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Abstract. Due to ever falling prices and advancements in chip technolo-
gies, many of today’s databases can be entirely kept in main memory.
However, reusing existing disk-based index structures for managing data
in memory leads to suboptimal performance due to inefficient cache usage
and negligence of the capabilities of modern CPUs. Accordingly, a num-
ber of main-memory optimized index structures have been proposed, yet
most of them focus entirely on single-key lookups, neglecting the equally
important range queries. We present Cache-Sensitive Skip Lists (CSSL)
as a novel index structure that is optimized for range queries and ex-
ploits modern CPUs. CSSL is based on a cache-friendly data layout and
traversal algorithm that minimizes cache misses, branch mispredictions,
and allows to exploit SIMD instructions for search. In our experiments,
CSSL’s range query performance surpasses all competitors significantly.
Even for lookups, it is only surpassed by the recently presented ART in-
dex structure. We therefore see CSSL as a serious alternative for mixed
key/range workloads on main-memory databases.
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1 Introduction

Over the last years, various index structures were designed for fast and space-
efficient execution of search operations in main memory, like the adaptive radix
tree (ART) [13] or Cache-Sensitive B+-tree (CSB+) [18]. By reducing cache
misses, improving cache line utilization, and exploiting vectorized instructions,
they outperform conventional database index structures, like B-trees [5], which
were mostly designed to reduce disk accesses. Most of these novel index methods
focus on single-key lookups and show suboptimal performance for range queries,
despite their importance in many applications. Use cases for range queries are
numerous, such as: queries in a data warehouse that ask for sales in a certain price
range, analysis of meteorological data that considers certain yearly time periods
in long time series, and Bioinformaticians who build databases of hundreds of
millions of mutations in the human genome that are analyzed by ranges defined
by genes [9].
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In this paper, we introduce the Cache-Sensitive Skip List (CSSL), a novel
main-memory index structure specifically developed for efficient range queries
on modern CPUs. CSSL is based on skip lists as described in [16], yet uses
a very different memory layout to take maximal advantage of modern CPU
features like CPU-near cache lines, SIMD instructions, and pipelined execution.
In this work, we focus on read performance but provide a technique for handling
updates, too. Besides many other use cases, we see CSSL as perfectly suited for
scientific databases that prefer fast reads over fast writes and need range queries
in many cases. Especially the bioinformatics community, which is confronted
with an exponentially growing amount of genomic data that is mostly analyzed
with range queries to investigate certain genomic regions [20], may benefit from
our approach.

We evaluated CSSL on data sets of various sizes and properties and com-
pared its performance to CSB+-tree [18], ART [13], B+-tree [7], and binary
search on a static array. We also include experiments with real-world data from
the bioinformatics domain to investigate performance on non-synthetic key dis-
tributions. For range queries and mixed workloads, CSSL is consistently faster
than all state-of-the-art approaches, often by an order of magnitude; also its
lookup performance is way ahead of all competitors except ART.

The remaining paper is structured as follows. The next section introduces skip
lists, the index structure that CSSL is based on. Section 3 presents the Cache-
Sensitive Skip List as our main contribution. Section 4 describes algorithms for
executing lookups and range queries on CSSL. In Section 5, we compare CSSL
against other state-of-the-art index structures using synthetic as well as non-
synthetic data. Section 6 discusses related work, and Section 7 concludes this
paper.

2 Preliminaries

Skip lists were originally presented as a probabilistic data structure similar to
B-trees [16]. Skip lists consist of multiple lanes of keys organized in a hierarchical
fashion (see Figure 1). At the highest level of granularity, a skip list contains a
linked list of all keys in sorted order. In addition to this so-called data list, skip
lists maintain fast lanes at different levels. A fast lane at level i contains n ∗ pi
elements on average, where n is the number of keys to be stored and 0 < p < 1 is
a parameter. Skip lists were originally proposed as probabilistic data structures,
as the elements to be stored in higher lanes are randomly chosen from those
at lower lanes: Every element of fast lane i appears in fast lane i + 1 with
probability p. This scheme allows for efficient updates and inserts, yet makes the
data structure less predictable.

