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ABSTRACT
With the increasing popularity of scientific workflows, pub-
lic repositories are gaining importance as a means to share,
find, and reuse such workflows. As the sizes of these repos-
itories grow, methods to compare the scientific workflows
stored in them become a necessity, for instance, to allow
duplicate detection or similarity search. Scientific work-
flows are complex objects, and their comparison entails a
number of distinct steps from comparing atomic elements
to comparison of the workflows as a whole. Various stud-
ies have implemented methods for scientific workflow com-
parison and came up with often contradicting conclusions
upon which algorithms work best. Comparing these results
is cumbersome, as the original studies mixed different ap-
proaches for different steps and used different evaluation
data and metrics. We contribute to the field (i) by dis-
ecting each previous approach into an explicitly defined and
comparable set of subtasks, (ii) by comparing in isolation
different approaches taken at each step of scientific workflow
comparison, reporting on an number of unexpected findings,
(iii) by investigating how these can best be combined into
aggregated measures, and (iv) by making available a gold
standard of over 2000 similarity ratings contributed by 15
workflow experts on a corpus of almost 1500 workflows and
re-implementations of all methods we evaluated.

1. INTRODUCTION
Over the past decade, scientific workflows have established

themselves as a valuable means for scientists to create repro-
ducible in-silico experiments [12]. Several scientific workflow
management systems (SWFM) have become freely available,
easing scientific workflow creation, management, and exe-
cution, such as Taverna, Kepler, VisTrails, Galaxy, Pega-
sus, Knime, e-BioFlow, e-Science Central, or Askalon (e.g.,
[30, 6, 16, 20]). Yet, creating scientific workflows using an
SWFM is still a laborious task and complex enough to im-
pede non computer-savvy researchers from using these tools
[10]. Online repositories have emerged to allow sharing of
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Figure 1: Sample scientific workflows from myExperiment:
(a) ID: 1189, Title: KEGG pathway analysis, (b) ID: 2805,
Title: Get Pathway-Genes by Entrez gene id.

scientific workflows, facilitating their reuse and repurposing.
Popular examples of such scientific workflow repositories in-
clude CrowdLabs [28], SHIWA [2], the repositories offered
with Kepler [6] and Galaxy [20], or myExperiment [32], cur-
rently containing more than 2500 workflows from various
disciplines including bioinformatics, astrophysics, earth sci-
ences, or particle physics.

Figure 1 shows two exemplary scientific workflows from
the myExperiment repository. Scientific workflows typically
model a dataflow with a structure resembling a directed
acyclic graph (DAG). They have global inputs and outputs,
data processing modules which operate on the data, and
datalinks which connect the former and thereby define the
flow of data from one module to the next. Each module has
attributes associated with it, such as a label, input and out-
put signatures, the type of operation to be carried out, and,
if applicable, a set of static, data independent parameters,
such as the url of a web-service to be invoked. Upon upload
to a repository, workflows typically are further annotated
with a title, a general description of their functionality, key-
word tags, and the uploading author.

With increasing repository sizes, new challenges arise for
managing these collections of scientific workflows and for us-
ing the information collected in them as a source of expert-
supplied knowledge [10, 19]. Challenges include the detec-
tion of functionally equivalent workflows, grouping of work-



flows into functional clusters, workflow retrieval, or the use
of existing workflows in the design of novel workflows [36,
34, 33, 4, 18]. The core operation necessary for meeting
any of these challenges is the algorithmic comparison of two
workflows regarding their functional similarity. Existing ap-
proaches to such similarity measures for scientific workflows
are usually classified as being either annotation-based or
structure-based, depending on which of the information de-
scribed above they use. Each of these classes of algorithms
has its particular strengths and weaknesses: Annotation-
based approaches are independent of the workflows’ formats
and can be used to compare workflows both across different
SWFM, and across multiple repositories [11]. Yet, they only
work if the workflows under comparison have annotations,
which may or may not be the case for a workflow stored
in a public repository by an arbitrary user. Approaches
for structural workflow comparison, on the other hand, can
be applied without such backing human-provided textual
knowledge. Yet, they have to assess a workflow’s func-
tionality from the information contained in its DAG struc-
ture and the modules it is composed of. As another source
of data, provenance represents concrete execution traces of
workflows. Such traces would allow, for instance, to take
execution parameters and runtime information into account
as an additional means of comparison. However, specialized
provenance databases have just started to emerge (e.g., in
the ProvBench initiative [1]), and we are not aware of any
workflow repository also containing real execution traces.

