earliest Finish Time Algorithm

A tried and tested popular list scheduling algorithm for
solving the scheduling problem at hand is the Heterogeneous
Earliest Finish Time (HEFT) algorithm. We briefly explain
it here, because the basic idea of the proposed level order
sampling method is to replace the task ordering method used
in HEFT with a randomized ordering scheme.

During the task prioritization phase, HEFT uses a weighting
scheme that computes the weight of each task recursively
based on the weights of its children. Let w and ¢ denote the
computation/communication costs averaged over all proces-

Step 1:
Averaging

Step 2:
Upward Rank
60+max(55, 20)
=115

Step 3:
Sort desc.

Fig. 2: The HEFT weighting method to obtain a task order.
For step 1, different schemes have been proposed [3] to which
we compare our method. This example uses two processors
and two network links, the corresponding computation and
communication times are annotated to the input as z/y. In
Step 1, averaging is used to remove heterogeneity. Step 2 uses
the upward rank from Equation [2, and Step 3 obtains an order
of the tasks by sorting by urank descending.

sors/network links, respectively. The upward rank of a task is
defined as:

urank(T;) = w(T;) + max

A ¢ (T;,T;) + urank(T})

2)
Using this definition, the weight of a task equals the maximal
sum of the average computation and communication on a
path to a leaf. In contrast, our definition of the task level as
the maximal number of tasks on a path to a leaf serves the
purpose of capturing the dependency constraints and finding
valid execution orders (see Section[[[I-A). Resorting to average
computation and communication times is a simple solution
to the problem that we do not yet know where tasks will
eventually be executed and thus do not know their actual
execution times in a heterogeneous environment. Figure
illustrates HEFT’s overall process of weighting, ranking, and
computing a task list.

Note that the upward rank allows HEFT to trade-off between
communication overheads and degree of parallelism, e.g., if
the communication costs suggest that running two tasks on
the same processor would be faster than transferring the input
data to another processor. Consequently, HEFT can choose a
lower degree of parallelism to avoid excessive communication
overhead. HEFT does, however, not have a reliable way to take
into account the long term effects of such a decision, which
we address with our level order sampling approach.

In the processor assignment phase, HEFT selects for each
task, in order of decreasing upward rank (ties arbitrarily
broken), the processor that minimizes the earliest finish time
of that task. The earliest finish time of a task 7; on a given
processor p; depends on 7;’s parents’ finish times, the data
transfer times from the parent’s scheduled processors to p;,
and T;’s execution time w(T5, p;). Since sorting by decreasing
upward rank yields a topological order, it is certain that
when scheduling a task, all its parent tasks have already
been scheduled. HEFT uses an insertion-based strategy that
schedules a task T; between tasks already scheduled on p; if
T;’s input data can be transferred to p; in time and the gap
has a length of at least w(T5, p;), i.e., the already scheduled
tasks are not delayed.

Input: Step 1: Step 2: Step 3:
cDAG Compute Levels Partitioning Level Shuffling
level=1 5 Level 1} { Level 1}
! P 1
O L ® e
1 =1 i
| Level 0! | Level O}
|
i : i ITH(T;)=2
level=0 level=0 | @ @ ! | G @ |
1 o =1

Fig. 3: The L-Order sampling method for obtaining a task
order.

III. ADAPTIVE LEVEL ORDER SAMPLING

In this section, we describe our randomized approach to dag
scheduling. We first introduce the notion of L-Orders, which
allow us to partition the space of all topological ordering into
regions and efficiently sample from the regions. Second, we
propose a scheme to estimate how promising a region is with
respect to finding better solutions. We then combine the two
into a budgeted adaptive randomized search algorithm.

A. L-Order Sampling

Definition 1. An L-Order 7y, is an order of the tasks such
that the levels of the tasks are non-increasing with respect to
their rank:

7w (u) > wp(v) = level(u) > level(v)

3)

Lemma 1. Every L-Order is a topological order. Otherwise, a
pair of tasks with 7z, (v) > 7 (u) could exist such that u < v.
Since level(u) = 1 + max,., level(v) we have level(u) >
level(v), which contradicts the assumption that the levels are
non-increasing.

Definition 2. To shuffle the k-th level of an L-Order, replace
the order of the nodes of level k& with a random order of these
nodes. More formally, pick a random bijection r: R — R on
the set of the ranks R of the 7T; with level k£ and let the new
L-Order 7, be:

7 (T;) = {T(TFL(Ti)) if level(T}) = k

otherwise

4
r(T)) “)

For example, in Figure the task order is #(T}) =
3,m(T3) = 2,7(Tz) = 1, where level(T}) = 1,level(Tz) =
0,level(T5) = 0. To shuffle Level 0, we consider the set of
ranks of the tasks with level 0: R = {7 (T%) = 1, n(T3) = 2}.
A random bijection could swap the ranks of tasks 75, 75:
r = {(1,2),(2,1)}. The new order w} is then n(Ty) =
3, 7T(T2) = 2, 7T(T3) =1.