In our work, we use a deterministic variant of skip lists, so-called perfectly
balanced skip lists [15]. In balanced skip lists, the fast lane at level i+ 1 contains
every 1/p’th element of the fast lane at level i. Accordingly, for p = 0.5 a lane
at level i + 1 contains every second element of level i, in which case a skip list
resembles a balanced binary search tree. Figure 1 shows a balanced skip list over
nine integer keys with two fast lanes for p = 0.5.
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Fig. 1. A balanced skip list that manages nine keys and two fast lanes; each fast lane
skips over two elements (p = 1/2).

In case of a low p value, fast lanes skip over many elements, therefore, fast
lanes can be considered sparse. In case of a high p value, fast lanes skip over
few elements, therefore, fast lanes can be considered dense. Fast lanes are used
to narrow down the data list segment that may contain the searched element to
avoid a full scan. For instance, a search for key 6 would traverse the skip list of
Figure 1 as follows. First, search determines the first element of the highest fast
lane at level 2 by using the head element. Second, the fast lane will be traversed
until the subsequent element is either equal to the searched element, in which
case search terminates, or greater than the searched element. In this example,
search stops at element 5. Third, search moves down to the next fast lane. In
this example, traversal jumps to element 5 of the fast lane at level 1. Fourth,
steps two and three are repeated until the data list is reached. Fifth, the data
list is scanned until the searched element is found or proven to be non-existing.
In a fully built balanced skip list for p = 0.5, search requires O(log(n)) key
comparisons in the worst case. Parameter p directly influences the structure of
the fast lane hierarchy and should be chosen depending on the expected number
of keys. If p is too high, only few keys need to be compared per fast lane when
searching, but a lot of fast lane levels are required to fully build a balanced
skip list. If p is too low, a lot of keys need to be compared per fast lane when
searching, but only few fast lane levels are required to fully build a balanced
skip list.

Besides single-key lookups, skip lists also offer very efficient range queries.
Since the data list is kept in sorted order, implementing a range query requires
two steps: 1) Search the first element that satisfies the queried range, and 2)
traverse the data list to collect all elements that match the range boundaries.

In the original paper [16], skip lists are implemented using so-called fat keys.
A fat key is a record that contains a key and an array, which holds pointers to
subsequent elements for every fast lane and for the data list. The advantage of
this approach is that all nodes are uniform, which simplifies the implementation.
Furthermore, if a key is found in an upper lane, search immediately stops as
all instances of a key are kept in the same record. On the other hand, such
an implementation is space inefficient, because it requires space for O(m ∗ n)
pointers (if m is the number of fast lane levels), although most values in higher
levels are padded with NULL.

Searching in skip lists using fat keys requires to follow many pointers. This
layout is suboptimal on modern CPUs, as it incurs many cache misses due to
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Fig. 2. A Cache-Sensitive Skip List that manages 32 keys with two fast lanes (p = 1/2).

jumps between non-contiguous parts of allocated memory. Even when searching
the data list, cache utilization is suboptimal due to the fatness of keys. For
instance, in a skip list that stores 32-bit integer keys and maintains five fast
lanes in addition to the data list, each node takes 4 bytes+6∗8 bytes = 52 bytes
of memory on a 64-bit architecture. Given that a cache line is typically 64 bytes,
each traversal step fills almost an entire cache line although only a small part
of it is used. Typically, traversal steps just need the key and one pointer to find
the subsequent element on a certain fast lane, i.e., 4 bytes + 8 bytes = 12 bytes.

3 Cache-Sensitive Skip List

In this paper, we present Cache-Sensitive Skip List as alternative implementa-
tion for balanced skip lists, which uses a radically different memory layout that
leads to much higher efficiency in today’s CPU architectures. The first and most
obvious idea is to keep fast lanes as separate entities in dense arrays. This leads
to less cache misses, improves the utilization of cache lines, and allows to use
SIMD instructions. Figure 2 shows a Cache-Sensitive Skip List that manages 32
integer keys with two fast lanes for p = 0.5. The traversal path, which search
would take to find key 7, is highlighted in red.

