
Exact and Approximate Algorithms for
Finding k-Shortest Paths with Limited Overlap

Theodoros Chondrogiannis
Free University of Bozen-Bolzano

tchond@inf.unibz.it

Panagiotis Bouros
Aarhus University

pbour@cs.au.dk
Johann Gamper

Free University of Bozen-Bolzano
gamper@inf.unibz.it

Ulf Leser
Humboldt-Universität zu Berlin

leser@informatik.hu-berlin.de

ABSTRACT
Shortest path computation is a fundamental problem in road net-
works with various applications in research and industry. However,
returning only the shortest path is often not satisfying. Users might
also be interested in alternative paths that are slightly longer but
have other desired properties, e.g., less frequent traffic congestion.

In this paper, we study alternative routing and, in particular, the
k-Shortest Paths with Limited Overlap (k-SPwLO) query, which
aims at computing paths that are (a) sufficiently dissimilar to each
other, and (b) as short as possible. First, we propose MultiPass, an
exact algorithm which traverses the network k−1 times and em-
ploys two pruning criteria to reduce the number of paths that have
to be examined. To achieve better performance and scalability, we
also propose two approximate algorithms that trade accuracy for
efficiency. OnePass+ employs the same pruning criteria as Multi-
Pass, but traverses the network only once. Therefore, some paths
might be lost that otherwise would be part of the solution. ESX
computes alternative paths by incrementally removing edges from
the road network and running shortest path queries on the updated
network. An extensive experimental analysis on real road networks
shows that: (a) MultiPass outperforms state-of-the-art exact algo-
rithms for computing k-SPwLO queries, (b) OnePass+ runs sig-
nificantly faster than MultiPass and its result is close to the exact
solution, and (c) ESX is faster than OnePass+ (though slightly less
accurate) and scales for large road networks and large values of k.

CCS Concepts
•Information systems → Geographic information systems;
Database query processing;

Keywords
Alternative Routing;Road Networks;Query Services

1. INTRODUCTION
Computing the shortest path between two locations in a road net-

c© 2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

Figure 1: Motivational example

work is a fundamental problem that has attracted lots of attention
by both the research community and the industry. Traditionally,
the shortest path problem is addressed by Dijkstra’s algorithm [9].
Additionally, a plethora of pre-processing based methods have been
proposed that answer shortest path queries in almost constant time,
even for continental sized networks [7, 11, 21, 25].

However, in many real-world scenarios, determining solely the
shortest path is not enough. Most commercial route planning ap-
plications and navigation systems offer alternatives that might be
longer than the shortest path but have other desirable properties
(e.g., lower fuel consumption), leaving the final decision to the
user. Alternative routes are also very useful for the transportation of
goods using a fleet of vehicles, i.e., transportation of humanitarian
aid through unsafe regions. By distributing the load into vehicles
that follow different routes, the probability that at least some of the
goods will arrive at the destination safely can be increased. Another
interesting scenario arises in emergency situations such as natural
disasters and terrorist attacks. To avoid panic and potential catas-
trophic collisions while dealing with the aftermath of such events,
evacuation plans should include, apart from the shortest, alternative
paths that are sufficiently dissimilar to each other.

A first take on providing alternative routes with no prior infor-
mation is to solve the K-shortest paths problem [10, 15, 24]. In
most cases, though, the returned paths share large stretches, and
therefore, they are of little practical value to the user. Consider the
scenario illustrated in Figure 1, which shows three different paths
from location A to B representing the central train station and the
hospital in the city of Bolzano, respectively. The solid/black line
indicates the shortest path fromA toB while the dashed/red line in-
dicates the next path by length; notice how similar these two paths
are. On the other hand, the green/dotted line indicates a third path,
which is clearly longer than the other two but significantly differ-
ent from the shortest path. In practice, the paths cover very distant

parts of the city’s road network. In many application scenarios, the
green/dotted path would be considered as a better alternative to the
shortest path, compared to the dashed/red path.

Existing literature has approached alternative routing from dif-
ferent perspectives. Notable works include methods which aim at
computing alternative routes either by incrementally building a set
of dissimilar paths [12] or by employing edge penalties [2]. The
proposed methods, though, typically give no guarantees regard-
ing the length of the alternative paths. Other approaches [1, 3,
5] first generate a large number of candidates and then, in a post-
processing step, consider a number of constraints and criteria in
order to determine the final alternative paths. However, in these
works alternatives are defined based solely on their individual sim-
ilarity to the shortest path, which results in alternative paths that are
very similar to each other and, hence, of limited interest to the user.

Contributions. In this paper, we focus on the problem of find-
ing k-Shortest Paths with Limited Overlap (k-SPwLO), previously
introduced in [6]. A k-SPwLO query aims at computing paths
that are (a) sufficiently dissimilar to each other (based on a user-
specified similarity threshold), and (b) as short as possible. In
[6], we presented the OnePass algorithm for processing k-SPwLO
queries. The algorithm outperforms a baseline solution which enu-
merates paths in increasing length order, but, in reality, OnePass
is not practical even for mid-sized road networks. To this end, we
propose MultiPass, an exact algorithm which extends and improves
OnePass by employing an additional pruning criterion. In contrast
to OnePass, which traverses the road network once and expands
only those paths that qualify the similarity constraint, MultiPass
traverses the network k−1 times, but examines and expands only
the most promising paths. Any path that cannot lead to a solution
is pruned. Our experimental analysis shows that MultiPass always
outperforms OnePass, and, in most cases, by a large margin.

Despite its significant performance advantage over OnePass, also
MultiPass cannot scale in practice for large road networks, a fact
that is backed by our extensive experimental evaluation. In this
spirit, we propose two approximate methods that trade result qual-
ity for efficiency. Our first approximate algorithm, OnePass+, em-
ploys the pruning power of MultiPass, but traverses the road net-
work only once, similar to OnePass. Thereby, OnePass+ may prune
some partial paths that, in a subsequent iteration, could become part
of an alternative path. Our second approximate algorithm, ESX,
computes alternative paths by incrementally removing edges from
the road network that belong to previously recommended paths, and
running shortest path queries on the updated network. Essentially,
ESX reduces the search for alternative paths to a set of shortest
path queries which require much less time to be processed. In our
extensive experimental evaluation, we show that the approximate
algorithm OnePass+ is significantly faster than the exact algorithm
MultiPass, while recommending alternative paths that are almost as
short as the alternatives in the exact k-SPwLO set. We also show
that ESX is the fastest algorithm and is scalable even for large road
networks (i.e., one million nodes) and large values of k.

Outline. The rest of the paper is organized as follows. Section 2
briefly discusses the related work on providing alternative paths. In
Section 3, we formally define the k-SPwLO problem and revisit our
evaluation methodology from [6]. In Section 4, we present Mul-
tiPass, a novel exact algorithm for processing k-SPwLO queries,
and conduct a preliminary experimental analysis comparing Multi-
Pass to OnePass. Next in Section 5, we investigate the approximate
evaluation of k-SPwLO. We first discuss a baseline method SVP+,
based on existing literature and then propose our approximate algo-

rithms OnePass+ and ESX. The results of our detailed experimental
evaluation are reported in Section 6. Finally, Section 7 concludes
the paper and points to future work.

2. RELATED WORK
A common approach for alternative routing is to first compute

a large set of candidate paths, then examine the candidate paths
with respect to a number of constraints (e.g., their length or the
nodes they cross) and determine the final result set. In [5], the au-
thors build two shortest path trees, one from the source and one
from the target, and then look for paths that appear in both trees
simultaneously, termed plateaus. This approach was revisited and
formally defined in [3] (where the concept of alternative graphs
has been introduced with the same functionality as the plateaus)
and further improved in [17]. Abraham et al. [1] introduced the
notion of single-via paths. The method runs Dijkstra’s algorithm
two times, once from the source s and once from the target t while
reversing the edges of the road network. Then, for each node n
apart from s and t, the algorithm constructs a single-via path by
concatenating the shortest path from s to n and the shortest path
from n to t. The algorithm evaluates each (simple) single-via path
by employing a set of user-defined constraints, i.e., length, local
optimality and stretch, and rejects all single-via paths that violate
these constraints. Compared to our k-SPwLO problem, none of the
aforementioned methods tackles the problem of computing multi-
ple alternative paths that are dissimilar to each other; in contrast,
the similarity only to the shortest path is considered.

Penalty-based methods generate a set of paths that are dissimi-
lar to the shortest path by adding a penalty on the weights of the
edges of the shortest path. For example, Akgun et. al. [2] pro-
pose a method which doubles the weight of each edge that lies on
the shortest path. The alternative paths are computed by repeatedly
running Dijkstra’s algorithm on the input road network, each time
with the updated weights. A similar approach is adopted in [14],
where the penalty is computed in terms of both the path overlap and
the total turning cost, i.e., how many times the user would have to
switch between roads when following a path. The main shortcom-
ing of penalty-based methods is that there is no intuition behind
the value of the penalty applied before each subsequent iteration.
In general, using a large penalty value would result in diverse but
possibly very long alternative paths. On the other hand, using a
small penalty value would require the algorithm to perform more
iterations in order to find the desired result. Even so, penalty-based
methods cannot provide a formal result set. Our last approximate
algorithm ESX can also be viewed as a penalty based method where
the penalty added to the weight of selected edges is +∞.

