
Exploiting automatic vectorization to employ
SPMD on SIMD registers

Stefan Sprenger
Department of Computer Science

Humboldt-Universität zu Berlin
Berlin, Germany

sprengsz@informatik.hu-berlin.de

Steffen Zeuch
Intelligent Analytics for Massive Data

German Research Center for Artificial Intelligence
Berlin, Germany

steffen.zeuch@dfki.de

Ulf Leser
Department of Computer Science

Humboldt-Universität zu Berlin
Berlin, Germany

leser@informatik.hu-berlin.de

Abstract—Over the last years, vectorized instructions have
been successfully applied to accelerate database algorithms. How-
ever, these instructions are typically only available as intrinsics
and specialized for a particular hardware architecture or CPU
model. As a result, today’s database systems require a manual tai-
loring of database algorithms to the underlying CPU architecture
to fully utilize all vectorization capabilities. In practice, this leads
to hard-to-maintain code, which cannot be deployed on arbitrary
hardware platforms. In this paper, we utilize ispc as a novel
compiler that employs the Single Program Multiple Data (SPMD)
execution model, which is usually found on GPUs, on the SIMD
lanes of modern CPUs. ispc enables database developers to exploit
vectorization without requiring low-level details or hardware-
specific knowledge. To enable ispc for database developers, we
study whether ispc’s SPMD-on-SIMD approach can compete with
manually-tuned intrinsics code. To this end, we investigate the
performance of a scalar, a SIMD-based, and a SPMD-based
implementation of a column scan, a database operator widely
used in main-memory database systems. Our experimental results
reveal that, although the manually-tuned intrinsics code slightly
outperforms the SPMD-based column scan, the performance
differences are small. Hence, developers may benefit from the
advantages of SIMD parallelism through ispc, while supporting
arbitrary hardware architectures without hard-to-maintain code.

I. INTRODUCTION

Vectorization allows to process multiple data items with one
instruction. According to Flynn’s taxonomy [9], this execution
model is called Single Instruction Multiple Data (SIMD).
Database developers can exploit data-level parallelism using
SIMD instructions through programming libraries, typically
available as intrinsics [3]. However, intrinsics depend on the
available instruction set, which is specific to the underlying
CPU architecture, and processed data type. This leads to poor
developer productivity, hard-to-maintain programs, and hinders
code deployments on arbitrary hardware architectures.

Over the last years, many approaches have shown that
database systems benefit from vectorization. Researchers used
SIMD instructions to accelerate column scans [20], index
structures [10], [17], [21], and regular expression matching [16].
In the context of recent many-core CPUs such as Intel®’s
Xeon Phi, modern CPUs achieve a similar degree of par-
allelism (DOP) as state-of-the-art GPUs when combining

Stefan Sprenger is funded by the Deutsche Forschungsgemeinschaft through
graduate school SOAMED (GRK 1651).

multi-threading with SIMD instructions1. For these reasons,
vectorization is essential for the performance of database
systems on modern CPU architectures.

Although modern compilers, like GCC [2], provide auto
vectorization [1], typically the generated code is not as
efficient as manually-written intrinsics code. Due to the strict
dependencies of SIMD instructions on the underlying hardware,
automatically transforming general scalar code into high-
performing SIMD programs remains a (yet) unsolved challenge.
To this end, all techniques for auto vectorization have focused
on enhancing conventional C/C++ programs with SIMD instruc-
tions. However, in 2012, Intel® proposed a different approach,
the Intel® SPMD Program Compiler (ispc) [14]. ispc enables
developers to utilize the parallel capabilities of vectorization
without requiring low-level intrinsics programming. Therefore,
ispc uses the execution model of modern GPUs, Single Program
Multiple Data (SPMD). ispc deploys the same program on
multiple processing units, i. e., on different SIMD lanes of a
CPU. Additionally, ispc exploits multi-threading to increase the
DOP. Fortunately, ispc supports all modern CPU architectures
and instruction set architectures2, which allows to deploy
programs on arbitrary hardware. Finally, ispc combines the
convenience of CPU programming with the high parallelism
of GPUs without requiring hardware-specific knowledge.