CSSL’s main contributions are threefold: First, fast lanes are linearized and
managed in one dense array, which is called Linearized Fast Lane Array, instead
of being kept in data list nodes. This improves utilization of cache lines when
executing a lookup or range query. Second, by linearizing fast lanes we elimi-
nate the need to store and follow pointers. For a given n, the number of fast
lane elements is known a-priori since we build on balanced skip lists. Thus, we
can simply compute the position of follow-up elements within the array, making
pointers completely superfluous. In Figure 2, pointerless traversal over fast lanes
is indicated by dotted arrows. In our current implementation, we always preallo-
cate a certain amount of memory per fast lane based on a hypothetical maximum
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t of keys. As long as n < t, all inserts can be managed inside the data structure;
as soon as n exceeds t, we rebuild fast lanes and increase t by a fixed fraction
(see Section 3.2 for details on an update strategy). Third, CSSL uses SIMD in-
structions to iterate over matching keys when executing range queries, which is
especially useful in the case of large ranges. We exploit the lowest fast lane, i.e.,
the fast lane at level 1, to search for the last key that satisfies the queried range.
To the best of our knowledge, CSSL is the first index structure that can make
significant use of SIMD instructions when executing range queries.

Our approach to linearization of fast lanes has the following benefits com-
pared to conventional skip lists: First, CSSL need less memory. Let k be the
size of a key and r be the size of a pointer. Ignoring space requirements for
data objects, which is equal in both layouts, conventional skip lists require
n∗ (m∗ r+ r+k) space, whereas CSSL only require n∗ (r+k) +

∑m
i=1 p

i ∗ n ∗ k.
Second, traversing linearized fast lanes has a better cache line utilization because
we always use the whole cache line content until we abort search and jump to a
lower layer. In the case of 32-bit keys, 16 fast lane elements fit into one 64-byte
cache line while only one fat key of a conventional skip list fits into it. Third,
since traversal of linearized fast lanes accesses successive array positions, we can
make use of prefetched cache lines. Fourth, array-based storage of fast lane ele-
ments allows the usage of SIMD instructions and enables data-level parallelism.
Given that s is the size of a SIMD register and k is the key size, s

k fast lane
elements can be compared in parallel. Modern CPUs usually feature SIMD reg-
isters having a size of 128 or 256 bits, thus four or eight 32-bit integers can be
processed per instruction. For the implementation of CSSL, we use Intel’s AVX
instructions [2] that support 256-bit SIMD registers.

3.1 Optimizations

Besides these main concepts, we apply a number of further optimizations to fully
exploit modern CPUs. First, we always tailor the size of fast lanes as multiples
of the CPU cache line size (see Figure 3). This especially affects the highest fast
lane level. Second, we introduce an additional lane, called proxy lane, between
the lowest fast lane and the data list (see Figure 2). For each key, the proxy lane
maintains a pointer to its corresponding data object. Connections between the
proxy lane, which is implemented as an array of structs, and the fast lane at
level 1 are implicit: The i’th fast lane element is part of the struct that can be
found at index i − 1 of the proxy lane. We use the proxy lane to connect the
lowest fast lane with the data list. Third, in practice we observed that searching
the highest fast lane is very expensive in terms of CPU cycles if it contains lots
of elements. This is especially the case if the number of fast lanes is kept small
and the highest fast lane contains a lot more than 1/p elements. In the worst
case, we have to scan the whole lane, while searching the remaining fast lanes
can never require more than 1/p comparisons per lane. We accelerate searching
the highest fast lane by using a binary search instead of sticking to a sequential
scan.
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Fig. 3. Linearized fast lane array of a CSSL that indexes all 32-bit integers in {1, .., 64}
with two levels (p = 1/2).