Which approach to scientific workflow comparison pro-
vides best results, and how different aspects of workflows
contribute to their functional similarity is still an open ques-
tion. There have been numerous studies investigating both
annotational [11, 36, 17] and structural [34, 33, 36, 4, 18, 17,
38] approaches, but their comparison is hindered by a num-
ber of factors. Firstly, the process of scientific workflow com-
parison entails several steps from comparison of single mod-
ules to comparison of whole workflows [35, 4] - each of which
may be treated differently in the methods considered. This
makes it hard to determine how single aspects contribute to
workflow similarity, and which approach to a specific step of
the comparison process provides best results. Secondly, the
evaluation of a proposed method is often done by manual
inspection of the methods concrete output, or on a propri-
etary dataset, both hampering repeatability. To compare
multiple methods and configurations it is necessary to have
a method-independent, gold-standard corpus to evaluate on.
To the best of our knowledge, for scientific workflow simi-
larity a gold-standard corpus of decent size does not exist,
yet. Reference corpora exist for business process models [14,
15, 13] but these cannot be used easily because (1) they
often come without gold standard ratings and (2) business
workflows typically contain rich control structures calling for
other similarity measures than purely data-driven scientific
workflows [25, 39]. Other work uses synthetic workflows to
test similarity measures (e.g.,[21]), while we focus on real-
life workflows. Thirdly, the presented evaluations vary with
the underlying use case. For instance, similarity measures
are a requirement for both clustering and similarity search.
The results derived from the corresponding evaluations are
difficult to compare.

Addressing these issues, we here present results of a com-
prehensive re-implementation and evaluation effort for sim-
ilarity ranking and retrieval of scientific workflows. Specifi-
cally, we make the following contributions:
1. We introduce a conceptual framework that clearly sepa-
rates the various tasks of workflow comparison, and use it
to re-implement a comprehensive set of existing similarity
measures.
2. We present an expert-generated corpus of over 2000 sim-
ilarity ratings for scientific workflows contributed by 15 sci-
entific workflow experts from four international groups - an
effort which, to the best of our knowledge, has not been
made public before at this extent.
3. We evaluate several algorithms, both annotational and
structural ones, on the collected corpus of similarity rat-
ings, showing how each of their steps contributes to the al-
gorithms’ quality, and repeat previous experiments where
possible. We also investigate how different similarity mea-
sures can be successfully combined in ensembles.
4. We additionally investigate how knowledge derived from
the repository as a whole can be applied to structural work-
flow comparison, and show that these modifications benefit
result quality or reduce computational complexity, or both.

In the following, we first introduce our framework for
workflow comparison and, reviewing different published meth-
ods, show how they were implemented in this framework. In
Section 3 we give an overview of previous findings on assess-
ing workflow similarity measures. Our experimental setup,
including creation of the gold standard corpus, is described
in Section 4, followed by presentation of our evaluation re-
sults in Section 5. We conclude in Section 6.

2. A FRAMEWORK FOR
SCIENTIFIC WORKFLOW SIMILARITY

The functionality of a scientific workflow is determined
by the data processing modules it is composed of, and how
these modules are connected by datalinks. While we are
ultimately interested in comparing whole workflows, each
module represents a distinct functional entity in its own
right. As all previous work, we make the reasonable as-
sumption that modules are deterministic and two identical
instances of a module are functionally equivalent. Yet, any
two different modules may carry the same or very similar
functionality. For instance, two different web-services, or a
web-service and a locally invoked script, may be functionally
equivalent. Thus, to compare scientific workflows wrt their
functionality, similarity has to be established on two levels:
the level of single modules and the level of whole workflows.

Following this dichotomy, the process of workflow com-
parison can be conceptually divided into a series of interde-
pendent subtasks: First, the similarity of each pair of mod-
ules from two workflows has to be determined by pairwise
module comparison. Second, using these pairwise module
similarities, a mapping of modules onto each other needs to
be established. Third, the established mapping is used for
topological comparison of the two entire workflows. Finally,
normalization of the derived similarity value wrt the sizes
of the compared workflows may be desirable.

