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Abstract. Multiple sequence alignment is an important method in Bioinformatics, for in-
stance, to reconstruct phylogenetic trees or for identifying functional domains within genes.
Finding an optimal MSA is computationally intractable, and therefore many alignment
heuristics were proposed. However, computing MSA for sequences at chromosome/genome
scale in a reasonable time with good alignment results remains an open challenge.

In this paper we propose RRCA, a very fast method to compute high-quality in-species
MSAs at genome scale. RRCA uses referential compression to efficiently find long common
subsequences in to-be-aligned sequences. A colinear sub collection of these subsequences
is used for an initial alignment and the not yet covered subsequences are aligned following
the same approach recursively. Our evaluation shows that RRCA achieves MSAs at similar
quality as current state-of-the-art methods, while often being orders of magnitude faster
for all our datasets. For instance, RRCA aligns eight human Chromosome 22 (around 50
MB each) within one minute on a consumer computer; a task that takes hours to days
with competitors.
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1 Introduction

A multiple sequence alignment (MSA) arranges a set of sequences in a rectangular array such that
one obtains the greatest number of similar characters in every column of the alignment with the
minimal number of columns. An optimal MSA is usually computed following Carillo-Lipman [8]
or generalizations based on dynamic programming. Since computing an optimal MSA is NP-
complete under the most common cost models [33], the development of scalable approximate
alignment methods, necessary in a context where information is growing by the day, is an open
challenge [20]. The main application for MSA is in bioinformatics, where it is used, for instance, to
reconstruct a phylogenetic tree [34] or for function/gene prediction [17]. Recently, several research
results on multi-genome read mapping were published [16,19, 31], most of which are based on
the alignment of many long sequences (genomes or chromosomes) [16,19]. Also recently, it was
shown that very high compression ratios are possible when compressing aligned genome data
[11]. Therefore, we believe that scalable sequence alignment (in terms of length and number of
sequences) will become even more important in the future.

Practical implementations make use of heuristics to guide the assembly of a MSA (see [9, 28]
for reviews and assessment of existing methods). Progressive alignment [23,27] builds a MSA
by combining pairwise sequence alignments (PSA), usually by aligning most similar pairs of
sequences first. Hence, progressive alignment methods need a guide tree as an input or compute
it on-the-fly. In contrast to progressive alignment, iterative alignment methods [15, 7] repeatedly
re-align previously aligned sequences and thus often obtain a better score, because alignment
errors obtained in the beginning of the alignment process can be repaired at later stages. A third
class of heuristics, often used for PSA only, is based on chaining [36,29]. The idea underlying
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Fig. 1. Dot plot matrices for principal steps in chaining algorithms.

chaining algorithms is visualized in Figure 1: first a set of maximal identical fragments of both
sequences is computed (Figure 1, left), then a colinear non-overlapping chain of fragments is
identified (Figure 1, middle), and finally all the subsequences in between fragments are aligned
following an (usually optimal) MSA algorithm (Figure 1, right); one example in the MSA field
is Mugsy [6]. However, many chaining-based methods fail when it comes to long sequences,
e.g. whole human chromosomes or MSA problems with more than a few sequences (see our
evaluation). There exists further work on mixtures of the three approaches and also on slightly
different problems, e.g. alignment-free sequence comparison [35] and alignment of short protein
sequences [12].

Our solution: We propose RRCA, Recursive Referential Compression Alignment. Our tech-
nique is based on the idea of chaining and uses the referential compression framework FRESCO [32]
to identify identical fragments within the collection of sequences. A non-overlapping chain of frag-
ments (Step 2 of chaining in Figure 1) is identified by a greedy strategy, which always selects
the longest non-overlapping fragment next. For Step 3 of Figure 1, i.e. aligning subsequences
between chain-aligned fragments, we apply the same approach recursively, therefore the name
Recursive Referential Compression Alignment. The recursion stops if either 1) all to-be-aligned
sequences are equal or 2) all sequences are shorter than a given threshold. In the latter case an
optimal MSA algorithm is applied.