3.2 Updates

In our implementation, a CSSL is initialized with a sorted set of keys. Nonethe-
less, we still want to support online updates. In the following, we describe tech-
niques for inserting new keys, updating existing keys, and removing keys.

Inserting keys: Since CSSL employs dense arrays for managing fast lanes,
directly inserting keys into fast lanes would require a lot of shift operations
to preserve the order of fast lane elements. For this reason, new keys are only
inserted into the data list, which is implemented as a common linked list. We
create a new node and add it at the proper position. As soon as the fast lane
array gets rebuilt to allocate more space, new keys are also reflected in the fast
lane hierarchy. Nonetheless, we can find new keys in the meantime. If search
does not find a key in the fast lanes, it moves down to the data list and scans
it until the key is found or proven to be non-existing. The insert algorithm can
be implemented latch-free by using an atomic compare-and-swap instruction for
changing pointers in the data list.

Deleting keys: In contrast to insertions, we cannot delete keys from the data
list but leave fast lanes untouched, because this would lead to invalid search
results. In the first step of deleting a key from CSSL, we need to eliminate it
from the fast lane array. Just changing the corresponding entry to NULL would
require reshift operations to close gaps in the array. Therefore, we replace to-be-
deleted entries with a copy of the successive fast lane element. This allows fast
deletes but leaves the fast lane structure intact. We end up with duplicates in
the fast lane array that are removed as soon as the array gets rebuilt. As last
step, the next pointer of the preceding node in the data list is changed to point
to the successor of the to-be-removed-node and the node is deleted.

Updating keys: Updates are basically implemented as an insert operation
followed by a deletion.

Though being based on balanced skip lists, which leads to less flexibility
compared to common skip lists, CSSL is able to handle online updates. By
limiting in-place updates on the fast lane array, we can keep the number of
cache invalidations small.

4 Algorithms

In this section, we describe in detail algorithms for executing lookups and range
queries using CSSL. We start by presenting the lookup algorithm, because the
execution of range queries is based on it.
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Lookups: Pseudocode for lookups is shown in Algorithm 1. If search is suc-
cessful the element’s key will be returned, if not INT MAX will be returned.
The algorithm can be split into multiple parts. First, the highest fast lane is
processed with a binary search (see Line 1). Second, the remaining fast lanes
are searched hierarchically to narrow down the data list segment that may hold
the search key (see Lines 2-8). We scan each fast lane sequentially instead of
employing a binary search, because we need to compare only 1/p elements per
fast lane level. Third, if the last fast lane contains the searched element, it is
immediately returned (see Line 9); otherwise the associated proxy node is loaded
and all keys of the data list are compared with the searched element (see Lines
10-12). INT MAX is returned if no matching element is found (see Line 13).

Algorithm 1: lookup(key)

1: pos = binary_search_top_lane(flanes, key);

2: for (level = MAX_LEVEL - 1; level > 0; level--) {

3: rPos = pos - level_start_pos[level];

4: while (key >= flanes[++pos])

5: rPos++;

6: if (level == 1) break;

7: pos = level_start_pos[level-1] + 1/p * rPos;

8: }

9: if (key == flanes[--pos]) return key;

10: proxy = proxy_nodes[pos - level_start_pos[1]];

11: for (i = 1; i < 1/p; i++)

12: if (key == proxy->keys[i]) return key;

13: return INT_MAX;

Range Queries: Pseudocode for range queries is shown in Algorithm 2. Search
returns pointers to the first and last data list element that match the given range
defined by start and end, i.e., it returns a linked list that can be used for further
processing. Execution of range queries is implemented as follows.

First, the first matching element is searched similar to executing a lookup
(see Lines 1-16 of Algorithm 2). Second, the algorithm jumps back to the lowest
fast lane and scans it using vectorized instructions to find the last element that
satisfies the queried range. Using AVX, CSSL can process eight 32-bit integer
keys in parallel (see Lines 17-25). Third, the proxy node, which is associated
with the matching fast lane entry, is loaded and compared with the range end
to determine the last matching element (see Lines 29-35). Fourth, range search
returns a struct that provides pointers to the first and last matching element in
the data list (see Line 36).