Note that this setup is not unrelated to that of rela-
tional schema matching [31], where mappings between at-
tributes and relations are established. Yet, the elements



Figure 2: Scientific workflow similarity framework

compared and the underlying intention are quite different:
While schema matching compares attributes and relations
to establish (mostly) one-to-one equivalences, we here use
mappings between modules based on their attributes to de-
rive similarity of entire workflows. Workflow modules are
also much richer objects compared to attributes in a schema.
Finally, in contrast to schemas workflows have a direction
(from source to sink) that is functionally important and that
could be exploited for similarity assessment.

Figure 2 drafts the comparison process in the context of
our similarity framework. This framework implements the
identified steps and allows to uniformly apply and combine
them. When two workflows are submitted to the frame-
work, their structure and annotations are separated and
made available to the corresponding methods of compari-
son. Before the actual comparison is done, preprocessing
of the underlying data may be applied. For annotations,
such preprocessing includes the removal of stop words from
the workflow descriptions. Using external knowledge de-
rived from the repository, the workflows’ structure can be
preprocessed in a similar manner. We will explore the appli-
cation of such repository-derived knowledge more closely in
Section 2.1.5. As for the structural comparison process, we
refine the task of topological comparison by preceding it by
a step of topological decomposition of the workflows suitable
for the intended comparison. This is useful, for instance,
when topological comparison is based on substructures of
workflows, e.g., subgraphs or paths. The workflows will
then first be decomposed into the respective substructures,
on which the module mapping is performed. The framework
is completed by the option of using either a single similarity
measure or an ensemble of two or more measures to derive
the overall workflow similarity.

In the following, we look at each of the proposed steps of
workflow comparison and how they are approached in pre-
vious work more closely. An overview on previous work re-
flecting the diversity of approaches taken so far can be found

in Table 1. We restrict our study to methods targeting the
modules, structure and/or annotations of workflows as this
is the type of data that can be found in current repositories.
While approaches making use of workflow provenance or rich
semantic annotations on workflows and modules have been
studied in related areas, e.g., [3, 5, 7], workflows currently
found in public repositories are typically not associated with
such data.

2.1 Structure-based Measures

2.1.1 Pairwise Module Comparison
In order to apply any of the structural methods for com-

paring whole workflows, a way of comparing the workflows’
elements is needed. Previous work largely relied on mod-
ule identification by matching of labels [33, 18, 38], i.e., the
names given to a specific instance of a module by a work-
flows author. In workflow repositories with a heterogeneous
author base, however, modules are bound to be labeled non-
uniformly. One way of dealing with this heterogeneity is to
resort to the matching of other, less varying attributes, such
as the modules’ types [17]. Another option is to compare
labels by their Levenshtein edit distance [4]. To take full
advantage of the information contained in a modules specifi-
cation, however, it seems advantageous to compute module
similarity based on a variety of attributes associated with
each module, as done in [34]. Which attributes are present
in a given module largely depends on the type of operation
it provides. For instance, the uri of a web-service to be in-
voked will only be present in modules designed to invoke a
web-service but not in modules performing local operations.
Thus, for maximum flexibility, both the set of attributes
to compare and the methods to compare them by are con-
figurable in our framework, together with the weight each
attribute has in computation of overall module similarity.
This approach subsumes all previously proposed methods
for module comparison by using appropriate configurations.
In our evaluation (see Section 5), we shall investigate the
following configurations pX for module comparison:

pw0, used as a default, assigns uniform weights to all at-
tributes, and compares module type, and the web-service re-
lated properties authority name, service name, and service
uri using exact string matching. Module labels, descrip-
tions, and scripts in scripted modules are compared using
Levenshtein edit distance [23].

pw3 compares single attributes in the same way as pw0
but uses higher, but not uniform weights for labels, script
and service uri, followed by service name and service au-
thority in the order listed, similar to [34].

pll disregards all attributes but the labels, and compares
them using the Levenshtein edit distance, resembling the
approach taken in [4].

plm disregards all attributes but the labels, and compares
them using strict string matching as done in [33, 18, 38].