In this paper, we use ispc’s SPMD-on-SIMD approach to
accelerate database algorithms. In particular, we implement
an operator that is widely used in main-memory database
systems, the column scan. We examine if ispc can compete with
manually-tuned intrinsics code. In a comprehensive evaluation,
we compare a SPMD-based variant with a scalar and an
intrinsics-based column scan. Our experimental results indicate
that the performance of programs written in ispc are almost as
good as manually-tuned intrinsics code. In contrast to intrinsics
code, ispc code is not specific to the underlying architecture.
Thus, employing the SPMD execution model on the SIMD
registers of modern CPUs is a viable alternative to vectorize
database algorithms.

1For instance, the Intel® Xeon Phi 7290 CPU features 72 cores and 512-bit
wide SIMD registers offering a theoretical DOP of 72 ∗ 16 = 1152, when
processing integers, because one SIMD register can hold 16 32-bit integer
values.

2https://ispc.github.io/ispc.html#selecting-the-compilation-target



Processor Processor Processor Processor

Data
Program

Fig. 1. The SPMD execution model.

II. BACKGROUND AND FOUNDATIONS

A. Single Program Multiple Data (SPMD)

SPMD is an execution model for parallel programs, where
a sequential, non-parallel program is deployed onto multiple
processing units. In particular, each instance of the program
is executed concurrently on different data. This model was
proposed in 1988 by Darema et al. [7] as an extension to
Flynn’s taxonomy [9] and has been applied to various research
areas for parallel programming [13], [18]. Today, SPMD is
mainly found in parallel graphics computing [13].

Figure 1 illustrates the parallel execution of a sequential
program on four processing units, where each program instance
processes a different subset of the data. In SPMD, developers
write sequential code that is automatically parallelized by
initializing multiple instances of the program. This is in contrast
to other execution models, like SIMD, which require developers
to explicitly specify parallelization in the program code.

Overall, SPMD leads to a high developer productivity, easy-
to-maintain code, and reduced code complexity.

B. Intel SPMD Program Compiler (ispc)

The Intel® SPMD Program Compiler (ispc) [14] is an open-
source compiler, which translates sequential C/C++ code into a
highly parallel program that is executed on the SIMD registers
of modern CPUs. ispc code is mostly compliant with standard
C/C++, but introduces few keywords and concepts that are
used for automatic vectorization, e. g., parallel for loops. ispc
supports different instruction set architectures, e. g., SSE2,
SSE4, AVX, AVX2, and AVX512, and many modern CPU
architectures, e. g., Haswell, Sandy Bridge, Ivy Bridge, and
Nehalem. In addition to exploiting SIMD registers, ispc can
also deploy programs onto multiple CPU cores, which enables
an even higher DOP.

Functions written in ispc can be directly called from C/C++,
thus ispc can be used to extend existing code without intro-
ducing fundamental changes. The ispc compiler creates object
files that can be included in conventional C/C++ programs.
Listing 1 shows an ispc function named square arr that squares
all elements of an input array of size count and stores the results
in an output array.

Listing 1. Exemplary ispc function that can be directly called from
conventional C/C++ code.

1 export void square_arr(uniform float input[],
2 uniform float output[],
3 uniform int count) {
4 foreach (i = 0 ... count) {
5 output[i] = input[i] * input[i];
6 }
7 }

The keyword export is used to mark a function that can be
called from external C/C++ code. In this case, square arr can
be called like a regular C/C++ function. In ispc, uniform is used
to mark parameters and variables that have identical values for
all concurrently executed instances of the function. Using the
parallel foreach looping construct, we can concurrently iterate
over count values. The degree of parallelism is determined by
the width of the SIMD registers and the size of the used data
types. For instance, given 256-bit SIMD registers are available,
eight iterations of the foreach loop (see Lines 4-6 of Listing 1)
can be executed concurrently, because 32-bit floating-point
values are used as data type.

C. Related Work

Previous work related to this paper can be divided into
two groups: (1) approaches exploiting SIMD instructions to
accelerate database algorithms, and (2) modern implementations
of the column scan.

Zhou and Ross [22] proposed early approaches that applied
SIMD instructions to database systems. They vectorized scan
operations and index structures. FAST [10], ART [11], and
CSSL [17] are examples for index structures that exploit SIMD
instructions to speedup index search. Recently, Polychroniou
et al. [15] presented advanced techniques for vectorizing
algorithms of a database system, e. g., column scans, hash
tables, or partitioning. They use modern extra-wide SIMD
registers and operations found in recent instruction sets, e. g.,
scatter, and gather. All these approaches, which exploit SIMD
instructions to accelerate database algorithms, rely on explicit
intrinsics. In contrast, we focus on automatic vectorization and
employ the SPMD execution model on SIMD registers.