Although our method is very intuitive and simple, we show that RRCA finds MSA with
comparable quality scores as more sophisticated competitors. At the same time RRCA is often
orders of magnitude faster alignment for biological and non-biological datasets. For instance,
RRCA can align eight human Chromosome 22 (around 50 MB each) within one minute on
a consumer computer; a task that takes hours to days with competitors. Besides, since our
technique is based on a compressed representation of all sequences against a reference, RRCA
does not have to store the complete collection of raw sequences in main memory during any step of
the algorithm. In fact, the more similar the sequences, the more compressed is our representation
during the execution of RRCA.

Structure: The structure of the paper is as follows. In Section 2, we define the problem of
multiple sequence alignments. We show in Section 3 how RRCA computes a multiple sequence
alignment by using referential compression. In Section 4, we evaluate our recursive referential
compression algorithm. The paper is concluded in Section 5.
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al: ————- JANE*HAD*LOST*HER*JOB*AND* SHE--*-W-AS—-—--——— *UNHAPPY.
a_2: WHEN*JANE*HAD*LOST*HER*JOB*SHE*-FELT*RE-ALLY----*UNHAPPY.
a 3: -————- JANE*HAD*LOST*HER*JOB*AND* SHE--*RE-ALLY*WAS*UNHAPPY .
a 4: WHEN*JANE*HAD*LOST*HER*JOB*S----HE--*BECAME----- *UNHAPPY.

Fig. 2. Optimal alignment M SAgx of Cgx.

2 Preliminaries

In the following, we present our recursive referential alignment algorithm RRCA. First, the
multiple sequence alignment problem is defined.

Definition 1. [Multiple Sequence Alignment]

Given a collection C = {s1,...,Sn} of sequences over an alphabet X, let — be a symbol not in X.
A multiple sequence alignment (MSA) of C is a collection of sequences {ay,...,a,}, such that
la1| = ... = |ayn| and each a; is obtained from s; by inserting any number of occurrences of symbol
—. The term column 4 of an alignment {ay,...,a,}, refers to the symbols {a1(i),...,an(i)}. The
length of an alignment is the number of columns, i.e. the length of any sequence in the MSA.
The special case of n = 2 is called pairwise sequence alignment (PSA).

Ezample 1. A collection Cgpx = {s1, 82, 83, 84} contains four highly-similar sequences!:

s1 : JANExHAD*LOST*HER*JOB*AND*SHE*WAS*UNHAPPY .
S2 : WHEN*JANE*HAD*LOST*HER* JOB*SHE*FELT*REALLY*UNHAPPY.

s3 : JANExHAD*LOST*HER*JOB*AND*SHE*REALLY*WAS*UNHAPPY.
S4 : WHEN*JANE*HAD*LOST*HER* JOB*SHE*BECAME*UNHAPPY.

One multiple sequence alignment of Cgx is MSAgx = {a1,as,a3,a4}, shown in Figure 2:
Column 2 of our example alignment is {—, H, —, H}.

Usually, one is interested in alignments that maximizing a given scoring function. An often
used scoring function is sum-of-pairs [18]. A scoring function takes a pair of symbols from YU{—}
and returns a real number. Given a scoring function score, the sum-of-pairs score for a column
{ers . en} is defined as 37, ., score(c;, ¢;). Given an MSA {ax, ..., a,} of length m, the sum-
of-pairs score is defined as the sum of the sum-of-pairs score for each column. A MSA is optimal
for a collection of sequences C' = {s1, ..., S, }, if there exists no other MSA for C with a higher
score.