The set of L-Orders is closed under the operation of
shuffling any level, since changing the order of tasks with
equal levels maintains the requirement of non-increasing task
levels. We refer to the set of all possible L-Orders resulting
from shuffling a specific level as a region of the order space.
Thus an L-Order 7, with k levels covers k regions in search
space, one for each level in 7.

A solution to the scheduling problem can be obtained by
passing an L-Order to the HEFT algorithm and computing the

Level 4, 1078 samples

150 A

100 -

50 A

O .
2400

2500

2600 2700 2800

Fig. 4: Distribution of the makespans of L-Orders sampled
from a single region. HEFT’s makespan is marked in red.

schedule using the processor assignment method described in
Section [[I-=C} The quality of the L-Order is defined as the
makespan of the resulting schedule, which equals the latest
finish time of a task in the schedule. Since the schedule
computation step is simple, we will refer to an L-Order as
solution where the context does not require a distinction.

Figure [] shows an exemplary distribution of makespans
obtained when passing L-Orders from a specific region to
the HEFT algorithm. Here, 1078 permutations of the tasks
with a level of 4 have been randomly generated. Note how a
substantial fraction of the L-Orders yields makespans shorter
than HEFT’s, which is marked with a red dashed line.

B. Adaptive Search for L-Orders

We now describe a randomized adaptive budgeted algorithm
for searching an L-Order that minimizes makespan based on
the L-Order sampling idea from Section The algorithm
consists of exploitation and an exploration phases, which are
executed alternately, as shown in Algorithm [T} The overall
LOS algorithm takes a communication dag to schedule and a
point in time until scheduling shall finish. It then repeatedly
tries to replace the current best solution with a better variation
of the solution. For parallelization, we simply run several
instances of the algorithm and select the best solution.

Algorithm: Level Order Sampling

Method Schedule(dag G, deadline):
solution < random L-Order of G;
while current time < deadline do
/lexploit
best improvement < exploit(solution);
/lexplore
solution + max(solution, best improvement);
end
return solution;

end
Algorithm 1: The level order sampling algorithm combines
exploration and exploitation into a budgeted search for an
L-Order that minimizes makespan. The adaptiveness of the
algorithm stems from variable amounts of time spent in the
exploit subroutine (see Section [[II-C).

We refer to exploitation as the process of evaluating a
number of variations 7T’L of a reference L-Order 77, which we
obtain by shuffling one of its levels (we shuffle different levels,
but each variation differs only in level from the reference
mr). In the exploitation phase, we need to decide how many
variations to obtain and from which levels. Intuitively, the level
selection process should favor promising levels, i.e., spend
compute time in proportion to the probability of improving the
current solution. We propose an estimator for the improvement
probability in Section [[lI-C} As a second requirement, the
amount of time spent on improving a reference solution should
be limited to sufficiently balance exploration and exploitation
within the time budget. We do this by deriving an estimated
time to improvement based on the improvement probabilities
of all regions spanned by the current reference order (see
Section [[TI-D). The combination of both makes our algorithm
adaptive.

Exploration is the process of changing the reference
L-Order, which makes new regions eligible for sampling. Our
exploration method simply replaces the current reference order
w1, by the best variation 77 found during the previous exploita-
tion phase. By fixing a favorable variation of a level in the
reference and again moving on to exploitation, the algorithm
explores interaction effects between variations of different
levels. This provides an important conceptual advantage over
HEFT, which takes into account only short term consequences
of scheduling decisions.

The alternation of exploitation and exploration phases is
illustrated in Figure |§[First, a reference order 7y, is generated.
Here, the dag comprises tasks of three levels and we denote the
orders of the tasks of those levels as A, B, and C. During the
first exploitation phase, several variations 7, are generated by
shuffling one of the three levels. The best order ;7 was found
in level C. In the exploration phase, the reference solution is
set to 7. Note that since level C has changed, the makespan
distributions for all other levels change, because of interaction
effects between different parts of the schedule. However, all
solutions sampled so far from level C are still valid, since
sampling shuffles from the shuffled Level C* is the same as
sampling shuffles from the original level C. Reusing those
solutions is here indicated with the term carryover.

C. Improvement Probability

In this section, we describe how to estimate the improve-
ment probability, i. e., the probability of finding a solution with
a makespan better than a given reference makespan r in a
certain region of the order space. The basic idea is to analyze
the distribution of makespans obtained by sampling L-Orders
from that region. We use the observation that the makespans
are often normally distributed (as shown in Figure [), but we
do not rely on this assumption. If, however, the makespans
are approximately normal distributed (definition follows), the
cumulative distribution function of a fitted normal distribution
can be used to estimate improvement probability.