Algorithm 2: searchRange(start, end)
1: RangeSearchResult res;

2: pos = binary_search_top_lane(flanes, start);

3: for (level = MAX_LEVEL - 1; level > 0; level--) {

4: rPos = pos - level_start_pos[level];

5: while (start >= flanes[++pos])
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6: rPos++;

7: if (level == 1) break;

8: pos = level_start_pos[level-1] + 1/p * rPos;

9: }

10: proxy = proxy_nodes[rPos];

11: res.start = proxy->pointers[1/p - 1]->next;

12: for (i=0; i < 1/p; i++) {

13: if (start <= proxy->keys[i]) {

14: res.start = proxy->pointers[i]; break;

15: }

16: }

17: sreg = _mm256_castsi256_ps(_mm256_set1_epi32(end));

18: while (rPos < level_items[1] - 8) {

19: creg = _mm256_castsi256_ps(

20: _mm256_loadu_si256((__m256i const *) &flanes[pos]));

21: res = _mm256_cmp_ps(sreg, creg, 30);

22: bitmask = _mm256_movemask_ps(res);

23: if (bitmask < 0xff) break;

24: pos += 8; rPos += 8;

25: }

26: pos--; rPos--;

27: while (end >= flanes[++pos] && rPos < level_items[1])

28: rPos++;

29: proxy = proxy_nodes[rPos];

30: res.end = proxy->pointers[1/p - 1];

31: for (i=1; i < 1/p; i++) {

32: if (end < proxy->keys[i]) {

33: res.end = proxy->pointers[i - 1]; break;

34: }

35: }

36: return res;

5 Evaluation

We compare CSSL to other index structures optimized for in-memory storage.
We also include B+-tree [7] as baseline approach, though we note that it is de-
signed to be stored on disk. We compare competitors w.r.t. performance of range
queries (see Section 5.1), performance of lookups (see Section 5.2), performance
on a mixed workload (see Section 5.3), and space consumption (see Section 5.5).
An evaluation with real-world data from the bioinformatics domain can be found
in Section 5.4; results are very similar to those for synthetic data sets. Search
performance is measured in throughput, i.e., how many queries are processed
per second. For our main evaluation, we use n 32-bit integer keys with dense
and sparse distribution. For dense distribution, every key in [1, n] is indexed;
for sparse distribution n random keys from [1, 231) are indexed. We evaluate
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CSSL with two configurations, CSSL2 with p = 1/2 and CSSL5 with p = 1/5, to
investigate effects on dense and sparse fast lanes. The theoretical optimum for
the number of fast lanes would use so many fast lanes that the uppermost fits
exactly into the L1 Cache of the CPU. In our current CSSL implementation, we
give the number of desired fast lanes as parameter, which we set to a value close
to the optimum. In the experiments, it was set to nine.

We compare to the following approaches:

– the adaptive radix tree (ART) [13], a recent radix tree variant designed for
main memory,

– the CSB+-tree [18], a cache-sensitive variant of the B+-tree,
– a binary search (BS) on a static array,
– and a B+-tree [1] as baseline approach.

For ART and CSB+, we used implementations provided by the authors. For
CSB+, we had to implement range queries. We consider BS as the only index
structure that is read-only by design.

Our test system consists of the following hardware: a Intel Xeon E5-2620
CPU with 6 cores, 12 threads, 15 MB Level 3 Cache, 256-bit SIMD registers
(AVX) and a clock speed of 2 GHz. The evaluation system runs Linux and has
32 GB RAM. All experiments are single-threaded. All competitors including
CSSL were compiled with GCC 4.8.4 using optimization -O3. We use PAPI [3]
to collect performance counters.