2.1.2 Module Mapping
After generating all pairwise module similarities, a map-

ping of the modules has to be established. Such a mapping
selects the best similarity match between the modules from
the two compared workflows. When using strict matching of
singular module attributes to derive module similarity [33,
18, 38, 17], such as the labels, the module mapping is im-
plicitly given as the set of matching modules. When module



Table 1: Existing approaches to scientific workflow comparison and their treatment of comparison tasks.

Annotation-based Structure-based
Ref. Module Comparison Module Mapping Topological Comparison Normalization

[11] bag of words

[36]
frequent tag sets

singular attributes - frequent module sets -
[34] multiple attributes greedy sets of modules |V | of smaller workflow

[4]
semantic annotations maximum weight sets of modules and edges |V | + |E| of query workflow

label edit distance maximum weight sets of modules and edges |V | + |E| of query workflow

[33]
label matching - vectors of modules -
label matching - MCS |V | + |E| of larger workflow

[18]
label matching - MCS -
label matching - MCS workflow sizes

[17]
type matching - sets of modules -
type matching - MCS -
type matching - graph kernels -

[38] label matching - GED -

comparison is based on more complex similarity assessment,
the best similarity match between the modules of the two
compared workflows has to be found explicitly. Previous
approaches to this task include greedy selection of mapped
modules [34] and computation of the mapping of maximum
overall weight [4], both of which have been included in our
framework. For clarity of presentation, in the following we
only refer to the latter approach of maximum weight match-
ing (mw). We compare both approaches in Section 5.1.3.

Additionally, when an order of the modules to be mapped
is given by the topological decomposition of the workflows,
their maximum weight non-crossing matching (mwnc) [27]
can be determined to take the given order of modules into ac-
count. That is, given two module orderings (m1, ..mi, ..mk)
and (m′1, ..m

′
j , ..m

′
l), a mapping of maximum weight is com-

puted where the result cannot contain two mappings (mi,m
′
j)

and (mi+x,m
′
j−y) with x, y ≥ 1.

2.1.3 Topological Workflow Comparison
Regarding topological comparison of scientific workflows,

existing approaches can be classified as either a) structure
agnostic, i.e., based only on the sets of modules present in
two workflows, [34, 33, 36, 4]; b) based on substructures
of workflows, such as maximum common subgraphs [33, 18,
17] or graph kernels derived from frequent subgraphs [17];
or c) using the full structure of the compared workflows
[38]. We include an approach to topological comparison for
each of these classes. We denote the DAG of a workflow as
Gwf = (Vwf , Ewf ).

Sets of Modules – Analogous to the similarity measure
described in [34, 33, 36, 4], two workflows wf1 and wf2
are treated as sets of modules. The additive similarity score
of the module pairs mapped by maximum weight match-
ing (mw) is used as the non-normalized workflow similarity
nnsimMS , with sim(m,m′) denoting a module pair’s simi-
larity value:

nnsimMS =
∑

sim(m,m′) | (m,m′) ∈ mw(Vwf1, Vwf2)

Sets of Paths – As a slightly relaxed version of using
the maximum isomorphic subgraph for workflow compari-
son [33, 18, 17], the sets of all paths two DAGs are com-
prised of can be used to compare them by their maximum
similar subgraph [22]. We follow this notion and topologi-
cally decompose each workflow into its set of paths: Starting

from each node without inbound datalinks (the DAGs source
nodes), all possible paths ending in a node without further
outbound links (the DAGs sink nodes) are computed. All
pairs (P, P ′) from the so collected sets of paths PSwf1 and
PSwf2 are compared using the maximum weight non cross-
ing matching scheme (mwnc) to determine the additive sim-
ilarity score for each pair of paths:

sim(P, P ′) =
∑

sim(m,m′) | (m,m′) ∈ mwnc(Vwf1, Vwf2)

To determine the maximum non-normalized similarity of the
two workflows wrt their so compared sets of paths, a max-
imum weight matching (mw) of the paths is computed on
the basis of these pairwise path similarity scores:

nnsimPS =
∑

sim(P, P ′) | (P, P ′) ∈ mw(PSwf1, PSwf2)

Graph Edit Distance – Analogous to the work pre-
sented in [38], the full DAG structures of two workflows are
compared by computing the graph edit distance using the
SUBDUE [29] package. SUBDUE allows labels to identify
nodes in a graph, which it uses during the graph matching
process. To transform similarity of modules to identifiers, we
set the labels of nodes in the two graphs to be compared to
reflect the module mapping derived from maximum weight
matching of the modules during conversion of the workflows
to SUBDUE’s input format.