To the best of our knowledge, the problem tackled in [12] is the
most similar to our k-SPwLO problem. The authors devise a so-
lution which extends Yen’s algorithm [24] to produce paths that
qualify a similarity constraint. In particular, given a source s and
a target t, starting from the shortest path, the algorithm produces
a set of candidate paths by modifying the previously found path.
Among the candidate paths, the algorithm chooses the one that is
most dissimilar to the previously found path and continues until
a sufficiently dissimilar path is found. Apparently, the algorithm
does not examine paths in length order but only based on their sim-
ilarity. Thus, it does not compute alternative paths that are as short
as possible, but only dissimilar. Naturally, a user finds more value
in paths that are also as short as possible.

Xie et. al. [23] define alternative shortest paths using edge avoid-
ance. Given the shortest path p(s→t) and an edge e on p, the alter-
native path is the shortest path from s to t which avoids edge e. To
compute alternative paths, they build upon the concept of distance

oracles [20] and distance sensitivity oracles [4] and propose iSPQF,
a quadtree-based spatial data structure inspired by [19]. Compared
to our work, iSQPF computes only one alternative path instead of
a set. Moreover, the use-case is different as Xie et al. find alterna-
tive paths by explicitly avoiding forbidden edges, while k-SPwLO
considers the similarity between paths to propose alternative paths.

Finally, the task of alternative routing can be based on the pareto-
optimal paths for multi-criteria networks [8, 13, 16]. A path p is
part of the pareto-optimal set (or the route skyline) P if p is not
dominated by another path p′ ∈ P . Hence, path p dominates p′ iff
p is not worse than p′ in all criteria/dimensions of the network (e.g.,
distance, travel time, gas consumption) and strictly better than p′ in
at least one of those criteria. Our definition of alternative routing,
i.e., the k-SPwLO query, is not a multi-criteria optimization prob-
lem; the paths recommended by k-SPwLO cannot be obtained by
first computing the pareto-optimal path set.

3. BACKGROUND
LetG=(N,E) be a directed weighted graph representing a road

network with set of nodes N and set of edges E ⊆ N×N . The
nodes of G represent road intersections and the edges represent
road segments. Each edge (nx, ny) ∈ E has an assigned posi-
tive weight wxy , which captures the cost of moving from node nx

to ny , e.g., travel time or distance. A (simple) path p(s → t)
from a source node s to a target node t (or just p, if s and t are
clear from the context) is a connected and cycle-free sequence of
edges 〈(s, nx), . . . , (ny, t)〉. The length `(p) of a path p equals the
sum of the weights of all contained edges. The shortest path be-
tween two nodes, p0(s→t), is the path that has the shortest length
among all paths connecting s to t. The length of the shortest
path is also termed the (network) distance between s and t, i.e.,
d(s, t)=`(p0(s→t)).

Problem Definition. In [6], we introduced the problem of k-
Shortest Paths with Limited Overlap (k-SPwLO) in order to rec-
ommend alternative paths a user may take to reach her destination.
In particular, let P be a set of paths from a node s to another node t
on a road network G. A path p′(s→t) is called alternative to set P
if p′ is sufficiently dissimilar to every path p ∈ P . More formally,
the similarity of p′ to p is determined by their overlap ratio:

Sim(p′, p)=

∑
(nx,ny)∈p′∩p wxy

`(p)
, (1)

where p′ ∩ p denotes the set of edges shared by p′ and p. Then,
given a similarity threshold θ, path p′ is alternative to set P iff
Sim(p′, p) ≤ θ,∀p ∈ P holds.

Now, given a source node s and a target node t, a k-SPwLO
(s, t, θ, k) query returns a set of k paths from s to t, sorted in in-
creasing length order, such that:

(a) the shortest path p0(s→t) is always included,

(b) all k paths are pairwise dissimilar with respect to the similarity
threshold θ, and

(c) all k paths are as short as possible.

Consider the road network in Figure 2. The shortest path from
s to t is p0=〈(s, n3), (n3, n5), (n5, t)〉 with length `(p0)=8.
Assume that P contains only the shortest path, i.e., P={p0}
and consider paths p1=〈(s, n3), (n3, n5), (n5, n4), (n4, t)〉
and p2=〈(s, n3), (n3, n4), (n4, t)〉 with `(p1)=9 and
`(p2)=10, respectively, as alternatives to P . Path p1
shares edges (s, n3) and (n3, n5) with p0, which gives

s

n1

n2

n3

n4

n5 t

6

4

3

2
6

3

5

5

3

1
2

2

Figure 2: Running example.

Sim(p1, p0)=(ws,3 + w3,5)/`(p0) = 6/8 = 0.75, whereas
Sim(p2, p0)=ws,3/`(p0) = 3/8 = 0.38. Assuming a similarity
threshold θ=0.5, only p2 is alternative to P .

Note that the asymmetric similarity metric of Equa-
tion 1 allows us to exclude needlessly long paths. Fol-
lowing up on our previous example, consider the shortest
path p0 and the paths p3=〈(s, n3), (n3, n4), (n4, t)〉 and
p4=〈(s, n3), (n3, n2), (n2, n4), (n4, t)〉 with `(p3)=10 and
`(p4)=13, respectively. The use of a symmetric similarity metric
such as the Jaccard distance would indicate that p4 is less similar to
p0 than p3, although the shared length of both p3 and p4 with p0 is
the same. With the asymmetric definition of Equation 1 we avoid
such cases. Furthermore, the pairwise dissimilarity is guaranteed
as long as `(p′) ≥ `(p) (proof excluded due to lack of space).

Evaluating k-SPwLO. A naïve approach for evaluating k-
SPwLO queries is to iterate over all paths connecting s to t and
compute their pairwise similarity. Naturally, such a solution is not
practical. A potential improvement is to examine paths in increas-
ing order of their length, which allows us not to examine all possi-
ble paths p(s→ t). This idea was captured by the baseline method
in [6], but the computation cost is still prohibitively high.

To further reduce the search space, we first introduced a prun-
ing criterion in [6] based on the following simple observation.
Let p(s→n) be a path connecting source s to a node n, and
pi(s→t) ∈ PLO be an already recommended path. Assume that
p is extended to reach target t, resulting in path p′(s→t). As p′

contains all edges shared by p and pi, its similarity to pi is at least
equal to the similarity of path p, i.e., Sim(p′, pi) ≥ Sim(p, pi).
Hence, given a threshold θ, if there exists pi ∈ PLO such that
Sim(p, pi) ≥ θ, path p can be safely discarded. This observation
is formally captured by the following lemma:

LEMMA 1. Let PLO be the set of already recommended paths.
If p is an alternative path to PLO with respect to a threshold θ,then
Sim(p′, pi) ≤ θ holds for every subpath p′ of p and all pi ∈ PLO .

We used this Lemma 1 as pruning criterion in the OnePass algo-
rithm. The algorithm traverses the road network, expanding every
path from the source node s that satisfies Lemma 1. OnePass em-
ploys a min priority queue in order to examine paths in increasing
order of their length. Each time a new path is recommended, i.e.,
added to the result set PLO , an update procedure takes place for all
remaining incomplete paths p(s → n) in the priority queue. The
algorithm terminates when either k paths are added to the result set
or all paths from s to t qualifying Lemma 1 are examined.

OnePass can be viewed as an extension of Fox’s algorithm [10]
for computing the K-shortest paths. Fox’s algorithm traverses the
road network expanding every path from source node s. At each it-
eration, the algorithm expands up to K nodes, allowing each node

to be expanded up to K times. It terminates when the target node
has been expanded K times. The time complexity of Fox’s algo-
rithm isO(|E|+K · |N | · log |N |). In contrast to Fox’s algorithm,
OnePass allows each node to be visited an unlimited number of
times. Each node can be visited by OnePass as many times as the
number of paths from s to t. Note that enumerating all paths from
s to t is a #P -complete problem [22]. OnePass terminates when
either k paths are recommended or all paths from s to t qualify-
ing Lemma 1 are examined. Hence, the complexity of OnePass is
O(|E| + K · |N | · log |N |), where K is the number of shortest
paths that have to be computed in order to cover the k results of the
k-SPwLO query.

4. AN EFFICIENT EXACT ALGORITHM
Despite employing the pruning criterion of Lemma 1, OnePass

still has to expand and examine a large portion of all possible
p(s→t) paths. In this section, we propose a novel label-setting
algorithm termed MultiPass to enhance the computation of k-
SPwLO. The algorithm employs an additional powerful pruning
criterion which significantly reduces the search space by avoiding
expanding non-promising paths. Our experimental analysis in Sec-
tion 4.3 demonstrates the advantage of MultiPass over OnePass in
practice using real-world road networks.