Broneske et al. [6] study different techniques to accelerate
column scans on modern hardware, e. g., elimination of
branches, vectorized instructions, multi-threading, or loop
unrolling. Willhalm et al. [20] propose a table scan variant, the
SIMD-Scan, which uses vectorized instructions to iterate over
compressed data of an in-memory column store. They also
provide a framework to exploit SIMD instructions in column
scans with complex predicates [19]. SAP HANA employs the
SIMD-Scan algorithm [8]. Finally, BitWeaving [12] represents
an advanced approach to scanning a database column. It
processes multiple bits of database columns in a single CPU
cycle by exploiting the full word width of modern CPU
instructions, which leads to intra-cycle parallelism. In contrast,
we contribute a portable column scan implementation that
exploits vectorized instructions without requiring complex code
constructs, like SIMD intrinsics.



III. SPMD-BASED COLUMN SCAN

In this section, we present four flavors of a SPMD-based
column scan (SBCS):

1) B-ST-SBCS: Branching, single-threaded implementation.
This flavor solely relies on automatic vectorization.

2) BF-ST-SBCS: Branch-free, single-threaded implementa-
tion.

3) B-MT-SBCS: Branching, multi-threaded implementation.
This flavor exploits multiple threads in addition to
vectorized instructions to further the DOP.

4) BF-MT-SBCS: Branch-free, multi-threaded implementa-
tion.

A. The Column Scan

In this paper, we implement a column scan that selects all
keys from a column that satisfy a given search predicate. In
particular, we investigate range queries which are defined by
two boundaries. As a result, we obtain a bitmask that indicates
which keys of the column match the search predicate.

Algorithm 1 presents a basic variant of the column scan. The
function SCAN requires the following five input parameters.
The integer value count equals to the size of the to-be-scanned
column. The array column holds all values of the to-be-scanned
column in a possibly unsorted order. The array result, which
has the same size as column, is used to store the scan results.
The value lower defines the lower boundary of the search query,
and the value upper defines the upper boundary of the search
query.

Algorithm 1 The Column Scan
1: function SCAN(count, column, result, lower, upper)
2: for (i = 0; i < count; ++i) do
3: if (column[i] ≥ lower && column[i] ≤ upper) then
4: result[i] = 1;
5: else
6: result[i] = 0;

Using a for loop, the algorithm iterates over all elements of
column and determines for each element if it matches the search
predicate defined by lower and upper. The results are stored in
an array called result. For each value in the column, the result
array holds the value 1 at position i if the i’th element of the
column matches the query, i. e., lower ≤ column[i] ≤ upper,
and 0 if it does not match.

B. SPMD-based Implementation

The implementation of the SPMD-based column scan is
very similar to conventional C/C++ code and uses only few
constructs introduced by ispc, e. g., uniform, and export (see
Section II-B for a description).

We provide a branching and a branch-free variant of SBCS
to investigate the impact of branch mispredictions on the
performance of queries with different selectivity.

Listing 2. Branching variant of the SPMD-based column scan.
1 export void sbcs(uniform KEY_TYPE column[],
2 uniform KEY_TYPE result[],
3 uniform KEY_TYPE lower,
4 uniform KEY_TYPE upper,
5 uniform int count) {
6 foreach (index = 0 ... count) {
7 KEY_TYPE val = column[index];
8 if (lower <= val && upper >= val)
9 result[index] = 1;

10 else
11 result[index] = 0;
12 }
13 }

Listing 3. Branch-free variant of the SPMD-based column scan.
1 export void sbcs_bf(uniform KEY_TYPE column[],
2 uniform KEY_TYPE result[],
3 uniform KEY_TYPE lower,
4 uniform KEY_TYPE upper,
5 uniform int count) {
6 foreach (index = 0 ... count) {
7 KEY_TYPE val = column[index];
8 result[index] = (lower <= val &&
9 upper >= val);

10 }
11 }

Listing 2 presents the branching variant of SBCS, B-ST-
SBCS. The function sbcs (see Lines 18-30) is marked with
export and can thus be called from C/C++.