Let i denote the average makespan of the solutions obtained
so far from a specific region. Let o959, denote the upper end-

r(A) r(A)
B B
1TL —A
A A A |
B r(B) r(B)
C : / =
- ~~—
A A A |
B H B >B
r(c) Ca‘\' carryOVer r(C‘l‘:)

> Exploit >T> Explore > > Exploit >=

Fig. 5: The interplay between exploitation and exploration.
Exploitation refers to the process of sampling variations
7,7}, ... of an L-Order 7. Exploration refers to picking the
best variation 77 as a new reference to exploit. This way, the
search considers L-Orders that combine arbitrary combinations
of level shuffles relative to the initial L-Order. Here, A, B, and
C refer to permutations of the tasks of a dag with three levels,
and r(-) denotes the shuffle operation used to obtained new
permutations of a level. C* is the permutation that yields the
best variation in the first exploration phase. Note that shuffling
twice yields the same population of variations as shuffling
once, so the evaluated solutions for Level C can be carried
over to the next exploitation phase.

point of a 95% confidence interval for the standard deviation of
the makespans. In case of approximately normally distributed
makespans, the probability to randomly select an L-Order with
makespan m at least as good as a reference makespan r can
be estimated by consulting the cumulative distribution Fs of
a normal distribution with the according parameters:

1
pnv(m<r) = §FN(T§M7 i) ©)

By using a confidence interval for the standard deviation rather
than the sample standard deviation, we take into account the
number of solutions collected so far. For few solutions, we
are not as certain about the actual standard deviation, so
we assume a larger value. When adaptively selecting regions
based on their py, this encourages sampling from regions with
few observations. We set ppr = 1 for levels that have less
than 2 evaluated solutions. This enforces sampling until the
variance can be computed. Should all samples have the same
makespan, we change the makespan of the first sample by 1%
to avoid division by zero.

We next formalize the notion of approximately normal dis-
tributed makespans, and describe our fallback method for esti-
mating the improvement probability. Let n denote the number
of solutions sampled from a region. We compare the number
k of solutions better than r to the number of better solutions
that we would expect to see, given a certain improvement
probability. We assume that sampling a solution is a Bernoulli

trial that succeeds with the assumed improvement probability
panv(m < r). The cumulative distribution function Fp of a
Binomial distribution then gives the probability of observing
at most k successes among n trials. If we find an improbably
(p < 5%) low number of improvements in a region, we assume
that Equation [5] does not apply in the current region and use
the simpler empirical probability p,(m < r) instead.

k
pr(m<r)=— (6)

In summary, the improvement probability is based on the
cumulative distribution function of a fitted normal when

improvement expectations have not been violated, and on a
simple success rate otherwise.

_ Pr(mﬁr)
p(m <) = {pN(m <r)

if Fg(k;n,py(m <71)) < 5%
otherwise
(7
The improvement probability is used in the next section to
adaptively select regions during exploitation and decide upon
the fraction of the remaining time budget spent on a single
exploitation phase.

D. Exploiting Adaptively

Here we explain how an exploitation phase is structured in
detail, which consists of generating multiple variations of the
reference order by shuffling different levels. This entails from
which levels to sample and how many samples to obtain.

During an exploitation phase, the current reference order
spans several regions, one for each level in the dag. We
select the level to shuffle next at random, in proportion to
each level’s improvement probability. Let p(k = [) denote
the level selection probability, i.e., the probability to pick
level | to generate the next variation of the reference order.
The level selection probability is the level’s share of the
summed improvement probabilities. Let p'(m < r) denote
the improvement probability for a specific level [.

p'(m <r)

p(k=1) S p(m < 1) ®)
By employing probabilistic level selection, we ensure that
most of the compute time is spent on promising levels, but
also allow sampling from a less promising level from time
to time. The reason is that our estimates of the improvement
probabilities might not be extremely accurate, and randomiz-
ing gives less promising levels a chance to reveal improved
solutions. The level selection process is illustrated in Figure [6]

We base the length of an exploitation phase on the remain-
ing time budget and the estimated improvement probabilities
per level. We use the latter to estimate the expected number
of additional solutions that we need to sample until improving
over the current best found variation 77 of the reference
order 7y,.

Let L be the number of levels with p'(m < r) > 0. The
expected required number of additional samples for a level
is 1/p!(m < r) multiplied by the level’s selection probability

Level 2
0.06
0.04
0.02
P
-0.02
Level 1
0.06
> 004
2 002
3
0.00 /m\
-0.02
Level O
0.06
0.04 Lo~
~
0.02 Z A
e - S ~
0.00 === - ﬁﬁ gy S
-0.02
50 100
makespan

Fig. 6: The level selection process uses the estimated im-
provement probabilities (red area) to favor promising levels
for sampling new variations. The makespans of the L-Orders
sampled so far (black arrows on the x axis), are used to fit a
normal distribution for each level. Here Level O has the highest
improvement probability, which is reduced by the new solution
(bold arrow, dashed distribution). In the next step, Level 1
has the highest estimated improvement probability. Note that
standard deviations are based on 95% confidence intervals,
such that the fitted distributions are much wider when few
solutions are available, as in Level 2.

p'(k = 1). The overall expected number of additional samples
until improvement Simprov Tesults from summing over all levels.