Ezample 2. Let score be defined as follows:

1 ife1 =co
score(ci,c) =10  ifep=—ANeg=—

—1 ifelse

The score of column {A, S, A, S} is 1 % score(A, A) + 1  score(S,S) + 2 * score(A, S) + 1 *
score(S,A) =1+1+2x%(—1)+3*(-1)=—1.
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Fig. 3. Example for a referential compression of s4 (below) against reference so (up)

3 Computing an Alignment with Referential Compression

We present a method for the computation of an initial alignment, usually Step 1 of chaining-
based MSA-approaches, i.e. computation of colinear fragments. We use a technique recently
emerged in compression of biological sequences: Referential compression. Similar to dictionary-
based techniques [37,24], referential compression algorithms replace long subsequences of the
to-be-compressed input with references to a distinct sequence, called reference. The reference
is not part of the to-be-compressed input data. Furthermore, the reference is usually static,
while dictionaries are being extended during compression phase. During the last years several
referential compression algorithms emerged [22, 21,13, 32]. These algorithms work best if the to-
be-compressed sequences are similar to the reference sequence. Impressive results are reported
when compressing large collections of sequences: referential compression algorithms achieve com-
pression rates of up to 1000:1 for human genomes, i.e. more than 3 TB of raw data for 1092
genomes is compressed down to few GB, at compressions speeds close to maximum read speeds
for state-of-the-art hard disks. We proceed with a formal definition of the referential compression
algorithm from [32].

Definition 2 (Referential Compression [32]).

A referential match entry (rme) is a triple (start,length, mismatch), where start is a number
indicating the start of a match within a reference sequence, length denotes the match length?,
and mismatch denotes a symbol. The length of a referential match entry rme, denoted |rme|,
is length + 1. Given sequences s and a reference ref, a referential compression of s with respect
to ref, is a list of referential match entries, [(s1,11,M1), ..., (Sn,ln, mn)], such that (ref(s1,11) o
mq) o (ref(s2,l2) o ma) o ... o (ref(sp,ln) © Mmy) = s., where o denotes the concatenation of two
strings.

The offset of a referential match entry rme; in a referential compression rc = [rmey, ..., rme,],
denoted of fset(rc, rme;), is defined as Zj<i |rme;|. Given a rme (start, length, mismatch), we
write the expression (start,length, mismatch) € re, if and only if (start,length, mismatch) is
an element in the referential compression rc.

An algorithm for computing a referential compression is shown in Algorithm 1. To create a
referential compression of input sequence s with respect to ref, the algorithm matches prefixes
of s with subsequences of ref using a compressed suffix tree on ref. The longest such prefix is
removed from s, encoded as a rme and added to rc. The algorithm terminates once s contains
no more symbols. Algorithm 1 is a greedy algorithm, i.e. it always takes the longest prefix of
the to-be-compressed which can be found in the reference. Any greedy algorithm computes a
minimal representation, i.e. the size of the compressed sequence is minimal, if the dictionary for
the reference is fixed and the size of a dictionary entry is constant [10].

! We use * instead of white-spaces for presentation purposes.
2 Match length: Number of symbols for which to-be-compressed sequence and reference coincide.
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Algorithm 1 Referential Compression Algorithm

Input: to-be-compressed sequence s and reference sequence ref
Output: referential compression rc of s with respect to ref

1: Let rc be an empty list

2: while |s| # 0 do

3: Let pre be the longest prefix of s occurring in ref, and let ¢ be a position of an occurrence of pre in ref
4: if s # pre then

5: Add (i, |prel, s(|pre|)) to the end of rc

6: Remove the first [pre| + 1 symbols from s

7 else

8: Add (i, |pre| — 1, s(|pre| — 1)) to the end of rc
9: Remove the prefix pre from s

10: end if

11: end while

Ezxample 3. One example referential compression for Sequence s4 with respect to the reference
sequence sg is shown in Figure 3. The input is compressed into five referential match entries.
The first referential match entry is (0, 31, B) and describes a match for the first 31 characters of
sequence sy at position 0 of the reference. The mismatch character is B (in the reference an F'
is found instead of a B). The offset of (6,1, M) is [{0,31, B)| + |(2,1,C)| = 34.