4.1 Pruning Non-Promising Paths
Let p0(s→t) be the shortest path from a source node s to a tar-

get node t as illustrated in Figure 3. In addition, let pi(s→n) and
pj(s→n) be two distinct paths from source s to a node n of the
shortest path p0 such that `(pi)<`(pj). Assuming that both pi and
pj are extended to reach target t following the same path p(n→t),
then any extension of pi will be shorter than the respective exten-
sion of pj . Furthermore, let Sim(pi, p0)≤Sim(pj , p0), i.e., the
overlap ratio of pi with p0 is equal or lower than the ratio of pj
with p0. Due to the monotonicity of the similarity function (Equa-
tion (1)), any extension of pi to nwill have the same or less overlap
ratio with p0 compared to the respective extension of pj . In other
words, for any extension of pj there will always be a shorter exten-
sion of pi with less or equal overlap ratio with p0, and therefore, pj
can be pruned.

s n t
p0

pi

pj

Figure 3: Pruning paths with Lemma 2.

The same idea can be utilized to prune the search space when
computing the shortest alternative path to a set of pathsP . Consider
again pi,pj with `(pi)<`(pj) and Sim(pi, p0)≤Sim(pj , p0).
Path pj is pruned if for every path p ∈ P the overlap ratio
Sim(pi, p) is lower or equal to Sim(pj , p). This pruning crite-
rion is formally captured by the following lemma:

LEMMA 2. Let P be a set of paths from a source node s to a
target node t, and pi, pj be two paths from source s to some node
n. If `(pi)<`(pj) and ∀p ∈ P : Sim(pi, p)≤Sim(pj , p) hold,
then path pj cannot be part of the shortest alternative path to P ,
and we write pi ≺P pj .

PROOF. We prove the lemma by contradiction. Assume that an
extension p′j=〈(s, ∗), . . . , (∗, n), . . . , (∗, t)〉 of pj(s→n) to target

t is the shortest alternative path to P . Then, we show that an exten-
sion p′i=〈(s, ∗), . . . , (∗, n), . . . , (∗, t)〉 of pi(s→n) to target t is
also an alternative path and it will be examined and recommended
before p′j .

According to the definition of alternative path, Sim(p′j , p)≤θ
holds ∀p ∈ P and following Lemma 1 Sim(pj , p)≤θ also
holds ∀p ∈ P . Furthermore, due to the ∀p ∈ PLO :
Sim(pi, p)≤Sim(pj , p) assumption of Lemma 2, we get that
Sim(pi, p)≤θ holds ∀p ∈ P .

As extension paths p′i and p′j share the same sequence of edges
connecting n to target t, we deduce that (a) Sim(p′i, p)≤θ holds
∀p ∈ P , i.e., p′i is alternative to P and (b) `(p′i)<`(p

′
j) which

means that p′i will be examined before p′j .

The pruning criterion of Lemma 2 can be utilized to compute the
shortest alternative to a set of paths as follows. Let P be the set of
paths for which we want to compute the shortest alternative path,
and Pn be the set of paths from s to a node n created during the
expansion of all paths from s. If set Pn contains a path p′(s→n)
such that (a) p′ is longer than any path pn ∈ Pn \ {p′} and (b)
for every path p ∈ P the overlap ratio Sim(p′, p) is higher than
the ratio Sim(pn, p) for all paths pn ∈ Pn \ {p′}, then p′ can be
pruned. Note that the addition of a path in Pn may render condition
(b) not applicable for another path already contained in Pn. To
ensure that the set Pn contains only paths for which both (a) and
(b) hold, every time a new path is added to Pn, we have to check
whether condition (b) still holds for all paths in the set.

Unfortunately, Lemma 2 cannot be employed directly for the
computation of k-SPwLO queries. Consider again the example in
Figure 3. Let p0 be the only path in the set of currently recom-
mended alternative paths P . If during the search for the next alter-
native p1 to P , pj is pruned because pi ≺P pj holds, pj cannot be
part of the shortest alternative to P . However, there is no guarantee
that pj will not be part of the shortest alternative to both p0 and
p1. In particular, if pi is part of p1, then, during the search for the
next alternative to P={p0, p1}, pi might be pruned much earlier
by Lemma 1. Hence, we have to compute k-SPwLO queries in an
iterative way. Each time a new alternative is added to the k-SPwLO
result set, we have to re-start the search for the next alternative from
the beginning.

4.2 The MultiPass Algorithm
Next, we present MultiPass, which employs both pruning cri-

teria of Lemma 1 and Lemma 2 to enhance the computation of
k-SPwLO queries. The algorithm has the following key features.
For each node n of the road network, MultiPass maintains a set of
labels Λ(n). Each label represents a path from s to n and is of
the form 〈n, p(s→n)〉1. MultiPass traverses the road network k-1
times. At each iteration, the algorithm examines paths from s in in-
creasing order of their length and expands every path p(s→n) from
s to a node n for which the following holds: (a) its similarity with
any already computed result does not exceed the input threshold θ
(Lemma 1) and (b) its extension can possibly lead to the shortest
alternative path during the current iteration (Lemma 2). Every time
a new path pn(s→n) that qualifies conditions (a) and (b) is found,
a label 〈n, pn〉 is added to Λ(n), and MultiPass removes all paths
from Λ(n) which do not qualify condition (b). As soon as a path
to target t is found, MultiPass terminates current round, discards
all stored labels, and re-traverses the network from source s. The
algorithm terminates after k paths are added to result set PLO or

1In practice, MultiPass stores only the predecessor of each label
during the expansion. By tracing backwards each step of the ex-
pansion, the actual path can be retrieved at any time.

ALGORITHM 1: MultiPass
Input: Road network G(N,E), source node s, target node t,

of results k, similarity threshold θ
Output: Set PLO of k paths

1 PLO ← {shortest path p0(s→t)};
2 while |PLO |<k and last round updated PLO do
3 initialize min-priority queueQ with 〈s, ∅〉;
4 ∀n ∈ N : Λ(n)← ∅;
5 whileQ not empty do
6 〈n, pn〉 ← Q.pop(); . Current path
7 if n=t then
8 PLO ← PLO ∪{pn}; . Update result set
9 break;

10 else
11 foreach outgoing edge (n, nc) ∈ E do
12 pc ← pn ◦ (n, nc); . Expand path pc
13 if ∃pi ∈ PLO : Sim(pc, pi)≥θ then
14 continue; . Pruned by Lemma 1
15 else if ∃〈nc, p

′
c〉 ∈ Λ(nc) : p′c≺PLO pc then

16 continue; . Pruned by Lemma 2
17 else
18 remove fromQ and Λ(nc) all

〈nc, p
′
c〉 : pc ≺PLO p′c; . Lemma 2

19 Q.push(〈nc, pc〉);
20 Λ(nc)← Λ(nc) ∪ {〈nc, pc〉};

21 return PLO ;

the last iteration failed to find an alternative path. In the latter case,
a complete set of k-SPwLO with respect to given θ and k values
cannot be computed.

Algorithm 1 illustrates the pseudocode of MultiPass. The algo-
rithm initializes PLO with the shortest path p0(s→t) (Line 1) and
employs a min priority queue Q to traverse the road network. Be-
fore each traversal round, Q is initialized to 〈s, ∅〉 (Line 3) and
the algorithm associates each node n with a (initially empty) set
of labels Λ(n) (Line 4). At each round in between Lines 5 and
20, MultiPass first pops label 〈n, pn〉 for current path pn in Line 6.
If n is the target t, then pn is added to PLO and the round termi-
nates (Lines 7–9). Otherwise, the algorithm expands the current
path pn considering all outgoing edges (n, nc) (Lines 10-16). For
each new path pc ← pn ◦ (n, nc) (Line 12), the algorithm checks
whether pc qualifies the pruning criteria of Lemma 1 (Lines 13-
14) and Lemma 2 (Lines 15-16). If the new path pc qualifies both
pruning criteria, MultiPass removes fromQ and Λ(nc) every label
representing a path p′n such that pc ≺PLO p′n (Line 19). Finally,
MultiPass adds the new label to Q (Line 19) and Λ(nc) (Line 20)
and proceeds with popping the next label fromQ.

To achieve an efficient implementation, for each label 〈n, pn〉
MultiPass also stores a vector VSim containing the overlap ratio
of pn with all paths that were in PLO at the time when the label
was created. Due to the monotonicity of Equation 1, the overlap
ratios stored in VSim can be updated incrementally. When a new
label is created and added to Q, our implementation of MultiPass
performs lazy updates for Q and retains a black list to ignore la-
bels representing pruned paths after they are removed from Q. In
order to consider results in PLO that are added after the creation
of the label, each time a label is popped MultiPass compares the
size of VSim stored in the popped label to |PLO| and, if necessary,
computes the missing overlaps and updates VSim.

EXAMPLE 1. We demonstrate MultiPass using the road net-
work of Figure 4 and the k-SPwLO(s, t, 0.5, 3) query. During ini-

s

n1

n2

n3

n4

n5 t

6

4

3

2
6

3

5

5

3

1
2

2

shortest path (p0) 1st alt. (p1) 2nd alt. (p2)

Figure 4: Result of k-SPwLO (s,t,0.5,3) query.

tialization, the shortest path p0(s→n)=〈(s, n3), (n3, n5), (n5, t)〉
is computed and added to the result set PLO .