' _ L
s 1) = S o <)

If all improvement probabilities are 0, we assume an infinite
amount of samples until improvement. Given an estimated
compute time ¢ per solution sample, we calculate the wall
clock time until improvement timprov as t-Simprov (7). In practice,
we use the average of all measured solution evaluation times
so far as the estimated compute time.

The time limit on each exploitation phase relative to the
algorithm’s time budget defines whether the algorithm favors
exploitation (spend more time finding good variations of a
reference order) or exploration (moving on to different ref-
erence orders). In our experiments, we found that sometimes
more thorough exploitation is favorable, while in other cases,
moving on more quickly to other solutions gives better results.
We thus settled on a random fraction in range [5%, 50%]. We
found that randomization does a good job in automatically
selecting good values. The downside is that introducing more

)

sources of randomness potentially also increases the variance
of the performance of the method, which, however, was found
to be sufficiently low during evaluation. The overall design of
the exploitation phase is summarized in Algorithm 2]

Algorithm: Adaptive L-Order Exploitation

Method Exploit(my):

best order 7} < 7r;

carry over collected samples from last exploit phase;
partial budget < 1/(0.05,0.5) remaining time;
deadline < current time + partial budget;
timprov — 0;

while current time+-t;,pro < deadline do

if 0 =Y p!(m < r) then break;

pe < pl(m < 1)/ 3 pH(m <)

randomly select level [with probability p;
mh < mp, with level [shuffled;

new solution = evaluate(r});

update p’, with makespan of new solution;
w5 < max(n}, 7);

end
return 77}

end
Algorithm 2: The exploitation algorithm adaptively samples
new L-Orders from the most promising levels as long as
the expected time to improvement is below a fraction of the
remaining time budget.

For small levels, we do not sample but enumerate all orders
for the tasks in that level and then randomly draw without
replacement. This avoids evaluating the same solution twice,
whereas for levels with more tasks, the factorial grows so
fast that the probability of sampling the same solution twice
approaches 0. We avoid further considering a level after having
evaluated all of its permutations by setting its improvement
probability to 0.

IV. EXPERIMENTAL RESULTS

In this section, we summarize our experimental setup, the
competitor method, and the improvements and behavior of
LOS.

A. Input Instances and Experiments

For evaluation, we generate random dags using the random
dag generation method described in [16]. The compute time
w(T;,p;) of a task on a processor is sampled uniformly at
random in range [1, 100]. The edge weights w(T;,T}) are also
sampled uniformly in range [1,100]. The data transfer rates
of the network links are set to 1. We evaluated dags of size
n € {32,64,128,256,512} on p € {3,10,30} processors.

We refer to a combination of a dag and a number of
processors as an input instance. For each input instance, we
compute a schedule using the original HEFT algorithm and
use its makespan as a reference to assess the quality of the
schedules delivered by the baseline method and LOS. Since
LOS relies on randomization and thus exhibits variance in

performance, we run LOS three times on each input instance,
and each run is referred to as an experiment.

In total, we generated 4500 random dags, 900 of each size.
We combined each of the dags with each number of proces-
sors, giving 13,500 input instances. Using three repetitions,
this results in 40,500 experiments. The time budget of LOS
has been set to 30 seconds for dags of size 32 and 64, and to 5
minutes for dags of size 128, 256, and 512. In each experiment,
4 instances of the LOS algorithm are run in parallel and the
best solution is chosen. Overall, 426,072,399 schedules have
been considered during the experiments by LOS.

B. Baseline Ranking Methods

As a baseline method, we compute 11 schedules using each
of the 11 alternative weighting methods proposed in [3]] and
select the schedule with the shortest makespan. We briefly
refer to this scheduler as “Zhao” (see Figure[7). The weighting
methods are: mean, median, minimum, maximum, simple
minimum, and simple maximum, each combined with either
upward ranking or downward ranking. The proposed mini-
mum/maximum weighting methods calculate the weight of an
edge using the data transfer rate between the processors that
result in the minimum/maximum compute time. The simple
minimum/maximum method calculate the weight of an edge
using the highest/smallest data transfer rate among network
links. In our case, data transfer rates are homogeneous, such
that these weighting methods give the same results. The first
weighting method, averaging with upward rank, corresponds
to the original HEFT algorithm and is part of the ensemble,
such that the baseline never performs worse than HEFT. The
same fallback mechanism has been added to LOS.