3.1 Computing an Initial Alignment

In RRCA, an initial alignment is a chain of colinear fragments, where large overlapping parts
of all to-be-aligned the sequences are used as fragments (see Figure 1). These fragments can
be obtained, for instance, by computing the longest common subsequences. However, often g¢-
gram-based methods are used: all g-grams of to-be-aligned sequences are computed and then
the longest chain of colinear g-grams is extracted. The process of computing and chaining these
g-grams is highly time-consuming for long sequences, because a sequence of length n contains
n —q+ 1 g-grams. Even increasing ¢ slightly does not make the problem easier to solve for long
sequences. Moreover, if ¢ is chosen too large then similarities between to-be-aligned sequences
might be missed by the alignment algorithm.

We use referential compression for the computation of an initial alignment instead. Given a
collection of to-be-aligned sequences, we pick one sequence as a reference ref and compress all
sequences referentially against re f. Given the referential compressions of all sequences, we extract
overlapping parts from the referential match entries, as a base for a chain of colinear fragments.
The main advantage of our approach, compared to g-gram-based algorithms, is that referential
match entries can represent arbitrary long sequences, and therefore arbitrary long fragments.
This allows us to identify fragments with different degrees of similarity using a homogeneous
approach, independent from a fixed value ¢. In our implementation we have always chosen the
longest sequence as a reference. Given k sequences of maximum length n, finding the longest
sequence takes O(k) and compression of all sequences against the reference takes O(k xn), since
the compression is computed in linear time in the length [32].

Another advantage of using referential compression is as follows: We do not need to keep all
uncompressed sequence in main memory at any time. For computing a referential compression
of a sequence s, we only need s plus the reference sequence and an index over the reference
sequence in main memory. After compression of s we proceed with the compression of remaining
sequences, and only keep the compressed representations of previously compressed sequences
in main memory. This is an important step towards alignment of many very long sequences
on consumer computers. In Example 4, we show the referential compression of s; to s4 (from
Example 1) with so as a reference.
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Example 4. The longest sequence in Cgx is s3. We obtain the following referential compressions
RC = {rey,...,rcq} for each sequence against s, as a reference:

5,22, A),(7,1,D), (26,5, W), (6,1, 5), (42,8,.)}

0,50,.)}

5,22, A),(7,1,D), (26,5, R), (37,6, W), (6,1, 5), (42,8, )}
0,31,B),(2,1,C), (6,1, M), (8,2,U), (44,6,.)}

rep ={
rco ={
reg ={

req ={

o~ o~ o~ o~

Definition 3 (Alignment Fragments).

Given a collection of sequences C = {s1, ..., 8n}, we say that f = ((astarty, ..., astart,), alength)
is a fragment for C, if silastart;,alength] = ... = splastart,, alength]. Two fragments fi =
((astarty 1, ..., astarts ,), alengthy) and fo = ((astarta, ..., astarts ), alengths) are strictly con-
secutive, if astart; ;+alengthy < astarts; for alli < n. An initial alignment for C' is a collection
of fragments {f1,..., fm} for C, such that each pair of fragments f; and fi11 is strictly consecu-
tive.

An initial alignment from Definition 3 splits a collection of sequences into different blocks, such
that all sequences in C coincide for every second block (with unaligned blocks in between). Below,
we describe how to compute an initial alignment by using referential compression. Intuitively,
if two referential match entries overlap, i.e. point to the same subsequence of a reference, then
the overlapping part is identical in referential match entries, and thus in their uncompressed
sequences. We extract all intersections of referential match entries from all sequences in C. In
Definition 4, we define an intersection operation on referential match entries in order to identify
equal referenced subsequences.

Definition 4. Given a collection R of referential match entries, rme; = (s1,l1,m1),..., rme, =
(Snyln,mp), let s = MAX(s;) andl = MIN(s;+1;) — MAX((s;). The intersection of R, denoted
i<, rme;, is defined as the pair (s,1), if | > 0, and undefined otherwise.