Starting from s, the first path examined by Mul-
tiPass is p(s→n3)=〈(s, n3)〉. The overlap ratio
Sim(p(s, n3), p0)=3/8=0.375 is below the similarity threshold
θ=0.5; hence p(s, n3) is not pruned. The same holds for the
next two paths examined, which are p(s→n2)=〈(s, n2)〉 and
p(s→n1)=〈(s, n1)〉.

Next, MultiPass examines paths p(s→n5)=〈(s, n3), (n3, n5)〉,
p′(s→n1)=〈(s, n3), (n3, n1)〉, p′(s→n2)=〈(s, n3), (n3, n2)〉
and p(s→n4)=〈(s, n3), (n3, n4)〉. For path p(s→n5) the over-
lap ratio Sim(p(s, n5), p0)=6/8=0.75 exceeds the similarity
threshold of 0.5 and so, path p(s→n5) is pruned. For path
p′(s→n1) the overlap ratio Sim(p′(s, n1), p0)=0.375 does
not exceed the similarity threshold. Since node n1 has already
been visited by path p(s→n1), we check Lemma 2. We have
Sim(p′(s→n1), p0)>Sim(p(s→n1), p0) and for the length
`(p′(s→n1))<`(p(s, n1)). Therefore, Lemma 2 cannot be applied
and path p′(s→n1) is not pruned. On the contrary, for path
p′(s→n2) we have Sim(p′(s→n2), p0)>Sim(p(s→n2), p0)
and `(p′(s→n2))>`(p(s→n2)). In this case, the criterion of
Lemma 2 is applied and path p′(s→n2) is pruned. Finally, for
path p(s→n4) the overlap ratio Sim(p(s→n4), p0)=0.375 does
not exceed the similarity threshold of 0.5, hence, the path is not
pruned.

MultiPass continues the execution of the current
round in the same fashion until the alternative path
p1(s→t)=〈(s, n3), (n3, n4), (n4, t)〉 with `(p1)=10 is found
and subsequently added to PLO .

Compared to OnePass, MultiPass traverses the road network
k−1 times instead of once (hence, the name of the algorithm).
Each round works independently, i.e., builds a new path tree by
expanding all paths that qualify both pruning criteria. As a result,
at each round, MultiPass may potentially re-expand and re-examine
paths already processed in previous rounds. On the other hand, by
employing Lemma 2, the number of paths that MultiPass has to ex-
amine (including the paths examined multiple times) is lower than
the number of paths processed by OnePass. Finally, OnePass has to
check the simplicity of every new path, i.e., whether any cycles are
contained, while MultiPass does not need to perform such a check,
as Lemma 2 ensures that all non-simple paths are pruned.

Complexity analysis. Given a k-SPwLO query, MultiPass first
computes the shortest path p0(s→t) from source node s to target
t. Naturally, the cost of this step is independent of the number of
requested paths k and the similarity threshold θ. For the computa-
tion of p0(s→t), any shortest path algorithm can be employed, e.g.,

Dijkstra’s algorithm [9] which requires O(|E|+ |N | · log |N |).
To find each subsequent alternative path, MultiPass expands all

paths from source s that qualify the pruning criterion of Lemma 1.
However, as the value of the similarity threshold θ approaches 1,
the number of paths pruned by Lemma 1 significantly drops, which
means that MultiPass returns the K-Shortest paths. Furthermore in
practice, there exists no formula for estimating the number of paths
pruned by the pruning criterion of Lemma 2. Hence, each round
of MultiPass becomes equivalent to Fox’s algorithm [10] with a
complexityO(|E|+K · |N | · log |N |), where K is the number of
the shortest paths that have to be computed to cover the k-SPwLO
result. Since MultiPass has to perform k−1 rounds to compute a
k-SPwLO query, its total runtime complexity isO(k(|E|+K ·|N |·
log |N |)) where K�k. We have shown in [6] that the number of
K-shortest paths that need to be computed in order to cover the k-
SPwLO set is very high; in extreme cases, MultiPass may have to
construct all paths from s to t.

Finally, note that the time complexity of MultiPass is worse than
the time complexity of OnePass. However, we show in our ex-
perimental evaluation that MultiPass is much faster than OnePass.
The reason for this inconsistency is that, although by employing the
pruning criterion of Lemma 2 MultiPass examines much less paths
than OnePass, there can be no formal guarantees for the number
of paths that are pruned. Although MultiPass has worse theoretical
time complexity, in practice it is much more efficient than OnePass.

Optimization. As discussed in [6] for OnePass, the performance
of MultiPass can be further enhanced by employing a lower bound,
d(n, t), for the network distance d(n, t) of every node n to the
target t. By employing such a lower bound, MultiPass traverses at
each round the network in anA∗-like fashion and directs the search
towards the target, which avoids visiting nodes that are far away. In
order to derive tight d(n, t) lower bounds, we first reverse the edges
of the road network and then run Dijkstra’s algorithm from target t
to every node n of the network [18]. In practice, at the beginning of
the MultiPass execution, instead of simply computing the shortest
path from s to t, we compute the shortest path from target t to each
node n in the road network.

4.3 Experimental Evaluation
To demonstrate its efficiency, we compare MultiPass against

OnePass presented in [6] using real road networks. For each al-
gorithm, we measure the average response time and the number of
examined labels (i.e., paths) over 1,000 random queries varying pa-
rameters k and θ. Due to the high execution time of OnePass, our
experiments involve only the road networks for the city of Olden-
burg (6,105 nodes and 14,058 edges) and the city of San Joaquin
(18,263 nodes and 47,594 edges). We also consider a timeout of
120 seconds for the evaluation of each query.

Figure 5 reports the response times of MultiPass and OnePass.
The continuous lines show the time for the queries for which
both algorithms finished their execution in less than 120 seconds,
whereas the dashed lines show the time for all 1,000 queries includ-
ing those which did not finish within 120 seconds. In Figures 5a
and 5b, we observe that the performance of both OnePass and Mul-
tiPass deteriorates as the number k of requested paths increases.
For all values of k though, MultiPass is clearly faster than OnePass,
and in most cases MultiPass is at least two times faster. Another in-
teresting observation is that the performance curve of OnePass is
almost linear, i.e., each iteration requires approximately the same
time. For instance, for Oldenburg (Figure 5a) the algorithm needs
similar time to find the third and the fourth alternative path. On
the other hand, MultiPass needs more time for each subsequent re-

sult. This behavior can be explained by the fact that MultiPass
restarts and re-expands paths. With regard to parameter θ, we ob-
serve in Figures 5c and 5d that in all cases, MultiPass is faster than
OnePass. Especially for the lowest values of θ, i.e., 0,1 and 0.3,
MultiPass outperforms OnePass by at least an order of magnitude.
The performance of OnePass is close to MultiPass only for θ=0.9,
where the computed paths can be very similar.

2 3 4 5
0

5

10

15

20

25

k

R
es

po
ns

e
tim

e
(s

ec
)

OnePass (suc.) MultiPass (suc.) OnePass (all) MultiPass (all)

(a) Oldenburg (θ=50%)

2 3 4 5
0

20

40

60

80

k

R
es

po
ns

e
tim

e
(s

ec
)

(b) San Joaquin (θ=50%)

0.1 0.3 0.5 0.7 0.9
0

15

30

45

60

θ

R
es

po
ns

e
tim

e
(s

ec
)

(c) Oldenburg (k=3)

0.1 0.3 0.5 0.7 0.9
0

25

50

75

100

θ

R
es

po
ns

e
tim

e
(s

ec
)

(d) San Joaquin (k=3)

Figure 5: Performance comparison of MultiPass and OnePass vary-
ing requested paths k and similarity threshold θ.

To provide a better insight on the performance of MultiPass and
OnePass, we report in Figure 6 the number of labels/paths each
algorithm needs to examine before returning the k-SPwLO result.
We observe that in all scenarios MultiPass examines significantly
fewer paths than OnePass (even though we count the total number
of paths from all rounds of MultiPass, hence some paths may be
counted more than once). With respect to the similarity threshold
θ, we observe the following important trade-off. As θ increases,
the pruning power of Lemma 1 deteriorates, and both OnePass and
MultiPass construct more paths (supporting measurements are not
included due to lack of space). However at the same time, the next
result can be determined earlier and, hence, the total runtime drops.
In addition, as θ decreases, the pruning power of Lemma 2 in-
creases, and more partial paths can be pruned. This explains the
behavior of MultiPass, where the number of examined paths ini-
tially increases, but after θ=0.5 it goes down.