C. Makespan Reductions

We compute the improvements of LOS over standard HEFT
and Zhao’s alternative ranking methods on different dag
sizes and numbers of processors. For each input instance
we compute the relative makespan as the ratio between the
makespan of the best schedule delivered by a method (Zhao,
LOS) and the makespan of HEFT’s schedule. Figure [7] shows
the distributions of the relative makespans using violin plots.
LOS clearly outperforms the baseline method, giving shorter
median makespans and longer tails towards short makespans
in almost all of the cases. A striking effect is that both the
baseline and LOS deliver diminishing improvements for larger
dags. An interesting exception is the case of 512-task dags on
30 processors that suggests that LOS could perform well on
even larger input instances. However, the relationship between
dag size and number of processors is complex, as for example
the baseline is better on dags with 256 tasks on 10 processors,
which gives a similar task/processor ratio.

Since LOS uses randomization, we analyzed the amount of
variation in the relative makespans returned across three differ-
ent runs of LOS (for each input instance). Mean and standard
deviation are computed across the 3 runs and the medians
of both the means and the standard deviations are reported in
Table[l} For instance, in 50% of the experiments with 128 tasks

processors: 3

processors: 10 processors: 30

1.0 g g
Y
(2]
a
w
N
Y
(2]
a
[e)]
N

T o6

W io

il T T

e}

0.9 .
2 g
® g @
(0] -
c »
G o7
Q
3
2 0.6
=10 $ ‘ ? T J:ﬂ:

0.9 ~

QO
n
Py
0.8]
N
)

0.7

0.6

1o Sz ’ % * J

0.9 .

QO
n
Py
0.8]
a
0.7 »
0.6
Zhao LOS Zhao LOS Zhao LOS

Scheduling Method

Fig. 7: Distribution of makespans relative to HEFT’s makespan
for different numbers of processors and dag sizes. The baseline
method (red) is consistently outperformed by LOS on 3
processors. The violin plots summarize both the distribution
of the relative makespans and their quartiles, as indicated by
the three horizontal lines within each colored area. The red
reference line indicates 95% of HEFT’s makespan.

on 10 processors, the mean relative makespan seen across three
runs was < 0.932 with a standard deviation of < 0.003. More
concretely, three LOS runs on a specific input instance with
128 tasks and 10 processors gave makespans of 310, 306, and
297. The makespan of HEFT’s schedule in this case was 347.
The relative makespans of LOS are thus 0.89, 0.88, and 0.85,
giving a mean relative makespan of 0.877 and the standard

TABLE I: Median values of the mean and standard deviation of LOS relative makespans for an input instance (3 repetitions).

3 Processors

10 Processors 30 Processors

Tasks LOS Zhao LOS Zhao LOS Zhao
32 0.884 + 0.006 0.954 1+0 1 1+0 1
64 0.908 + 0.008 0.968 0.964 + 0 0.995 1+0 1
128 0912 £ 0.006 0.975 0.932 + 0.003 0.985 1£0 1
256 0.933 £ 0.005 0979 0983 £ 0.004 0.964 0.99 + 0 1
512 0.954 + 0.004 0984 0.986 + 0.005 0974 0979 =0 1
deviation across the relative makespans is 0.019. In this case, _ _ _
the mean is below the median mean of 0.932 and the standard 400 processors: 3 processors: 10 processors: 30
deviation is above the median standard deviation of 0.003. 300 I g
Since input instances cannot easily be ordered with respect to 388 2
both quantities, the medians reported in Table |I| are computed — I T e e
independently, one over the average relative makespans and 500 -
one over the standard deviations of the relative makespans. 388 %
— 200 ‘ @
D. Progress and Convergence ‘% 108 _ | o e J il g

In this section, we analyze the progress made by LOS E s00 =
during its adaptive search for a schedule. We report the 2 400 %
following metrics: average improvement ratio, the number of 3, 200 J ol B
improvements, and the latest improvement time. § 0 -

The average improvement ratio is the average of the im- J§ 750 g
provement ratios obtained between exploitation phases during 500 i J 2
a LOS run. The improvement ratio is the makespan of the 258 7_.‘ 3
best found improvement 77 and the makespan of the current 1000 5
best solution at that time. For instance, when improving the 750 %
makespan in two exploitation phases first from 100 to 90 and ggg J J _.‘ a
then from 90 to 45, the first improvement ratio is 0.9 and the 0 - ~

second is 0.5, giving an average improvement ratio of 0.7.
The average improvement ratio indicates whether the method
finds better schedules using a sequence of small improvements
or using fewer but larger improvements. The median average
improvement across all experiments is 0.95, considering only
the cases where LOS finds an improvement over HEFT.
Figure [8] summarizes the distribution of average improvement
ratios for all combinations of dag sizes and processors. For
small dags on few processors, larger average improvement
ratios are found, and the distributions shift towards smaller
average improvement ratios with increasing dag size. Note
that some of the diagrams, e.g., for 30 processors and 32
tasks, summarize fewer input instances, as the experiments for
which no improvement has been found have been removed, as
explained in greater detail in the next paragraph.