The result of intersecting rme; = (42,8,.) with rmes = (44,6,.) is the pair (44,6). The
intersection between rme; = (5,22, A) with rmes = (44,6, .) is not defined, since they refer to
different (non-overlapping) parts of the reference.

Definition 5 (Referential Agreement).
Given a set of referentially compressed sequences RC = {cs1, ..., cs,}, the referential agreement
of RC is defined as RefAgree(RC) = {(s,1) | Irme1 € cs1,...,rmen, € csy.(s,1) =<, me; }.

Informally, the referential agreement of RC' defines all the areas of the reference which are
referenced by at least one referential match entry of each referentially compressed sequence. An
upper bound for the time-complexity for computation of the referential agreement is quadratic in
the number of referential match entries, since all referential match entries have to be intersected.
We reduce the time complexity for this step to O(k? % n x logn) as follows. We create an interval
tree [25] for each compressed sequence in O(k xn) (with intervals defined by start and length of
each referential match entry), and then find for each referential match entry (there are O(k xn)
such entries) its overlapping counterparts by probing k interval trees in O(k * logn).

Given the set of agreements for RC, we compute partial alignments, which build the basis for
an initial alignment. To compute the partial alignments, we need to trace back positions in the
sequences which contributed to the referential agreement. The function TRACE computes all
such positions for an element of a referential agreement and a referentially compressed sequence.
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Algorithm 2 Initial Alignment Algorithm

Input: Collection of sequences C' = {s1,...,8n}
Output: Collection of alignment fragments
. Let fragments =0
: Select one s € C as ref
Compress all s; € C against ref. The result is RC = {cs1,...,csn}
: Compute RefAgree(RC)
: for all (s,l) € RefAgree(RC) do
Compute TRACEALL((s,1), RC)
Add fragment (TRACEALL((s,l), RC),l) to fragments
: end for
1 Sort fragments by second component (i.e. length of the fragment)
: Let consfragments be a consistent sub collection of fragments
: Sort consfragments by second component (i.e. start positions of the fragment)
. return consfragments

e E o N

Definition 6 (TRACE).
Given a referential compression cs and a pair (s,1), we define TRACE((s,1),cs) = {s — start; |
Alength;, mismatch;.(start;, length;, mismatch;) € cs A start; < s A s+ 1 < start; + length}.

The traces from compressed sequences need to be combined carefully, since several traces of
a single compressed sequence might cause an overlap in the same region of the reference. For
instance, a compressed sequence such as {(5,10, A), (7,12, .)} references the same reference sub-
sequence ref(7,8) two times. For the computation of an alignment, we only want to use one of
the two referential match entries, either (5,10, A) or (7,12, .), once an overlap with another refer-
ential match entry at the same subsequence is found. The function TRACEALL in Definition 7
applies the following heuristic: We pick trace positions from each compressed sequence, such
that the difference to the average of all traces is minimized. Thus, local subsequence matches are
preferred over more distant matches.

Definition 7 (TRACEALL).

Given a set of referentially compressed sequences RC = {cs1, ...,csp} and an element (s,1) of the
referential agreement of RC, we let U = |J,.,, TRACE((s,l),cs;). TRACEALL((s,1),RC) =
{p1,.-,Pn}, such that each p; is the nearest value to AVG(U) in TRACE((s,l),cs;). Note that
there is at least one value in TRACE((s,l),cs;) for each i.

Given Definition 7, we compute a set of partial alignments (of different quality). For com-
putation of a complete initial alignment, we need to select a consistent (strictly consecutive)
subset of these partial alignments. Our algorithm for computing an initial alignment by referen-
tial compression is shown in Algorithm 2. The consistent sub collection of fragments (Line 10)
is computed by always choosing the longest fragment next, i.e. starting form an empty set of
fragments, we repeatedly add the longest not yet used consistent fragment, until no more consis-
tent fragment is left. There exists multiple other heuristics. Finding an optimal chain of colinear
non-overlapping fragments is exponential in the number of sequences [5]. Continuing Example 4,
we have that RefAgree(RC) = {(5,22),(26,5),(44,6)}. The initial alignment returned by Al-
gorithm 2, is {((0,5,0,5),22), ((35, 44,42, 39),6), ((25,26,25,26),5)}. This initial alignment is
shown in Figure 4.