5.1 Range Queries

The goal of CSSL is to achieve high range query performance by employing a
data layout tailored to the cache hierarchy of modern CPUs, which also can be
traversed using SIMD instructions. In this section, we evaluate all approaches for
range queries on 16M and 256M 32-bit integer keys w.r.t. different range sizes
(0.1%, 1%, and 10% of n). We determine to-be-evaluated ranges by selecting
a random key from the set of indexed elements as lower bound and adding the
range size to define the upper bound. For dense distribution, this creates a range
covering |upper bound− lower bound| elements. For sparse distribution, ranges
are created in the same way, yet contain less elements, which usually leads to
higher throughput.

Figure 4 shows results for executing range queries on 16M keys. Both CSSL
configurations outperform all contestants for both key distributions and all eval-
uated range sizes. In contrast to all competitors, CSSL does not need to follow
pointers when iterating over matching keys but can use SIMD instructions to
traverse the fast lane array, which results in an outstanding performance. The
usage of SIMD instructions accelerates the performance of CSSL by a factor be-
tween 2 to 3, depending on the concrete configuration (data not shown). CSSL5

is faster than CSSL2, which is due to the fact that fast lanes skip over five in-
stead of only two elements, thus less keys have to be compared when searching
for the range end (see Lines 17-28 of Algorithm 2). The sequential access pattern
of CSSL has several benefits as revealed by analyzing performance counters (see
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Fig. 4. Range query throughput for 16M 32-bit integer keys w.r.t. different range sizes
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Fig. 5. Range query throughput for 256M 32-bit integer keys w.r.t. different range sizes
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Figure 6). CSSL utilizes most prefetched cache lines, which leads to only few
cache misses. Furthermore, CSSL generates less branch mispredictions than the
contestants, because it processes mostly consecutive positions of the fast lane
array. This benefits the number of CPU cycles needed to execute a range query.

For this experiment, BS is the second best competitor followed by CSB+,
ART and B+. By eliminating pointer accesses and taking cache line sizes into
account, CSB+ is able to reduce cache misses significantly compared to B+-tree
as shown in Figure 6.

For 16M dense keys, CSSL5 is up to 16.8X faster (10.4X for sparse data) than
the second best competitor BS. Compared to all competitors, CSSL achieves the
best relative performance for large range sizes, i.e., the speedup factor is the
highest for large ranges, because it can traverse matching keys without chasing
pointers. Figure 5 shows results for executing range queries on 256M keys. Both



Cache-Sensitive Skip List: Efficient Range Queries on modern CPUs 11

Performance Counter CSSL5 CSSL2 ART CSB+ BS B+

Dense
CPU Cycles 202k 661k 501M 27M 3.4M 1,070M
Branch Mispredictions 12 15 813k 46 13 1.4k
Level 3 Cache Hits 8k 24k 1.3M 49k 21k 1.6k
Level 3 Cache Misses 21 7.3k 2.7M 243k 7.4k 7.8M
TLB Misses 5 13 1.6M 99 24 381k

Sparse
CPU Cycles 5k 13k 4.5M 620k 59k 1,095M
Branch Mispredictions 13 16 16k 4.6k 13 832
Level 3 Cache Hits 139 373 14k 364 325 1.8k
Level 3 Cache Misses 23 165 28k 5.7k 278 7.4M
TLB Misses 3 5 19k 958 10 369k

Fig. 6. Performance counters per range query on 16M 32-bit integer keys (10 % range
size).

CSB+ and B+ were not able to index this amount of data, because they ran out
of memory. Again, CSSL outperforms BS and ART significantly.

5.2 Lookups

We evaluate the execution of single-key lookups. Lookups are a common opera-
tion in database management systems and needed for various use cases. Figure
7 shows our evaluation results concerning lookup performance on 16M 32-bit
integer keys for all contestants. ART achieves the best performance for both dis-
tributions. Furthermore, ART is the only competitor that can boost performance
on dense keys, for instance by using lazy expansion; the remaining competitors
show identical results on both distributions. CSSL achieves the second best per-
formance, closely followed by BS and CSB+. B+ shows the worst performance.
The density of fast lanes has almost no influence on executing lookups as CSSL2

and CSSL5 show an identical performance. ART is 4.4X faster than CSSL for
dense keys, and 2.4X faster than CSSL for sparse keys.