The foreach loop (see Lines 6-12) iterates over all column
data and compares each value with the search predicate defined
by lower and upper. It is automatically vectorized by ispc;
hence multiple column values are processed in parallel.

Our implementation is able to work with different data types,
e. g., integers, or floating-point values, because KEY TYPE is
defined as a macro.

For example, given that KEY TYPE is set to 32-bit integers
and the underlying CPU provides 256-bit wide SIMD registers,
eight instances of the foreach loop are executed in parallel.

Listing 3 presents the branch-free implementation of SBCS,
BF-ST-SBCS. Following the approach of Zhou and Ross [22],
this implementation omits branches and stores the result of
the predicate evaluation into the result array (see Lines 8-9).
We also evaluate multi-threaded implementations of SBCS,
B-MT-SBCS, and BF-MT-SBCS. Therefore, we use ispc’s
built-in task parallelism3 to launch multiple threads. Enabling
multi-threading does not introduce any major changes to the
algorithms, but furthers the DOP.

IV. EVALUATION

The main objective of our evaluation is to investigate whether
ispc’s SPMD-on-SIMD approach can compete with manually-
tuned intrinsics code. To this end, we compare four flavors of
a SPMD-based column scan (single-threaded, multi-threaded,
branching, branch-free) with different implementations of a
non-vectorized and an intrinsics-based column scan.

3https://ispc.github.io/ispc.html#task-parallel-execution



A. Experimental Setup

1) Hardware: We executed all experiments on a server
equipped with two Intel® Xeon E5-2620 CPUs (2 GHz clock
rate), each featuring six cores, 12 virtual cores through hyper-
threading, and 16 256-bit wide SIMD registers (AVX [4]). The
server features 32 GB main memory.

2) Software: The code was compiled with GCC 4.8.4
and ispc 1.9.1. For GCC, we use the optimization flag -O3.
When evaluating non-vectorized code, we disable GCC’s auto
vectorization by using the compiler flag -fno-tree-vectorize.
Additionally, we enable the following options for the ispc
compiler: -O3 (optimization level), --arch=x86-64 (target archi-
tecture), and --target=avx (target instruction set architecture).
We measured CPU performance counters with PAPI [5].

3) Methodology: Our experiments measure speedup or
throughput as an indicator for performance. Throughput is
measured in GB/s and defines the amount of data each approach
can process/scan per second. In contrast, speedup (as a factor)
is used to compare the throughput of two variants w.r.t. a
baseline approach. For instance, we may use throughput when
comparing the scan performance of a vectorized and a non-
vectorized column scan. In contrast, we may use speedup
when comparing the performance of two different multi-
threaded column scan implementations w.r.t. a single-threaded
implementation.

4) Experimental Data: For all experiments, we use 1
GB synthetically generated keys in random order. Given
that n defines the number of keys, we generate queries by
using a randomly selected key as lower boundary and add
n ∗ selectivity to determine the upper boundary. Before each
experiment, we conduct one warming run and start actual
measurements afterwards (hot caches). All experiments are
executed three times and we report the average value.

B. Experiments

In our evaluation, we investigate the speedup of single-
threaded SBCS over sequential non-vectorized scans de-
pending on selectivity (see Section IV-B1), key sizes (see
Section IV-B2), and data types (see Section IV-B3). In
Section IV-B4, we analyze the scalability of multi-threaded
SBCS depending on the number of used CPU threads. Finally,
Section IV-B5 compares single-threaded SBCS with single-
threaded, manually-written intrinsics code.

1) Query Selectivity: In this experiment, we investigate
the speedup that ispc achieves over a scalar execution of the
identical code on a conventional server CPU. We considered
a branch-free as well as a branching implementation of the
column scan when scanning over 1GB of 32-bit integer keys
(n = 268, 435, 456) to evaluate selection queries of varying
selectivity. We run ispc in single-threaded mode to determine
the pure speedup of employing the SPMD execution model
on the SIMD lanes of the CPU. Note that we present multi-
threading experiments in Section IV-B4.