3.2 Completing an Alignment with Recursive Referential Compression

In the previous subsection, we showed how to computed an initial alignment, based on referential
compression. Chaining-based approaches usually compute an optimal alignment for subsequences
not contained in any fragment, for instance the sequences "WHEN*’ and "WHEN*’ in Figure 4.
Three reasons can cause these subsequences not to be part of an initial alignment in RRCA:
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Algorithm 3 RRCA Algorithm

Input: Collection of sequences C' = {s1,...,8n}
Output: MSA for C
D if MAX;<,(]si]) < d then
Return an optimal MSA of C
else
Let fragments be an initial alignment of C
if fragments is empty then
Return an optimal MSA of C
else
for all (non-empty) sequences S not aligned in fragments do
Let resg = RRCA(S)
end for
Return the (alternating) concatenation of all initially aligned fragments and recursively aligned se-
quence collections resg
end if
: end if

CoOXNOUAE W

==
W

Initial alignment fragments

r N I

JANE*HAD*LOST*HER*JOB* *SHE™ NHAPPY.
JANE*HAD*LOST*HER*JOB* *SHE* NHAPPY.
JANE*HAD*LOST*HER*JOB* *SHE* NHAPPY.
JANE*HAD*LOST*HER*JOB* *SHE* NHAPPY.

Fig. 4. Initial alignment for Cgx.

1. There is a larger insertion/deletion and not all sequences contribute a referential match entry.

2. Our greedy referential compression algorithm chose different ways to encode the same sub-
sequences (equality of subsequences cannot be decided by referential agreement).

3. The subsequences are really just not similar.

Therefore, we propose a new strategy as follows: instead computing an optimal MSA of
unaligned sequences directly, we repeat the computation of an initial alignment for unaligned
(non-empty) subsequences. For instance, the two sequences "'WHEN*" and "WHEN*’ can be per-
fectly aligned by an initial alignment using referential compression with one of the two sequences
as reference. In this case there is no need to compute an (computationally expensive) optimal
alignment.

Our algorithm for recursively aligning referential compressions is shown in Algorithm 3. If the
maximum length of a sequence in C' is shorter than a fixed §, then the algorithm computes an
optimal MSA, following Needleman-Wunsch [26] (Line 1-2), and returns the result. Otherwise, an
initial alignment following Algorithm 2 is computed (Line 4-12). If the initial alignment contains
no fragment, i.e. referential compression cannot identify a common subsequence of all sequences
in the input, then the algorithm computes and returns an optimal MSA as well (Line 6). If
the initial alignment of the input contains at least one fragment, then the algorithm recursively
computes a MSA for each set of subsequences not covered by fragments (Line 8-11).