Finally, in Table 1 we report the percentage of timed-out/failed
queries for timeout values of 30, 60 and 120 seconds. First, we
observe that the failure rate of OnePass is, in most cases, much
higher than the failure rate of MultiPass. More specifically, for the
road network of Oldenburg, the failure rate of OnePass is more than
10% when k>3 or θ<50%. For the road network of San Joaquin,
apart from the case where k=3 and θ=90%, the failure rate of
OnePass is more than 30%, even when the timeout is set to 120
seconds. On the contrary, the timeout rate of MultiPass for the
road network of Oldenburg is in all cases below 10%. For the road
network of San Joaquin, the failure rate of MultiPass is below 10%,
except for the cases where k>3. However, even in cases where the

2 3 4 5

103

104

105

106

107

108

k

N
um

be
ro

fl
ab

el
s

OnePass (suc.) MultiPass (suc.) OnePass (all) MultiPass (all)

(a) Oldenburg (θ=50%)

2 3 4 5
103

104

105

106

107

108

109

k

N
um

be
ro

fl
ab

el
s

(b) San Joaquin (θ=50%)

0.1 0.3 0.5 0.7 0.9

103

104

105

106

107

108

θ

N
um

be
ro

fl
ab

el
s

(c) Oldenburg (k=3)

0.1 0.3 0.5 0.7 0.9103

104

105

106

107

108

109

θ

N
um

be
ro

fl
ab

el
s

(d) San Joaquin (k=3)

Figure 6: Comparison of examined paths by OnePass and Multi-
Pass varying requested paths k and similarity threshold θ.

failure rate of MultiPass is the highest (θ=50% and k>3), it is still
significantly lower than the failure rate of OnePass.

road
network θ k OnePass MultiPass

30 60 120 30 60 120

Oldenburg

0.1 3 46.9 45.4 44.5 0 0 0
0.3 3 22.8 20.5 17.8 0 0 0
0.5 3 9.1 7.7 6.6 0 0 0
0.7 3 0.4 0.1 0.1 0 0 0
0.9 3 0 0 0 0 0 0
0.5 2 2.7 0.2 1.5 0 0 0
0.5 4 15.2 12.8 10.7 2.6 1.4 0.7
0.5 5 20.4 17.5 15 9.6 7.4 6.2

San Joaquin

0.1 3 77.5 76 74.6 3.2 1.8 1.3
0.3 3 66.8 65.2 63.2 8.1 5.6 4.4
0.5 3 52.3 49.4 46.6 6.8 5.1 3.5
0.7 3 35.8 33.6 32.1 2.1 0.9 0.3
0.9 3 3.1 2.3 1.6 0 0 0
0.5 2 36.5 34.1 33.2 0 0 0
0.5 4 61 59.3 56.8 28.9 25.5 22.5
0.5 5 67.5 64.8 62.3 45.2 42 39.1

Table 1: Failure rate (%) for timeout set to 30, 60 and 120 sec.

5. APPROXIMATE ALGORITHMS
Our experimental analysis in Section 4.3 showed that MultiPass

clearly outperforms OnePass presented in [6]. However, despite
employing Lemma 2, MultiPass still has to examine a large num-
ber of paths, which essentially renders the algorithm not applicable
to large-scale road networks. In view of this, we next investigate
the approximate evaluation of k-SPwLO queries. In particular, we
first discuss a baseline method, termed SVP+, which builds on top
of existing literature, and then we propose two novel approximate
algorithms, termed OnePass+ and ESX.

5.1 A Baseline Solution
Our baseline algorithm, denoted by SVP+, builds upon the no-

tion of single-via paths, which was introduced as an alternative
routing technique in [1]. As we discussed in Section 2, the original

ALGORITHM 2: SVP+

Input: Road network G(N,E), source node s, target node t,
of results k, similarity threshold θ

Output: Set PLO of k paths
1 initialize min-priority queueQ with ∅;
2 Ts→N ← shortest path tree from s to all n ∈ N ;
3 TN→t ← shortest path tree from all n ∈ N to t;
4 foreach n ∈ N do
5 Q.push(〈n, d(s, n)+d(n, t)〉);
6 PLO ← {shortest path p0(s→ t)};
7 while PLO contains less than k paths andQ not empty do
8 〈n, `(pn)← Q.pop();
9 pn ← RetrieveSingleViaPath(Ts→N , TN→t, n);

10 if Sim(pn, p) ≤ θ for all p ∈ PLO then
11 add pn to PLO; . Update result set

12 return PLO;

method considers the similarity of single-via paths only with regard
to the shortest path and disregards the pairwise dissimilarity of all
results. Instead of employing the objective criteria as in [1], SVP+

iterates over the set of single-via paths aiming to find a subset of k
paths which are (a) sufficiently dissimilar to each other and (b) as
short as possible. Intuitively, the main idea behind SVP+ is similar
to the baseline method for computing k-SPwLO queries discussed
in Section 3. However, instead of iterating over all possible paths
connecting a source node s to a target node t and computing their
pairwise overlap ratio, SVP+ iterates over the much smaller set of
single-via paths. As the results of k-SPwLO are not necessarily
singe-via paths, SVP+ can only provide approximate answers to
the queries.

Algorithm 2 illustrates the pseudocode of SVP+. First, the
algorithm computes the two shortest path trees, one from s to
every node of G (Line 2) and one from every node of G to t
(Line 3). During this step all distances d(s, n) and d(n, t) are also
computed. The algorithm orders the nodes based on the sum of
d(s, n)+d(n, t), which is also the length of the single-via path of
n, using a min priority queueQ (Lines 4-5). In Line 6, the result set
PLO is initialized with p0, i.e., the shortest path from s to t. Note
that the shortest path p0 is actually the shortest single-via path and,
hence, no additional computation is required. At each iteration be-
tween lines 7 and 11, SVP+ pops from the queue the top element
representing a node n (Line 8) and retrieves the single-via path pn
for node n (Line 9). Then, SVP+ checks in Line 10 whether pn
is sufficiently dissimilar to all paths currently in PLO; if so, pn is
added to PLO (Line 11). The algorithm terminates and returns the
PLO set when either k paths have been added to PLO or there exist
no more single-via paths to examine, i.e., queueQ is depleted.

5.2 Approximate OnePass
We propose next a novel approximate algorithm, denoted by

OnePass+, which combines the feature of OnePass to scan the
graph only once with the pruning power of Lemma 2. OnePass+

has the following key features. Given a source node s and a target
node t, OnePass+ traverses the road network expanding every path
p(s→n) from source s to a node n that qualifies both Lemma 1
and Lemma 2. This procedure is the same with each distinct round
of MultiPass. In contrast to MultiPass though, each time a new
result is added to the result set PLO , an update procedure takes
place for all remaining incomplete paths p(s→n). In particular,
for every incomplete path p(s→n), OnePass+ computes the over-
lap of p with the newly found result and, then, p is checked against

Lemma 1 with respect to the updated PLO . The same update proce-
dure is also employed by OnePass. The algorithm terminates when
either k paths are recommended or all paths from s to t qualifying
Lemma 1 and Lemma 2 have been examined.

By not restarting after the computation of each new result,
OnePass+ avoids expanding the network multiple times. However,
the fact that OnePass+ does not restart the expansion after each
round implies that the next best path might get pruned and, hence,
OnePass+ cannot guarantee that the exact solution will be found.
We already explained in Sec. 4 that for the MultiPass algorithm to
find the exact solution, the restart is required as a path that is pruned
as non-promising during the current round, may be promising dur-
ing the next round. All such paths are excluded permanently from
the search space of OnePass+. Nevertheless, this case applies to
only a small subset of the paths from a source s to a target t and,
hence, the average length of paths in the PLO set is expected to be
close to the optimal one.

Algorithm 3 illustrates the pseudocode of OnePass+. The algo-
rithm employs a min priority queue Q (initialized with source s)
to traverse the road network. Result set PLO is initialized with p0,
i.e., the shortest path from s to t (Line 1). In between Lines 4 and
21, OnePass+ examines the contents of Q until either k paths are
found orQ is depleted. At each iteration, a label 〈n, pn〉 is popped
fromQ (Line 5). If node n is the target t, then pn is added to PLO

(Line 7) and the same update procedure as in OnePass takes place
(Lines 8-10), i.e., all paths ph with Sim(ph, pc) > θ are discarded.
Otherwise, the algorithm expands the current path pn considering
all outgoing edges (n, nc) (Lines 12-21). OnePass checks whether
the new path pc ← pn◦(n, nc) qualifies the pruning criteria of both
Lemma 1 (Lines 14-15) and Lemma 2 (Lines 16-17) and updates
Q and Λ(nc) accordingly. Finally, OnePass adds a new label for
pc to Q (Line 20) and Λ(nc) (Line 21) and proceeds with popping
the next label fromQ (Line 22).

Similar to MultiPass, for each label our implementation of
OnePass+ maintains and updates incrementally a vector VSim con-
taining the overlaps of pn with all paths that where in PLO at the
time when the label was created. Furthermore, OnePass+ also per-
forms lazy updates forQ. That is, for labels that have already been
created and added to Q, OnePass+ updates VSim only at the time
when a label is popped from Q. OnePass+ also retains a black list
to ignore labels representing pruned paths.