We investigated query selectivities ranging from 0% (low
selectivity) to 100% (high selectivity). While the speedup for
the branch-free variant is rather constant, speedup for the

0 % 20% 40% 60% 80% 100%
0

2

4

6

Query Selectivity

S
pe

ed
up

ov
er

sc
al

ar
ex

ec
ut

io
n

branch-free
branching

Fig. 2. Speedup over scalar execution of the column scan depending on
query selectivity (data type = 32-bit unsigned integer).

Perf. Counter scalar
scalar

(branch-free)
SBCS

SBCS
(branch-free)

Instructions 2,004M 2,953M 892M 738M
Branch Mispr. 93,917k 1 15,647k 2
LLC Misses 1,698k 2,427k 2,168k 3,178k
TLB Misses 3,634 2,197 4,737 3,067

Fig. 3. Performance counters per scan on 1GB 32-bit unsigned integer keys
(10 % query selectivity).

branching variant highly depends on query selectivity (see
Figure 2). On average, the branch-free variant of the SBCS
achieves a speedup factor of 1.5, while the branching variant
achieves an average speedup factor of 3.8.

Figure 3 shows selected performance counters per selection
query with a selectivity of 10 %. The measured performance
counters reveal that the performance gains of SBCS over
the scalar scan are achieved by a tremendous reduction of
executed instructions. By exploiting SIMD registers for query
evaluation, SBCS needs to conduct less comparisons. This also
results in six times less branch mispredictions for the branching
variant. In contrast, the branch-free variants produce no branch
mispredictions by design (the measured branch mispredictions
are caused by our experimental setup that executes batches of
queries using a for loop to determine the average throughput).

2) Key Sizes: ispc employs SPMD on multiple SIMD lanes.
As a result, the performance benefits depend on the used key
size. In the following experiment, we analyze the speedup of
SBCS over a scalar implementation on four different key sizes:
8 bits, 16 bits, 32 bits, and 64 bits. We use a query selectivity
of 10% and unsigned integer values.

Figure 4 shows the results. Both variants of the SBCS,
branch-free and branching, show a similar speedup w.r.t.
different key sizes. For 16-bit keys, both variants achieve
the highest speedup (branch-free: 3.95X, branching: 6.24X).
In general, the speedup increases when key size decreases,
except for very small keys, like 8-bit keys. As noted in the ispc
performance guide 4, code generated for small integer types is
usually less efficient.

4https://ispc.github.io/perfguide.html



8 bits 16 bits 32 bits 64 bits
0

2

4

6

8

Key Size

S
pe

ed
up

ov
er

sc
al

ar
ex

ec
ut

io
n

branch-free
branching

Fig. 4. Speedup over scalar execution of the column scan depending on key
size (selectivity = 10%).

3) Data Types: In our evaluation, we use AVX [4] as
target instruction set architecture. AVX, opposed to AVX2,
supports only operations on floats and doubles but not integers.
Hence, integer values need to be converted to floating-point
values, which is done at compile time and should not impact
performance according to [3].

In this experiment, we analyze the speedup of SBCS over
scalar code depending on the used data type. We consider
three different data types of the same size (32 bits): unsigned
integers, signed integers, and floats. As shown in Figure 5,
SBCS achieves the highest speedup for floats (branching: 3.4X,
branch-free: 3.3X). For unsigned integers, branching SBCS
achieves a slightly higher speedup than the branch-free variant
(3.3X vs. 2.6X), whereas for signed integers, branch-free SBCS
achieves a slightly higher speedup than the branching variant
(1.7X vs. 1.5X).

Overall, the branching implementation of SBCS induces
no large performance gaps between the considered data types
given that they have the same size. In contrast, the branch-free
implementation achieves the highest speedup for floating-point
values.

4) Deployment on Multiple Cores: In addition to SPMD
parallelism, which solely exploits SIMD lanes, ispc provides
task parallelism at the granularity of CPU threads. Figure 6
shows the throughput of the multi-threaded SBCS variants
depending on the number of used software threads. Note that the
dotted vertical line indicates the number of available physical
cores (12). We used 32-bit unsigned integer keys and executed
selection queries with a selectivity of 10 %.

Branching as well as branch-free SBCS implementations
benefit from multi-threading up to a particular barrier, which
is established by the number of physical cores. As shown,
hyper-threading does not provide additional performance
improvements, as multiple hyper-threads share the same SIMD
registers on a certain CPU core. The throughput of SBCS scales
almost linearly with the number of threads until all physical
cores are used (approx. 12 used threads). Beyond this point,
only minor performance improvements can be achieved. In

unsigned int32 signed int32 float
0

2

4

6

Data Type

S
pe

ed
up

ov
er

sc
al

ar
ex

ec
ut

io
n

branch-free
branching

Fig. 5. Speedup over scalar execution of the column scan depending on data
type (selectivity = 10%).