In Figure 8, we present performance counters per lookup on 16M 32-bit in-
teger keys for all competitors. ART produces no branch mispredictions and only
few level 3 cache misses, while B+-tree shows the worst performance parameters.
As in the case of range queries, CSSL produces only few cache and TLB misses.
Though being optimized for range queries, CSSL is able to achieve a lookup
throughput that outperforms BS, CSB+ and B+ and is almost as fast as ART
in the case of sparse keys.

5.3 Mixed Workload

Many real-world applications do neither use lookups nor range queries exclu-
sively, but employ a mix of both. We investigate the throughput when executing
a mixed workload consisting of an equal number of lookups and range queries.
In this experiment, we run a benchmark of 1M randomly generated queries, i.e.,
500k lookups and 500k range queries, on 16M dense and sparse 32-bit integer
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Performance Counter CSSL5 CSSL2 ART CSB+ BS B+

Dense
CPU Cycles 927 956 209 1,068 1,036 5,889
Branch Mispredictions 9 13 0 1 12 12
Level 3 Cache Hits 11 8 2 3 21 28
Level 3 Cache Misses 5 8 2 5 9 39
TLB Misses 1 3 2 3 4 20

Sparse
CPU Cycles 926 951 383 1,054 1,029 5,789
Branch Mispredictions 9 13 0 3 12 12
Level 3 Cache Hits 11 8 5 3 20 29
Level 3 Cache Misses 5 8 3 4 10 38
TLB Misses 1 3 4 5 4 20

Fig. 8. Performance counters per lookup on 16M 32-bit integer keys.

keys. For range queries, we always use a range size of 500k. Figure 9 shows the
results of this experiment.

CSSL shows the best performance across all competitors when confronted
with a mixed workload. As in the case of the range query benchmark, it is
followed by BS, CSB+, ART and B+. Although ART shows the best single-key
lookup performance, CSSL is magnitude faster when running a workload that
also includes range queries besides lookups. This emphasizes the need for a fast
range query implementation in index structures.

5.4 Evaluation with Genomic Data

We evaluate all competitors on real-world data from the bioinformatics do-
main to investigate their performance when managing data that features a
non-synthetic key distribution. As data source, we used the 1000 Genomes
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Fig. 9. Throughput for a mixed lookup/range query workload on 16M 32-bit integer
keys (logarithmic scale).

Project [19] that sequenced the whole genomes of 2,504 people from across the
world. Data is provided in text files and can be downloaded from the project
website for free. We indexed the genomic locations of all mutations that were
found on chromosomes 1 and 2, i.e., 13,571,394 mutations in total, and queried
them using randomly generated ranges of different sizes (0.1%, 1%, and 10% of
the featured genomic interval). Figure 10 shows results of this benchmark.
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Fig. 10. Range query throughput for genomic data (13,571,394 mutations) w.r.t. dif-
ferent range sizes (logarithmic scale).

As for synthetic data, CSSL dominates all competitors in executing range
queries. Again, BS achieves the second best throughput, followed by CSB+,
ART and B+. All competitors, except B+, show better performance for smaller
range sizes, which is due to the fact that less mutations are covered, i.e., less
keys need to be compared. For a range size of 10 %, CSSL5 is 16.7X faster than
BS, 121.6X faster than CSB+, and 696X faster than ART.
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5.5 Space Consumption

We compare the space consumption of all competitors for storing 16M 32-bit
integer keys, i.e., 64 MB of raw data (see Figure 11). As already seen in the
evaluation of search performance, ART is better suited for managing dense data
than sparse data. For a dense key distribution, ART requires the least space
followed by BS and CSSL. The tree-based approaches B+ and CSB+ show the
worst memory consumption. For a sparse key distribution, BS achieves the best
result followed by CSSL5 and ART. Again, B+ and CSB+ achieve the worst
results. For 16M keys, CSSL2 requires 1.8X more memory than CSSL5, because
fast lanes hold more entries.