Complexity Analysis. Similar to MultiPass, given a k-SPwLO
query from a node s to a node t, OnePass+ first computes p0(s→
t) using any shortest path algorithm, e.g., Dijkstra, and adds it to
the result set. To compute alternatives, OnePass+ traverses the road
network expanding every path p(s→n) from source s to a node n
that qualifies both Lemma 1 and Lemma 2. As we discussed in
the cost analysis of MultiPass, there can be no formal guarantees
regarding the number of paths that are pruned using either pruning
criterion. In the worst case when no paths are pruned, OnePass+

is equivalent to OnePass and Fox’s algorithm. Therefore, the time
complexity of OnePass+ is alsoO(|E|+K · |N | · log |N |), where
K is the number of shortest paths that have to be computed in order
to cover the k-SPwLO result.

5.3 Edge Subset Exclusion
Finally, we present our second approximate algorithm, denoted

by ESX, which computes k-SPwLO by iteratively excluding edges
from the road network. The idea behind ESX is the following.
Given a road networkG, a source node s and a target node t, the al-
gorithm first adds the shortest path p0 to the result set PLO , similar
to all previously described methods. Next, ESX removes an edge of

ALGORITHM 3: OnePass+

Input: Road network G(N,E), source node s, target node t,
of results k, similarity threshold θ

Output: Set PLO of k paths
1 PLO ← {shortest path p0(s→ t)};
2 initialize min-priority queueQ with 〈s, ∅〉;
3 ∀n ∈ N : Λ(n)← ∅;
4 while PLO contains less than k paths andQ not empty do
5 〈n, pn〉 ← Q.pop(); . Current path
6 if n = t then
7 PLO ← PLO ∪ {pn}; . Update result set
8 foreach label 〈n′, `(pn′)〉 inQ do
9 if Sim(pn′ , pi) > θ, ∀pi ∈ PLO then

10 remove 〈n′, `(pn′)〉 fromQ ; . Lemma 1

11 else
12 foreach outgoing edge (n, nc) ∈ E do
13 pc ← pn ◦ (n, nc); . Expand path pc
14 if ∃pi ∈ PLO : Sim(pc, pi) ≥ θ then
15 continue; . Pruned by Lemma 1
16 else if ∃〈nc, p

′
c〉 ∈ Λ(nc) : p′c≺PLO pc then

17 continue; . Pruned by Lemma 2
18 else
19 remove fromQ and Λ(nc) all

〈nc, p
′
c〉 : pc ≺PLO p′c; . Lemma 2

20 Q.push(〈nc, pc〉);
21 Λ(nc)← Λ(nc) ∪ {〈nc, pc〉};

22 return PLO ;

p0 from the road network and computes the shortest path pc from
s to t on the updated road network2. If the overlap of path pc with
p0 does not violate the similarity threshold θ, then pc is added to
the result set PLO . Otherwise, the algorithm proceeds with remov-
ing more edges from the road network. If PLO contains more than
one path, ESX removes an edge from path p ∈ PLO for which
the overlap ratio Sim(pc, p) is the highest. At each iteration, ESX
removes only one edge from some path in PLO . The process is
repeated until a path that does not violate the similarity threshold
θ is found. To compute more alternatives, the algorithm continues
by removing more edges until another alternative is found, or until
there are no more edges to remove.

Removing an edge from the road network may cause the network
to become disconnected and prevent any subsequent iteration from
finding a valid path. To avoid such a case, the algorithm has to make
sure that any edge affecting the connectivity of the road network is
never removed. To this end, after removing an edge from the road
network, if the shortest path search fails to find a path connecting s
and t, then ESX re-inserts the edge in the road network and marks
it as non-removable. Edges marked as non-removable cannot be
removed at any iteration.

The order in which we remove the edges from the road network
affects both the quality of the result and the performance of ESX.
However, determining the optimal order is prohibitively expensive.
Therefore, to determine which edge to remove at each iteration, we
employ a heuristic based on the following observation: the more
shortest paths cross an edge, the greater the probability that the
removal of this edge will cause a detour and lead the next result
faster. As it is also prohibitively expensive to compute the all-pairs
shortest paths, ESX performs a local check. Given an edge e(a, b)

2In practice, the edges are not actually deleted from the road net-
work but only marked as such in order to be ignored by the search.

on some path p ∈ PLO , let Einc(a) be the set of all incoming
edges e(ni, a) to a from some node ni ∈ N\{b} and Eout(b)
be the set of all outgoing edges e(b, nj) from b to some node nj ∈
N\{a}. First, ESX computes the setPs which contains the shortest
paths from every node ni ∈ Einc(a) to every node nj ∈ Eout(b).
Then, ESX defines the set P ′s which contains all paths p ∈ P ′s that
cross edge e. Finally, ESX assigns a priority to edge e, denoted by
prio(e), which is set to |P ′s|.

EXAMPLE 2. Consider our running example in Figure 7, where
p0(s→t)=〈(s, n3), (n3, n5), (n5, t)〉 is the shortest path from s
to t and the only path currently in PLO . For edge (n3, n5) we
compute the shortest path from every node in {s, n1, n2, n4} to
every node in {n4, t}. Three shortest paths, p(n1→n4), p(s→n4)
and p(s→t), cross edge (n3, n5) (bold lines). On the other hand,
the rest of the shortest paths, i.e., shortest path p(n2→t) (dashed
line), do not cross edge (n3, n5). Therefore, the priority of edge
(n3, n5) is prio(n3, n5)=3. In the same fashion, we compute the
priorities for edges (s, n3) and (n3, t), and we have prio(s, n3)=0
and prio(n5, t)=0.

s

n1

n2

n3

n4

n5 t

6

4

3

2
6

3

5

5

3

1
2

2

Figure 7: Computing the priority of edge (n3, n5).

Algorithm 4 illustrates the pseudocode of ESX. First, the algo-
rithm initializes PLO with the shortest path p0 in Line 1 and creates
a max-heapH0, associated with p0, in which all the edges of p0 are
enheaped and sorted based on their priority (Line 2). The algorithm
also initializes the setEDNR of non-removable edges (Line 3). ESX
enters the outer loop in Line 4 and continues until either k results
are found or there are no more edges to be removed from the graph.
Next, the algorithm sets pc to the last result found and enters the in-
ner loop (Line 6). At each iteration the algorithm chooses pmax as
the path in PLO which has the maximum overlap Sim(pc, pmax)
and which contains edges in Hmax (the max-heap associated with
pmax) that can be removed from the graph. Then, the algorithm
deheaps edge etmp from Hmax (Line 8) and checks whether etmp

is in EDNR, i.e., it is marked as non-removable (Line 9). If it is
not, edge etmp is removed (Line 10) and the algorithm computes
the shortest path ptmp on the updated graph (Line 11). In Lines 12-
15 the algorithm checks whether ptmp is a valid path and, if not,
re-inserts etmp to the graph and marks it as non-removable. Other-
wise, the algorithm sets pc to ptmp and proceeds to the next itera-
tion. Finally, when the inner loop is finished, the algorithm checks
if pc is a valid alternative (there is also the possibility that all the
heaps are empty and no more edge can be removed). If pc is valid,
it is added to PLO and a new max-heap Hc associated with pc is
initialized with the edges of pc. Finally, after the outer loop is fin-
ished, the algorithm returns PLO in Line 20.

EXAMPLE 3. We demonstrate the functionality of
ESX using again the road network of Figure 4 and the

ALGORITHM 4: ESX
Input: Road network G(N,E), source node s, target node t,

of results k, similarity threshold θ
Output: Set PLO of k paths

1 PLO ← {shortest path p0(s→ t)};
2 initialize max-heap H0 ← 〈ei,prio(G, ei)〉,∀ei ∈ p0;
. Every Hi is associated with pi

3 initialize EDNR ← ∅;
4 while PLO contains less than k paths and ∃Hi not empty do
5 set pc ← last path added to PLO;
6 while max{Sim(pc, pi) : pi ∈ PLO and Hi not empty

} > θ do
7 Edge etmp ← Hi.pop();
8 if etmp ∈ EDNR then
9 continue;

10 G.remove(etmp);
11 Path ptmp ← ShortestPath(G, s, t);
12 if ptmp is null then
13 re-insert etmp to G;
14 insert etmp to EDNR;
15 continue;
16 pc ← ptmp;
17 if max{Sim(pc, pi) : pi ∈ PLO} then
18 add pc to PLO;
19 initialize max-heap Hc ← 〈ej ,prio(G, ej)〉,

∀ej ∈ pc;

20 return PLO;

k−SPwLO(s, t, 0.5, 2) query. During initialization, the shortest
path p0(s→t) = 〈(s, n3), (n3, n5), (n5, t)〉 is computed and
added to the result set PLO . First, we compute the priority of each
edge of the shortest path. Having computed the priorities, we first
remove edge (n3, n5), which is the edge with the highest priority.
Then, we compute the shortest path p′(s→t) on the updated graph.
The shortest path is p′(s→t) = 〈(s, n3), (n3, n4), (n4, t)〉 with
`(p′(s→t)) = 10. We check the overlap of the new path with the
original shortest path and find that Sim(p′(s→t), p0) = 0.375,
which does not exceed the similarity threshold. Therefore, p′(s→t)
is added to the PLO set.