Given the initial alignment from Figure 4, we have three blocks not covered by the initial
alignment: one block containing two times "WHEN*’, one block containing two times ’AND’
and one block before the fragment containing 'WHAPPY’. The first two blocks are aligned im-
mediately by one recursive call each. The last block will be aligned by computing an optimal
alignment, since no initial alignment can be found. The result of RRCA is optimal and shown in
Figure 2.
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SeqAn Mugsy T-Coffee Mafft RRCA
Dataset Length Score Time (s) Score Time (s) Score Time (s) Score Time (s) Score Time (s)
AT-1 500 2,958 0.1 2,958 0.5 2,958 0.1 2,958 0.1 2,958 0.0
AT-1 16,000| 95,712 174.5 95,712 0.8] 95712 109.8 95,712 0.4 95,712 0.0
AT-1 2,048,000 * *| 12,216,048 23.6 * *112,213,022 431.5| 12,216,012 0.6
AT-1 30,000,000 * * * * * * * *| 178,138,742 241
§ H-22 500 3,000 0.0 3,000 0.5 3,000 0.1 3,000 0.1 3,000 0.0
5 H-22 16,000 95,884 86.6 95,884 0.6 95,884 72.5 95,884 0.3 95,884 0.0
:"; H-22 1,024,000 * * 6,138,592 28.6 * *| 5,750,316 203.5 6,138,558 0.2
3 H-22 30,000,000 * * * * * * * *| 179,407,238 12.8
Y-wg 500 -1,040 0.2 -7,362 0.5 -2,330 0.1 -3,848 0.1 -1,370 0.0
Y-wg 16,000 -7,948 290.8 -117,826 0.9] -100,066 148.2| -104,334 24.5 -119,590 0.0
Y-wg 512,000 * * 2,643,044 5.8 * *| 2,666,154 298.7 2,623,888 0.3
Y-wg 8,192,000 * *| 43,999,160 169.1 * * * *| 43,086,892 6.6
AT-1 500 13,782 0.3 13,782 10| 13,782 0.2 13,758 0.1 13,782 0.0
AT-1 16,000 * * 446,636 1.8| 446,636 509.7| 446,612 0.7 446,636 0.0
AT-1 2,048,000 * *| 57,035,820 94.8 * * * *| 57,028,046 1.4
AT-1 30,000,000 * * * * * * * *| 831,372,614 70.6
§ H-22 500 14,000 0.0 14,000 1.0/ 14,000 0.2 14,000 0.1 14,000 0.0
§ H-22 16,000 447,508 592.7 447,508 1.8| 447,508 497.6| 447,508 0.7 447,508 0.0
g H-22 2,048,000 * *| 56,965,626 265.0 * * * *| 56,912,358 0.6
© H-22 30,000,000 * * * * * * * *| 837,014,656 17.3
Y-wg 500 -12,756 1.0 -63,924 1.0 -18,070 0.9| -18,048 0.2 -12,756 0.0
Y-wg 16,000 * * -639,344 2.2| 603,404 737.5| -575,412 59.3 -416,700 0.1
Y-wg 2,048,000 * *| 46,053,822 175.0 * * * *| 43,192,182 4.4
Y-wg 8,192,000 * * * * * * * *| 197059310 15.5

Fig. 5. Comparison of MSA-methods for biological datasets (time in seconds). The score is computed
as sum-of-pairs of the computed MSA with (match=1, mismatch=-1, gap=-1); larger scores are better.
Computations that did not finish on time are marked with *.

4 Discussion

In the following section, we evaluate our proposed scheme. All experiments were run on a com-
puter with 16 GB RAM and Intel Core i7-2670QM. We evaluate our method on five different
datasets with different degrees of similarity. Three biological datasets: a collection of eight hu-
man Chromosome 22 (H-22) of the 1000 Genome project [4], a collection of eight Chromosome 1
from Arabidopsis thaliana (AT-1), taken from the 1001 Genomes project [2], release GMINord-
borg20103, and a collection of eight yeast genomes [1] (Y-wg). We have chosen these species since
their sequences have different degrees of inner-species similarity. In our experiments RRCA was
set to always choose the longest sequence as a reference. If all sequences have the same length,
as initially in our experiment, one sequence is chosen randomly.

We compare RRCA against one optimal MSA algorithm (part of SeqAn [14]) and three
approximate solutions (Mugsy [6], T-Coffee [27], and Mafft [3]), in Figure 5. We ran tests on the
biological datasets with different lengths. If a program took longer than 15 minutes to complete
a test, it was stopped (indicated by a * in Figure 5). It can be seen that the optimal algorithm
can only compute a MSA for rather short sequences within 15 minutes. The score obtained by
all algorithms is quite similar, with the exception of the least self-similar dataset Y-wg. Overall,
RRCA is the fastest MSA algorithm for each single test case, usually orders of magnitude faster
than all three approximate competitors.