The number of improvements is the number of exploitation
phases that yield a better solution than the reference solution.
It can be zero, if none of the exploitation phases finds a
schedule that is better than the initial solution. The number of
improvements combined with the average improvement ratio
gives an estimate of the overall improvement. Figure [9] shows
the distribution of the number of improvements over all input
instances and sample seeds. We distinguish input instances in
which the best found solution was better (shown in green) than
HEFT’s solution and those in which LOS did not find a better
schedule than HEFT’s schedule (red). This was observed in 60
out of 13440 cases for 3 processors, but happens quite often

0.8 09 1.006 0.7 0.8 09 1.0 0.7 08 09 1.0

Average improvement ratio

Fig. 8: The average relative improvement between exploitation
phases. Small ratios indicate that solutions are improved in
small steps. Note that the number of experiments (sum of the
bins) differs from panel to panel since in some experiments,
LOS was not able to improve over the initial solution.

for larger processor counts. In some cases, e. g., for 32 tasks
on 30 processors, the input instances might be too simple,
but in general, adding more processors seems to result in
significantly harder input instances. Among the unsuccessful
runs (red) we sometimes observe runs with a non-zero number
of improvements, e.g., for 512 tasks on 30 processors. This
indicates that LOS makes progress, but not fast enough to
outperform HEFT within the given time budget.

The latest improvement time refers to the elapsed wall
clock time until LOS does not find more improvements.
This metric indicates at which portion of the allocated time
budget LOS converges to its solution. For instance, a latest
improvement time of 50 seconds on a time budget of one
minute indicates that improvements are found close until the
budget expires, which suggests that LOS could further improve
on a larger time budget. Figure [I0] shows the distribution of
latest improvement times for dags with at least 128 tasks. For

processors: 3 processors: 10 processors: 30

2500
2000 &
1500 I %
1000 @
w
500 glillm_ i 8
2000 Iy
1500 3
__ 1000 @
[] (o2}
250 e, N I 2
[0
£ 1500]
:.’_ 1000 a
d 500 II I 2
= wifin-_ «llls._ HE__ B
C
8 —_
QD
8 1000 I 2
(o
1200 &
800 II I I &
1] It :

01234567 01234567 01234567
Number of improvements over initial solution

better . False . True

Fig. 9: The number of improvements refers to the number of
times LOS was able to improve upon its current best solution.
The better variable refers to whether LOS was able in a given
experiment to find a schedule that outperforms HEFT.

processors: 3 processors: 10 processors: 30

200 ~
150 7]
100 a
7 O i sacktisall 5
[%2]
2 9 I - -
& 120
£ 9 5
(0] =
3 60)
x N
S - ’
5 0
[e]
O 150 5
w
100 5
Q
Mﬁ ancallis
100 200 3000 100 200 300 0 100 200 300

Last improvement time [seconds]

Fig. 10: The latest improvement time refers to the elapsed
wall clock time when LOS was last able to improve upon
its previous solution. For 3 processors, convergence times are
relatively uniform. In some configurations (e. g., tasks < 256,
processors > 30) LOS seldom converges before the end of
the time budget, indicating that schedules could further be
improved on a higher time budget.

these input instances, LOS has been allotted a time budget
of 5 minutes, whereas for the smaller input instances, a time
limit of 30 seconds was set.

E. Non-significant Factors

We evaluated a few alternative designs that showed very
similar behavior to the results shown above. For instance,
we evaluated the effect of sorting the tasks in each level of
the initial L-Order according to HEFT’s ranks. The idea is
to provide a better starting point than a random permutation.
However, improvements have been marginal.

Second, we tried a simpler processor assignment method
which always appends tasks to the end, instead of using
HEFT’s insertion-based policy that looks for gaps between
already scheduled tasks. The idea is to reduce the time needed
to compute a schedule for a single input instance, which
is a limiting factor on the number of evaluated solutions
when facing a time budget. The question was whether LOS
could replace the insertion mechanism by considering more
orders, orders that may not require insertion in the first place.
However, both methods did not yield significant differences,
such that we selected HEFT’s default (but slower) insertion-
based policyﬂ

Finally, we evaluated the performance of our method when
using different rejection probabilities p € {1%, 5%, 20%} for
switching between ppr(m < r) and p.(m < r). We did
not observe significant differences, which indicates that our
method is robust with respect to this parameter.

V. RELATED WORK

Improving upon HEFT’s performance is an ongoing effort.
Several alternative weighting schemes have been proposed,
which we briefly summarize below. In addition, several al-
ternatives to HEFT have been proposed. Since these usually
compare to HEFT as the baseline, we focused in our evaluation
on the performance of LOS relative to HEFT.

As described in Section [[I-C| HEFT uses averaged com-
putation and communication times before computing upward
ranks. In [3], it has been empirically shown that the weighting
method can have a significant impact on the makespan of
HEFT’s schedule. The authors evaluate simple alternative
weighting methods, such as the worst case computation time
max, w(T;,p) to compute the weights of tasks and edges. In
contrast to this method, we search the order space rather than
trying to come up with a single weighting method that results
in a favorable order most of the times. In addition, we consider
variations of orders that affect only certain parts of the dag,
which is similar to applying different weighting methods to
different parts of the dag.