Complexity Analysis. ESX reduces the search for an alterna-
tive path to a set of ordinary shortest path queries. In particular,
given a road network G = (N,E) let PLO be the result set of a
k-SPwLO(s, t, θ, k) query containing k paths. ESX requires |P |×
total number of edges in P executions of shortest path queries, i.e.,
the number of shortest path queries that have to be processed is
linear to the number k of paths and the size of the result paths.
Furthermore, in our implementation of ESX we employed the op-
timization using lower bounds described in Section 4.2, which re-
duces the cost for retrieving each shortest path to a minimum; thus,
the performance of ESX is significantly optimized.

6. EXPERIMENTAL EVALUATION
In this section, we report the results of an experimental evalua-

tion of the algorithms for processing k-SPwLO queries. We use
seven different road networks shown in Table 2. To assess the
runtime performance, we measure the average response time over
1,000 random queries (i.e., pairs of nodes), varying the number k
of requested paths and the similarity threshold θ. In each exper-
iment, we vary one of the two parameters and fix the other to its
default value: 3 for k and 0.5 for θ. We also report experiments on

Table 2: Road networks.

road network # nodes # edges
Oldenburg 6,105 14,058

San Joaquin 18,263 47,594
Vienna 19,826 54,918
Denver 73,166 196,630

San Francisco 174,956 443,604
New York City 264,346 730,100

Colorado 435,666 1,057,066

the quality of the results computed by the approximate solutions.
Given the number k of requested paths, we measure (a) the num-
ber of paths returned by each approximate algorithm and (b) the
average length of the computed paths in comparison to the length
of the shortest path. All algorithms were implemented in C++ and
the tests run on a machine with 4 Intel Xeon X5550 (2.67GHz)
processors and 48GB main memory running Ubuntu Linux.

6.1 Performance
Similar to Section 4.3, we consider a timeout of 120 seconds for

each query. The ratio of timed-out/failed queries for OnePass+

was below 10% in all experiments. For SVP+ and ESX, all
queries were executed within 120 seconds. Due to space limita-
tions, the performance results shown in this section consider only
those queries which were successfully completed by all algorithms.

The first experiment in Figure 8 compares the exact algorithm
MultiPass with the approximate solutions SVP+, OnePass+ and
ESX. In Figures 8a–b we observe that the runtime of all algorithms
increases with the number k of requested paths. As expected,
the runtime of the approximate solutions increases only slightly,
whereas the exact solution MultiPass deteriorates for large values
of k. For k>3, MultiPass becomes one order of magnitude slower
than OnePass+ and more than two orders of magnitude slower than
ESX and SVP+. With regard to parameter θ, Figures 8c–d show
that for θ<70%, MultiPass is one order of magnitude slower than
OnePass+ and two orders of magnitude slower than SVP+ and
ESX (for θ=30%). For large values of θ, the performance of Mul-
tiPass gets closer to the performance of the approximate algorithms
(for θ=90% MultiPass is even faster than ESX and SVP+).

The next experiment in Figure 9 compares the approximate al-
gorithms using larger datasets. In Figures 9a–b, we vary the pa-
rameter k. For small values of k, the difference is not much, while
for increasing values of k both SVP+ and ESX clearly outperform
OnePass+ up two one order of magnitude. In Figures 9c–d, where
the value of θ varies, we observe that OnePass+ is very fast for ex-
treme values of θ (θ=10% and θ=90%), but it is rather slow for
values in between. It is clear that OnePass+ is not practical for
large road networks and/or values of k>3.

Another interesting observation in Figures 9c–d is that the per-
formance of MultiPass and OnePass+ show a local maximum for
θ=0.3, which indicates the following important trade-off. As θ
increases, the pruning power of Lemma 1 deteriorates, and both
MultiPass and OnePass+ construct more (partial) paths (support-
ing measurements are excluded due to lack of space). At the same
time, the next result will be determined earlier, and hence the total
runtime drops. In addition, as θ decreases, the pruning power of
Lemma 2 also increases and more partial paths are pruned. This
explains the behavior of MultiPass and OnePass+, where the re-
sponse time initially increases, but after θ=0.3 the runtime of both
algorithms goes down.

To summarize the observations in Figures 8 and 9, the approx-
imate solutions clearly outperform the exact algorithm MultiPass.

2 3 4 5
0

1

2

3

4

k

R
es

po
ns

e
tim

e
(s

ec
)

MultiPass OnePass+ ESX SVP+

(a) Oldenburg (θ=50%)

2 3 4 5
0

2

4

6

8

10

k

R
es

po
ns

e
tim

e
(s

ec
)

(b) San Joaquin (θ=50%)

0.1 0.3 0.5 0.7 0.9
0

0.02

0.04

0.06

0.08

0.1

θ

R
es

po
ns

e
tim

e
(s

ec
)

(c) Oldenburg (k=3)

0.1 0.3 0.5 0.7 0.9
0

1

2

3

4

θ

R
es

po
ns

e
tim

e
(s

ec
)

(d) San Joaquin (k=3)

Figure 8: Performance comparison of exact and approximate algo-
rithms varying requested paths k and similarity threshold θ.

Comparing the approximate solutions, we observe that SVP+ and
ESX have similar performance and are the clear winners for the
datasets, which are of small and medium size. OnePass+ is the
slowest approximate solution.

6.2 Scalability
From the previous experiments it is clear that both MultiPass and

OnePass+ are not scalable. For values of k>2 both algorithms are
prohibitively expensive, even for a mid-sized road network such as
Denver. However, the same does not apply for ESX and SVP+.
To demonstrate the scalability of ESX and SVP+, we present in
Figure 10 the results of an experiment using larger values of k ∈
{4, 8, 12, 16} and we also include larger datasets. We observe that
for San Francisco and Colorado, ESX is significantly faster that
SVP+ for all values of k. For the road networks of Denver and
New York, ESX is faster than SVP+ only for small values of k,
whereas SVP+ appears to be faster than ESX for k=12 and k=16.
The reason for this behavior is that SVP+ computes considerably
less alternative paths than ESX (cf. Table 3 and the discussion in
Sec. 6.3). Notice that the smaller result set is not due to a timeout,
rather the algorithm is not able to find more alternatives. Overall,
whenever ESX and SVP+ find approximately the same number of
alternative paths, ESX clearly outperforms SVP+.

6.3 Result Quality & Completeness
In Figure 11, we present our experiments that analyze the quality

of the computed results. We consider all queries for which each al-
gorithm returned k paths (i.e., no timeout) and compute the average
length of the returned paths. Then we compare the average length
of each result set to the length of the shortest path. That is, we
show how much longer, on average, are the alternative paths with
respect to the shortest path. Obviously, the exact results, named
k-SPwLO, contain the shortest alternatives. They can be computed
by any exact algorithm, such as MultiPass. Looking at the approx-
imate solutions, OnePass+ produces clearly the best alternatives,
which are very close to the paths in the exact solution. Both ESX

2 3 4 5
0

1

2

3

4

5

k

R
es

po
ns

e
tim

e
(s

ec
)

OnePass+ ESX SVP+

(a) Vienna

2 3 4 5
0

2

4

6

8

k

R
es

po
ns

e
tim

e
(s

ec
)

(b) Denver

0.1 0.3 0.5 0.7 0.9
0

0.2

0.4

0.6

0.8

1

θ

R
es

po
ns

e
tim

e
(s

ec
)

(c) Vienna

0.1 0.3 0.5 0.7 0.9
0

0.4

0.8

1.2

1.6

2

θ

R
es

po
ns

e
tim

e
(s

ec
)

(d) Denver

Figure 9: Performance comparison of approximate algorithms
varying requested paths k and similarity threshold θ.

and SVP+ recommend alternatives that, on average, are up to 15%
longer than the alternatives in k-SPwLO. The alternatives recom-
mended by ESX, though, are most of the time shorter than the al-
ternatives recommended by SVP+.

The next experiment analyzes the completeness of the result sets.
As we have already seen in previous experiments, the algorithms
are not always able to compute k alternative paths. Table 3 reports
for each algorithm the percentage of queries for which exactly k al-
ternative paths were found. Naturally, the exact solution k-SPwLO
has the highest completion ratio. OnePass+ is very close to the ex-
act solution. In particular, for San Joaquin the completion ratio of
OnePass+ is always more than 99%. The completion ratio of ESX
is lower than OnePass+, but constantly over 95%. Finally, SVP+

has generally the lowest completion ratio (except for k=3, where
ESX is slightly worse).

road k k-SPwLO OnePass+ ESX SVP+

network

Oldenburg
2 100 100 100 100
3 99.9 99.1 98.7 99.5
4 99.9 98.6 97.1 95
5 99.9 98.2 95.8 85.6

San Joaquin
2 100 100 100 99.9
3 100 99.8 98.5 99.5
4 100 99.7 97.7 97
5 100 99.3 95.6 94.3

Table 3: Average completeness ratio (%) per query varying re-
quested paths k (θ = 50%) for all algorithms.