1 3 5 7 9 11 13 15 17 19 21 23
0

10

20

30

S
om

e
la

be
l

Number of Software Threads

Th
ro

ug
hp

ut
(G

B
/s

)

branch-free
branching

Fig. 6. Throughput of the SPMD-based column scan depending on the number
of used software threads (data type = 32-bit unsigned integer, selectivity =
10%). The vertical dotted line indicates the number of physical cores.

particular, the branch-free variant achieves a throughput of 14.8
GB/s (branching 13.8 GB/s) using 12 threads, and a throughput
of 15.7 GB/s (branching 14.1 GB/s) using 24 threads.

By combining multi-threaded execution with employing
SPMD on the SIMD lanes, ispc enables the efficient exploitation
of the enormous computing power of modern CPUs. Taking
recent many-core CPUs, like Intel®’s Xeon Phi family, into
account, ispc achieves DOP similar to modern GPUs.

5) ispc vs. intrinsics: In this experiment, we compare the
performance of single-threaded SBCS with single-threaded
intrinsics-based column scans. Intrinsics are provided by a
dedicated library that supports operations such as comparing,
shuffling, or computations. We manually implemented a
vectorized column scan that makes use of intrinsics code.
We highlight the performance differences between ispc-based
SBCS and the intrinsic scans. In particular, ispc automatically
vectorizes code, whereas intrinsics require developers to
manually tune their code for using SIMD parallelism. We
also provide the throughput of a scalar, non-vectorized version
of the column scan, which does not make use of SIMD.



0 % 20% 40% 60% 80% 100%
0

2

4

6

8

10

Query Selectivity

Th
ro

ug
hp

ut
(G

B
/s

)
SBCS branch-free SBCS branching

intrinsics branch-free intrinsics branching
scalar branch-free scalar branching

Fig. 7. Throughput of SPMD-based column scan, intrinsics-based column
scan, and scalar column scan using single-threading depending on query
selectivity (data type = 32-bit unsigned integer).

Figure 7 shows the throughput of the approaches when
executing selection queries of varying selectivity. As in previous
experiments, we execute randomly generated range queries on
a data set of 32-bit unsigned integers.

For both implementation variants, branching and branch-free,
the intrinsics code achieves the highest throughput. On average,
the branch-free intrinsics-based scan is 1.5X faster than SBCS
(1.8X for branching). This speedup can be explained by the
fact that the intrinsics-based scan was carefully tuned to the
underlying hardware, while SBCS was automatically vectorized
by the ispc compiler.

Although ispc promises to generate highly efficient SIMD
code, it does not (yet) achieve the same performance as
intrinsics code that was carefully implemented by experienced
developers. Nonetheless, ispc’s SPMD-on-SIMD approach
represents an interesting approach to use SIMD parallelism
without low-level programming or hardware-specific intrinsics
code.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a SPMD-based column scan
and analyzed it in a comprehensive evaluation. Our goal was
to investigate whether ispc’s SPMD-on-SIMD approach can
compete with intrinsics code manually-written by experienced
developers. We showed that SBCS is almost as fast as manually-
written intrinsics code, although it is not specific to the
underlying CPU architecture or used data type. Also, it does
not require low-level programming constructs. As a result,
we identify a trade-off between the maintainability/developer
productivity and performance of ispc vs. intrinsics code.
Considering the rise of many-core CPUs with extra-wide SIMD
registers, our evaluation results indicate that ispc’s SPMD-
on-SIMD approach will become even more valuable in the
next years. ispc allows to combine automatic vectorization

with multi-threading and hence achieves DOP similar to
modern highly-parallel GPUs. Furthermore, Intel® will strive
continuously to improve the code generation of ispc. In future
work, we plan to run experiments on massively parallel systems
to compare the performance of the SPMD-on-SIMD approach
when deployed on many-core CPUs, like Intel®’s Xeon Phi,
with highly-parallel GPUs. We also intend to investigate other
database operations beyond column scans, e. g., joins, hash
tables, or bloom filters.