In [8] a weighting method for series parallel graphs is
proposed. Instead of using the maximum of the child weights,

I'We also evaluated the impact of using the insertion-based policy on
HEFT’s performance. In about 5% of the cases, gap search even resulted
in longer schedules (by up to 10%), but most of the times, it did not have
an impact. However, in 20% of the cases, using the insertion-based policy
resulted in 1%-10% shorter schedules compared to simply appending tasks at
the end of a processor’s partial schedule.

the child weights are summed up. The idea is to consider more
than one path (the critical path) to assess the downstream work
of a task. However, the authors focus on a special class of
graphs, whereas we do not impose a restriction on the structure
of the workflows.

In [9], a weighting method is proposed that adds the sum
> (uwyer c(u,v) of outgoing data transfers from a task u
to its weight. It is assumed that the network links have the
same speed, although averaging could be used to handle
heterogeneous transfer speeds.

In [10] a weighting method using a sufferage metric [11] is
proposed. Sufferage refers to the increase in computing time
when scheduling a task on the second-best processor compared
to the fastest processor for that task. Using sufferage allows to
prioritize tasks that would potentially run much slower when
scheduled with lower priority. The scheme is used to apply
HEFT in CPU-GPU environments.

In [12]], the BMCT heuristic is proposed, which is supposed
to be more robust with respect to the choice of the weighting
method. First, HEFT’s weighting method (averaging) is ap-
plied. Then, the dag is partitioned into a sequence of indepen-
dent task sets which are then scheduled using a heuristic for
independent task scheduling. The method is computationally
more expensive than HEFT because it iteratively optimizes the
placement of the tasks in each set.

In [13], a lookahead version of the HEFT algorithm is
proposed that considers the earliest finish times of the children
of a task for a given placement of the task, in addition
to the task’s own earliest finish time. This also aims in a
similar direction as our method, i.e., trading scheduling time
for better schedules. However, the approach is based on a
single weighting method. In [14] an improved version of the
lookahead-HEFT is proposed that achieves similar effects at
lower computational costs.

VI. DISCUSSION

Here, we briefly summarize our findings and discuss future
work. LOS employs an innovative randomized approach to dag
scheduling on heterogeneous resources with communication
times. It uses L-Orders to partition the space of possible
task orders into regions and estimates the probability for
various regions of randomly sampling a better order than
the current best order. LOS schedules for 3 processors and
less than 256 tasks outperform HEFT by at least 10% in
50% of the experiments, whereas the baseline method gives
only a median 3% improvement. However, we see various
opportunities to further improve the method and gain insights
into the scheduling problem at hand. Most importantly, a more
principled approach to balancing exploration and exploitation,
partitioning the order space into more fine grained regions,
comparing to more baseline methods, and an in-depth analysis
of the computed rankings could be pursued.

LOS uses a randomized approach to balance exploration
and exploitation. The length of an exploit phase depends
on a random fraction of the remaining time budget between

0.05 and 0.5. Comparing to experiments using a fixed frac-
tion of the remaining time budget for exploitation phases,
the randomized method performs favorably. However, more
sophisticated methods would probably be able to further
reduce the makespan of the schedules found by LOS. For
instance, one could introduce a minimum improvement ratio
and rate. Intuitively, LOS should not spend too much time
on getting a 1% improvement over the current solution, even
if it is currently the most promising known region in order
space. Rather, the algorithm should then favor exploration over
exploitation to find regions where either larger improvements
or quicker improvements are possible.

Second, for dags with larger numbers of task per level,
the regions in order space might be too coarse-grained to
quickly make progress. A simple solution would be to allow
LOS to apply a binary search scheme to identify promising
portions of levels, by recursively splitting levels in half. The
partial levels could then be treated as separate levels to sample
from and estimate improvement probabilities for. A related
aspect is the carryover of samples between exploitation phases.
Currently, we reuse the samples collected from the level that
gave the best variation of the reference order, but in fact,
not all the distributions of the other levels have to change
a lot when changing one level in the reference order. Carrying
over all samples and validating their distributions could maybe
reduce the number of L-Order evaluations needed until a
level’s improvement probability can be reliably estimated. In
addition, reusing partial schedules and an implementation that
is optimized for performance would speed up the scheduling
and thus the number of solutions LOS is able to consider
within its time budget.