The final experiment in Table 4 compares the quality of ESX and
SVP+ by measuring the average number of returned paths for four
road networks and values of k ∈ {4, 8, 12, 16}. It is evident that
ESX returns more alternative paths than SVP+ for all values of k.
The number of alternatives returned by ESX is, in all cases, very
close to k. In contrast, the number of paths returned by SVP+ is
significantly lower than k for k>8. For instance, for New York
SVP+ cannot find more than six alternatives per query on aver-

4 8 12 160

3

6

9

12

15

k

R
es

po
ns

e
tim

e
(s

ec
)

ESX SVP+

(a) Denver

4 8 12 160

10

20

30

40

k

R
es

po
ns

e
tim

e
(s

ec
)

(b) San Francisco

4 8 12 160

10

20

30

40

50

k

R
es

po
ns

e
tim

e
(s

ec
)

(c) New York

4 8 12 160

100

200

300

400

k

R
es

po
ns

e
tim

e
(s

ec
)

(d) Colorado

Figure 10: Performance comparison of SVP+ and ESX for k ∈
{2, 4, 8, 16} and θ = 50%.

age; similar figures can be observed for Denver and San Francisco.
Apparently, the set of single-via paths does not contain enough suf-
ficiently dissimilar paths, and hence SVP+ returns more and more
incomplete results for an increasing k.

road network k ESX SVP+

Denver
4 3.96 3.95
8 7.72 6.52
12 11.39 7.14
16 14.94 7.25

San Francisco
4 3.97 3.95
8 7.92 7.03
12 11.81 8.42
16 15.55 8.80

New York
4 3.97 3.75
8 7.77 5.49
12 11.45 5.85
16 15.02 5.91

Colorado
4 3.97 3.81
8 7.92 7.87
12 11.83 10.78
16 15.71 12.55

Table 4: Average returned results per query varying requested paths
k (θ = 50%) for SVP+ and ESX.

7. CONCLUSIONS
We studied the problem of alternative routing on road networks

and, in particular, the efficient computation and approximation of
k-SPwLO queries. First, we proposed MultiPass, an exact algo-
rithm which builds upon and optimizes the existing OnePass algo-
rithm by employing one additional pruning criterion. Our experi-
ments showed that MultiPass is the most efficient exact method for
evaluating k-SPwLO queries as it outperforms OnePass for nearly
every combination of the θ and k parameters and, in most cases, by
a large margin. To achieve scalability though, we also introduced
two approximate algorithms. OnePass+ employs ideas from both
OnePass and MultiPass and achieves to compute a set of dissimilar

2 3 4 5
0

5

10

15

20

25

k

D
iff

.w
ith

sp
(%

)
k-SPwLO OnePass+ ESX SVP+

(a) Oldenburg

2 3 4 5
0

5

10

15

20

k

D
iff

.w
ith

sp
(%

)
(b) San Joaquin

2 3 4 5
0

3

6

9

12

k

D
iff

.w
ith

sp
(%

)

(c) Vienna

2 3 4 5
0

5

10

15

20

25

k

D
iff

.w
ith

sp
(%

)

(d) Denver

Figure 11: Result quality varying requested paths k (θ = 50%).

paths which, in terms of average length, is very close to the exact
solution. ESX, our second approximate algorithm, computes al-
ternatives by incrementally removing edges from the road network
and running shortest path queries. Through an analytical experi-
mental evaluation we showed that (a) MultiPass is the fastest exact
algorithm, outperforming the existing OnePass, (b) OnePass+ is
significantly faster than MultiPass while it’s result set is close to
the exact solutions and (c) in contrast to the other algorithms, ESX
is scalable, i.e., it can compute approximate k-SPwLO queries for
large road networks and large values of k.

In the future, we plan to extend the definition of alternative rout-
ing by considering additional constraints and criteria besides the
overlap between paths and their length. We also plan to perform a
qualitative study to identify which criteria users value more when
deciding upon which route to follow. Finally, we plan to investigate
the computation of multiple dissimilar paths on different types of
networks such as social networks and web graphs.

8. REFERENCES
[1] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck.

Alternative Routes in Road Networks. Journal of
Experimental Algorithmics, 18:1–17, 2013.

[2] V. Akgun, E. Erkut, and R. Batta. On finding dissimilar
paths. European Journal of Operational Research,
121(2):232–246, 2000.

[3] R. Bader, J. Dees, R. Geisberger, and P. Sanders. Alternative
Route Graphs in Road Networks. In Proc. of the 1st Int. ICST
Conference on Practice and Theory of Algorithms in
Computer Systems (TAPAS), pages 21–32, 2011.

[4] A. Bernstein and D. Karger. A nearly optimal oracle for
avoiding failed vertices and edges. In Proc. of the 41st ACM
Symposium on Theory of Computing, pages 101–110, 2009.

[5] Cambridge Vehicle Information Technology Ltd. Choice
Routing, 2005.

[6] T. Chondrogiannis, P. Bouros, J. Gamper, and U. Leser.
Alternative routing: k-shortest paths with limited overlap. In

Proc. of the 23rd ACM SIGSPATIAL Int. Conf. on Advances
in Geographic Information Systems, pages 68:1–68:4, 2015.

[7] T. Chondrogiannis and J. Gamper. ParDiSP: A
partition-based framework for distance and shortest path
queries on road networks. In Proc. of the 17th IEEE Int.
Conf. on Mobile Data Management, pages 242–251, 2016.

[8] D. Delling and W. Dorothea. Pareto Paths with SHARC. In
Proc. of the 8th Symposium on Exterimental Algorithm
(SEA), pages 125–136, 2009.

[9] E. W. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1(1):269–271, 1959.

[10] B. Fox. K-th shortest paths and applications to the
probabilistic networks. ORSA/TIMS Joint National Mtg.,
23:B263, 1975.

[11] R. Geisberger, P. Sanders, D. Schultes, and D. Delling.
Contraction hierarchies : Faster and simpler hierarchical
routing in road networks. In Proc. of the 7th Int. Workshop
on Experimental Algorithms (WEA), pages 319–333, 2008.

[12] Y.-J. Jeong, T. J. Kim, C.-H. Park, and D.-K. Kim. A
Dissimilar Alternative Paths-search Algorithm for
Navigation Services: A Heuristic Approach. KSCE Journal
of Civil Engineering, 14(1):41–49, 2009.

[13] H.-P. Kriegel, M. Renz, and M. Schubert. Route skyline
queries: A multi-preference path planning approach. In Proc.
of the 26th IEEE ICDE, pages 261–272, 2010.

[14] Y. Lim and H. Kim. A Shortest Path Algorith for Real Road
Network based on Path Overlap. Journal of the Eastern Asia
Society for Transportation Studies, 6:1426 – 1438, 2005.

[15] E. Q. Martins and M. M. Pascoal. A new implementation of
yen’s ranking loopless paths algorithm. 4OR: A Quarterly
Journal of Operations Research, 1(2):121–133, 2003.

[16] K. Mouratidis, Y. Lin, and M. l. Yiu. Preference queries in
large multi-cost transportation networks. In 2010 IEEE 26th
ICDE, pages 533–544, 2010.

[17] A. Paraskevopoulos and C. Zaroliagis. Improved Alternative
Route Planning. In Proc. of the 13th Workshop on
Algorithmic Approaches for Transportation Modeling,
Optimization, and Systems (ATMOS), pages 108–122, 2013.

[18] D. Sacharidis and P. Bouros. Routing directions: keeping it
fast and simple. In Proc. of the 21st ACM SIGSPATIAL Int.
Conf. on Advances in Geographic Information Systems,
pages 164–173, 2013.

[19] H. Samet, J. Sankaranarayanan, and H. Alborzi. Scalable
network distance browsing in spatial databases. In Proc. of
the 2008 ACM SIGMOD Conf., pages 43–54, 2008.

[20] J. Sankaranarayanan and H. Samet. Distance oracles for
spatial networks. In Proc. of the 25th IEEE ICDE, pages
652–663, 2009.

[21] C. Sommer. Shortest-path queries in static networks. ACM
Computing Surveys, 46(4):1–31, 2014.

[22] L. Valiant. The Complexity of Enumeration and Reliability
Problems. Siam Journal of Computing, 8(3):410–421, 1979.

[23] K. Xie, K. Deng, S. Shang, X. Zhou, and K. Zheng. Finding
alternative shortest paths in spatial networks. ACM
Transactions on Database Systems, 37(4):29:1–29:31, 2012.

[24] J. Y. Yen. Finding the K Shortest Loopless Paths in a
Network. Management Science, 17(11):712–716, 1971.

[25] A. D. Zhu, H. Ma, X. Xiao, S. Luo, Y. Tang, and S. Zhou.
Shortest Path and Distance Queries on Road Networks:
Towards Bridging Theory and Practice. In Proc. of the 2013
ACM SIGMOD Conf., pages 857–868, 2013.