We performed experiments regarding the exact alignment time of random sequences with an
extension of Needleman-Wunsch to MSA, as implemented in Seqan. We generated 500 collections
of k random sequences with a fixed length. The result for the alignment of the sequences with
k = 4 and k = 8 is shown in Figure 6. We have used the symbolic regression solver Eureqa [30] to
estimate a formula for the alignment time in ms, given input length and the number of sequences

3 http://1001genomes.org/data/GMI/GMINordborg2010/releases/current/



10 Sebastian Wandelt and Ulf Leser

10,000
H .
£ 8,000 . K
() *
£ 6,000 g
b o
€ 4,000
(7] ! L4
: -
w 2,000 s
= o VY X2d

P X 20 4
< R PRORIR ¥ o - :g;.QQ o 900 sape & ¢ °
0 200 400 600 800 1000 1200 1400 1600

input length of each string

Fig. 6. Alignment of four (lower curve) and eight (upper curve) random sequences of different lengths
with SeqAn.

k. The best solution with a size (number of terms) smaller than 10 is time = 0.0000598 xlength?
k2. This formula helps to estimate the alignment time, and thus, can be used to set the constant
0 (the maximum length for exact alignment) from Algorithm 3. In our experiments with RRCA,
we have set ¢ such that computing an optimal alignment in recursive call should not take longer
than 100 ms, e.g. for k£ = 8, we obtained § = 161.6.

We analyzed how much time RRCA spends on different parts of the algorithm for aligning
10 human Chromosome 1 (total runtime was three minutes). Creating the index structure for
references, i.e. initial reference and references in recursive calls, dominates the runtime (45.8%).
The exact alignment of small fragments has the second highest share of the runtime(16.7%).
Decompression of sequences (13.4%), compression of sequences (11.7%), and other parts of RRCA
(12.2%) follow, respectively.

We have performed additional experiments for the alignment of protein sequences using bench-
mark BaliBase 3. Even for the most similar set of sequences (around 40% identity), RRCA cannot
find good initial alignments and falls back to computing an optimal alignment. Similar substrings
are not long enough in these short protein sequences and often only shared by small subsets of
the whole collection. RRCA will not work for the alignment of sequences from different species,
e.g. derived from human and mouse: Similar substrings are not long enough to exploit the benefit
of referential compression. In addition, computing the referential compression of a mouse chro-
mosome against a human chromosome is very time consuming. To sum up, alignment technique
implemented RRCA cannot easily deal with large rearrangements and synteny. RRCA is tailored
towards alignment of long sequences from the same species.

5 Conclusion

RRCA recursively computes a MSA using referential compression for fast identification of chain-
ing fragments. We show that RRCA computes nearly optimal alignments for shorter sequences
and for long sequences results with a similar score as competitors. RRCA is orders of magnitude
faster than competitors and allows to align sequences within few seconds that take hours with
other programs.

We see two major directions for future work. First, it should be investigated how to further
improve MSA for very long sequences, in terms of alignment time and alignment quality. The
key for improvement is 1) to extend our simple greedy strategy for selection of colinear frag-
ments and 2) to find a heuristic for selecting a reference during the recursive compression step.
Our results show that the selection of the longest reference already produces good results, but
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more sophisticated strategies might yield alignments with higher scores. On the other hand, the
run time of sophisticated techniques, which analyze (parts of) each sequence, will undoubtedly
increase alignment time. Thus, selecting an efficient strategy for improving alignment times and
alignment quality is challenging problem.

In addition, we think that it will be helpful to run an iterative alignment on top of RRCA to
improve the quality (scores) of alignments. Second, running times of RRCA can be reduced by
investigating different index structures for referential compression. It is important to note that
the indexing time of the reference sequences is dominating the runtime (and not the lookup of
matches alone). Thus we believe that a lightweight index structure, in terms of indexing time,
can further decrease alignment times.
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