Third, comparing to more baseline methods would be in-
teresting. Since HEFT was evaluated against a broad range of
scheduling methods, including genetic algorithms, comparing
to HEFT is a good benchmark. However, new scheduling
methods often use custom dag generators and it would be
interesting to compare to these methods in their respective
evaluation scenarios. One could even use the shuffle operator
as a mutation operator in a genetic algorithm (a crossover
operator is also straightforward) and compare the improvement
rates of our adaptive search to the improvement rates given by
a classical genetic algorithm. Note however, that our method
has no hyperparameters except the budget, whereas genetic
algorithms usually need tuning, e. g., to select population size,
mutation rates, etc., which complicates a fair comparison.

Finally, comparing well performing to poorly performing
orders could yield further insights into the scheduling problem.

ACKNOWLEDGEMENTS

Carl Witt received funding by Deutsche Forschungsgemein-
schaft through the SOAMED graduate school (GRK 1651).
Sam Wheating received funding for a research intern at
Humboldt-Universitidt zu Berlin by Deutscher Akademischer
Austauschdienst through the RISE program.

[1]
[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

H. Casanova, A. Legrand, and Y. Robert, Parallel Algorithms. CRC
Press, 2008.

H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 13, no. 3, pp.
260-274, Mar. 2002.

H. Zhao and R. Sakellariou, “An Experimental Investigation into the
Rank Function of the Heterogeneous Earliest Finish Time Scheduling
Algorithm,” in Euro-Par 2003 Parallel Processing. Berlin, Heidelberg:
Springer, Berlin, Heidelberg, Aug. 2003, pp. 189-194.

S. Ali, H. J. Siegel, M. Maheswaran, D. A. Hensgen, and S. Ali, “Task
Execution Time Modeling for Heterogeneous Computing Systems.”
Heterogeneous Computing Workshop, pp. 185-199, 2000.

C. V. Ramamoorthy, K. M. Chandy, and M. J. Gonzalez, “Optimal
Scheduling Strategies in a Multiprocessor System,” IEEE Transactions
on Computers, vol. C-21, no. 2, pp. 137-146, Feb. 1972.

Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for allocating
directed task graphs to multiprocessors,” ACM Computing Surveys,
vol. 31, no. 4, pp. 406471, Dec. 1999.

E. G. Coffman and J. L. Bruno, Computer and job-shop scheduling
theory. John Wiley & Sons, 1976.

K.-C. Huang, Y. L. Tsai, and H. C. Liu, “Task ranking and allocation
in list-based workflow scheduling on parallel computing platform,” The
Journal of Supercomputing, vol. 71, no. 1, pp. 217-240, Sep. 2014.

E. Ilavarasan, P. Thambidurai, and R. Mahilmannan, “Performance
Effective Task Scheduling Algorithm for Heterogeneous Computing Sys-
tem,” in The 4th International Symposium on Parallel and Distributed
Computing (ISPDC’05). 1EEE, 2005, pp. 28-38.

K. R. Shetti, S. A. Fahmy, and T. Bretschneider, “Optimization of
the HEFT Algorithm for a CPU-GPU Environment,” in Parallel and
Distributed Computing, Applications and Technologies, PDCAT Pro-
ceedings, Nanyang Technological University, Singapore City, Singapore.
IEEE, Jan. 2014, pp. 212-218.

H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman, “Heuristics
for scheduling parameter sweep applications in grid environments,” 9th
Heterogeneous Computing Workshop (HCW 2000), pp. 349-363, 2000.
R. Sakellariou and H. Zhao, “A Hybrid Heuristic for DAG Scheduling
on Heterogeneous Systems.” IPDPS, vol. 18, pp. 1571-1583, 2004.

L. F. Bittencourt, R. Sakellariou, and E. R. M. Madeira, “DAG Schedul-
ing Using a Lookahead Variant of the Heterogeneous Earliest Finish
Time Algorithm,” in PDP ’10: Proceedings of the 2010 18th Euromicro
Conference on Parallel, Distributed and Network-based Processing.
IEEE Computer Society, Feb. 2010.

H. Arabnejad and J. G. Barbosa, “List Scheduling Algorithm for
Heterogeneous Systems by an Optimistic Cost Table.” [EEE Trans.
Parallel Distrib. Syst., vol. 25, no. 3, pp. 682-694, 2014.

W. Zheng and R. Sakellariou, “Stochastic DAG scheduling using a
Monte Carlo approach,” Journal of Parallel and Distributed Computing,
vol. 73, no. 12, pp. 1673-1689, Dec. 2013.

P. L. Krapivsky and S. Redner, “Organization of growing random
networks,” Physical Review E, vol. 63, no. 6, p. 066123, May 2001.

	Introduction
	Background
	Scheduling Problem Terms and Definitions
	List Scheduling and Task Weighting
	Heterogeneous Earliest Finish Time Algorithm

	Adaptive Level Order Sampling
	L-Order Sampling
	Adaptive Search for L-Orders
	Improvement Probability
	Exploiting Adaptively

	Experimental Results
	Input Instances and Experiments
	Baseline Ranking Methods
	Makespan Reductions
	Progress and Convergence
	Non-significant Factors

	Related Work
	Discussion
	References