ART’s space efficiency would probably grow for larger keys. Then, ART is
able to employ further optimization techniques, e.g., path compression, that are
not beneficial for small keys [13].
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Fig. 11. Space consumption for 16M 32-bit integer keys (lower is better).

6 Related Work

Although concepts like tailored data layouts, index traversal with SIMD instruc-
tions, and pointer elimination have been investigated before [11, 17, 18], to the
best of our knowledge, we are the first to combine these to accelerate range
queries. Skip lists [16] were proposed as a probabilistic alternative to B-trees [5].
In the last years, they have been applied in multiple areas and have been adapted
to different purposes, e.g., lock-free skip list [8], deterministic skip list [15], or
concurrent skip list [10]. In [21], Xie et al. present a parallel skip list-based main-
memory index, PI, that processes query batches using multiple threads. CSSL
is based on [15], but employs a cache-friendly data layout that is tailored to
modern CPUs.

There are several others approaches addressing in-memory indexing [6, 11–
13, 17, 18], yet few specifically target range queries. CSS-trees [17] build a tree-
based dictionary on top of a sorted array that is tailored to cache hierarchy
and can be used to search in logarithmic time. CSS-trees are static by design
and need to be completely rebuilt when running updates. Rao and Ross [18]
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introduce the CSB+-tree, a cache-conscious B+-tree [7] variant, which minimizes
pointer accesses and reduces space consumption. As shown in Section 5, CSSL
outperforms CSB+-tree significantly for all workloads. Masstree [14] is an in-
memory database that employs a trie of B+-trees as index structure. It supports
arbitrary-length keys, which may be useful when indexing strings. We did not
include Masstree in our evaluation, because its implementation is multi-threaded,
which prevents a fair comparison. Instead, we considered its base index structure,
the B+-tree, as competitor. In [22], Zhang et al. introduce a hybrid two-stage
index that can be built on top of existing index structures like B-trees or skip
lists. They also propose a paged-based skip list implementation that is tailored
to main memory. In contrast to CSSL, it is completely static by design and does
not exploit SIMD instructions.

The adaptive radix tree [13] is a main-memory index structure based on radix
trees. ART employs adaptive node sizes and makes use of CPU features like
SIMD instructions to boost search performance. While it achieves high lookup
performance currently only superseded by hash tables [4], its support for range
queries is much less efficient since these require traversing over the tree by chas-
ing pointers. As shown in Section 5, CSSL outperforms ART significantly for
range queries. We assume that the results of our comparison between CSSL and
ART would carry over to other index structures based on prefix trees, such as
generalized prefix trees [6], or KISS-Tree [12]. Another recent data structure is
FAST [11], a binary search tree tuned to the underlying hardware by taking ar-
chitecture parameters like page or cache line size into account. It achieves both
thread-level and data-level parallelism, the latter by using SIMD instructions.
Similar to CSSL, FAST does not need to access pointers when traversing the
tree. However, FAST is optimized for lookup queries only, where it is clearly
outperformed by ART [13]. Therefore, we did not include it in our evaluation.

7 Conclusions

We presented the Cache-Sensitive Skip List (CSSL), a main-memory index struc-
ture for efficiently executing range queries on modern processors. CSSL linearizes
fast lanes to achieve a CPU-friendly data layout, to reduce cache misses, and to
enable the usage of SIMD instructions. We compared CSSL with three main-
memory index structures, the adaptive radix tree, a CSB+-tree, and binary
search, and one baseline, a B+-tree. CSSL outperforms all competitors when
executing range queries on synthetic and real data sets. Even when confronted
with a mixed key/range workload, CSSL achieves the best results in our eval-
uation. CSSL’s search performance and memory consumption is influenced by
the number of elements each fast lane skips over (1/p). Sparse fast lanes show
better results regarding memory consumption and range query execution.

In future work, we will add multithreaded query execution to further accel-
erate read performance. We plan to work on both inter- and intra-query paral-
lelism.
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