REFERENCES

[1] Auto-vectorization in GCC. https://gcc.gnu.org/projects/tree-ssa/
vectorization.html.

[2] GCC, the GNU Compiler Collection. https://gcc.gnu.org/.
[3] Intel®Intrinsics Guide. https://software.intel.com/sites/landingpage/

IntrinsicsGuide.
[4] Introduction to Intel®Advanced Vector Extensions. https://software.intel.

com/en-us/articles/introduction-to-intel-advanced-vector-extensions.
[5] PAPI. http://icl.cs.utk.edu/papi/.
[6] D. Broneske, S. Breß, and G. Saake. Database Scan Variants on Modern

CPUs: A Performance Study. In Proc. of the 2nd Int. Workshop on In
Memory Data Management and Analytics, pages 1–15, 2014.

[7] F. Darema, D. A. George, V. A. Norton, and G. F. Pfister. A
single-program-multiple-data computational model for EPEX/FORTRAN.
Parallel Computing, 7(1):11–24, 1988.

[8] F. Färber, N. May, W. Lehner, P. Große, I. Müller, H. Rauhe, and J. Dees.
The SAP HANA Database – An Architecture Overview. IEEE Data
Eng. Bull., 35(1):28–33, 2012.

[9] M. J. Flynn. Some Computer Organizations and Their Effectiveness.
IEEE Trans. Computers, 21(9):948–960, 1972.

[10] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen, T. Kaldewey,
V. W. Lee, S. A. Brandt, and P. Dubey. FAST: fast architecture sensitive
tree search on modern CPUs and GPUs. In Proc. of the ACM Int. Conf.
on Management of Data, pages 339–350, 2010.

[11] V. Leis, A. Kemper, and T. Neumann. The adaptive radix tree: ARTful
indexing for main-memory databases. In 29th IEEE Int. Conf. on Data
Engineering, pages 38–49, 2013.

[12] Y. Li and J. M. Patel. BitWeaving: fast scans for main memory data
processing. In Proc. of the ACM Int. Conf. on Management of Data,
pages 289–300, 2013.

[13] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable Parallel
Programming with CUDA. ACM Queue, 6(2):40–53, 2008.

[14] M. Pharr and W. R. Mark. ispc: A SPMD compiler for high-performance
CPU programming. In Innovative Parallel Computing, pages 1–13. IEEE,
2012.

[15] O. Polychroniou, A. Raghavan, and K. A. Ross. Rethinking SIMD
Vectorization for In-Memory Databases. In Proc. of the ACM Int. Conf.
on Management of Data, pages 1493–1508, 2015.

[16] E. A. Sitaridi, O. Polychroniou, and K. A. Ross. SIMD-accelerated
regular expression matching. In Proc. of the 12th Int. Workshop on Data
Management on New Hardware, pages 8:1–8:7, 2016.

[17] S. Sprenger, S. Zeuch, and U. Leser. Cache-Sensitive Skip List: Efficient
Range Queries on Modern CPUs. In ADMS/IMDM@VLDB, 2016.

[18] J. A. Stratton, V. Grover, J. Marathe, B. Aarts, M. Murphy, Z. Hu,
and W. W. Hwu. Efficient compilation of fine-grained SPMD-threaded
programs for multicore CPUs. In Proc. of the 8th Int. Symposium on
Code Generation and Optimization, pages 111–119, 2010.

[19] T. Willhalm, I. Oukid, I. Müller, and F. Faerber. Vectorizing Database
Column Scans with Complex Predicates. In Int. Workshop on Accelerating
Data Management Systems Using Modern Processor and Storage
Architectures, pages 1–12, 2013.

[20] T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner, A. Zeier, and
J. Schaffner. SIMD-Scan: Ultra Fast in-Memory Table Scan using
on-Chip Vector Processing Units. PVLDB, 2(1):385–394, 2009.

[21] S. Zeuch, J. Freytag, and F. Huber. Adapting Tree Structures for
Processing with SIMD Instructions. In Proc. of the 17th Int. Conf.
on Extending Database Technology, pages 97–108, 2014.

[22] J. Zhou and K. A. Ross. Implementing database operations using SIMD
instructions. In Proc. of the ACM Int. Conf. on Management of Data,
pages 145–156, 2002.