The workflows’ non-normalized similarity is then com-
puted as

nnsimGED = −costGED

For computing graph edit distance, we keep SUBDUE’s
default configuration which defines equal costs of 1 for any
of the possible edit operations (as in [32]). Testing several
different weighting schemes did not produce significantly dif-
ferent results.

2.1.4 Normalization
Whether or not to normalize the similarity values derived

from topological workflow comparison and how it is to be
done strongly depends on the intended use case. When, as
in our study, the interest is to determine overall workflow
similarity, the goal of the normalization step will be to max-
imize the information about how well two workflows match
globally. As an example, consider two sets of two workflows
each, containing 2 and 3 modules, and 98 and 99 modules,



respectively, compared by graph edit distance. If in both
cases the workflows match perfectly, with the exception of
1 module and 1 edge, the graph edit distance will be 2 in
both cases. Yet, intuitively, the similarity of the workflows
in the second set would be deemed higher. Indeed, experi-
mental evaluation showed that normalization wrt workflow
size provides significantly better results (see Section 5.1.3).

The step of normalization has been approached rather
heterogeneously in previous work (see Table 1). Next to
the consideration of workflow size taken therein, our gen-
eral intention is to acquire similarity values in the range of
[0,1]. For set based topological comparisons we resort to a
variation of the Jaccard index for set similarity: The Jac-
card index is used to express the similarity of two sets A

and B by their relative overlap |A∩B|
|A∪B| which is equivalent

to |A∩B|
|A|+|B|−|A∩B| . Our modification reflects the fact that

mapped elements of our sets of modules or paths are mapped
by similarity, not identity. Thus, the size |Vwf1 ∩ Vwf2| of
the overlap between the two module sets, for instance, is re-
placed by the overlaps maximum similarity score captured
by nnsimMS to derive the overall module set similarity of
two workflows:

simMS =
nnsimMS

|Vwf1|+ |Vwf2| − nnsimMS

The rational here is that where the classical Jaccard index
compares the number of mutual elements in the sets with
their overall number of (distinct) elements, our modification
compares the amount of similarity of similar elements from
the sets with the non-similar remainder. If two workflows
are identical, each module has a mapping with a similarity
value of 1. Then nnsimMS = |mw(Vwf1, Vwf2)| = |Vwf1| =
|Vwf2|, and simMS = 1.

For path sets, the normalization is analogous with |PSwf |
and nnsimPS .

For graph edit distance, we normalize the obtained edit
cost by the maximum cost possible. This maximum cost
depends on the costs assigned to each edit operation. For our
configuration of uniform costs of 1, we thus use the following
normalization:

simGED = 1− costGED

max(|Vwf1|, |Vwf2|) + |Ewf1|+ |Ewf2|
.

The rational here is that in the worst case, each node in the
bigger set of nodes is either substituted or deleted, while for
the edges a complete set of insertions and deletions may be
necessary.

2.1.5 Including Repository Knowledge
Knowledge derived from a repository of scientific work-

flows [37, 35], can be used in the structural comparison
process. We investigate two possible applications of such
knowledge.

Module Pair Preselection – When comparing sets of
modules Vwf1 and Vwf2 from two scientific workflows, the
general approach is to compare each pair of modules from
the Cartesian product Vwf1 × Vwf2 of the workflows’ mod-
ule sets. To reduce the amount of module pair comparisons,
restrictions can be imposed on candidate pairs by requir-
ing certain module attributes to match in a certain sense.
As modules of the same type are more likely to carry similar

(a) (b)

Figure 3: Sample importance projection of scientific work-
flow 1189 (a) and 2805 (b) (see also Fig. 1).

functionality, a first strategy for candidate selection requires
module types to match. As a second, less strict selection
strategy, we cast module types to equivalence classes based
on the categorization proposed in [37]. For instance, one
such class holds all web-service related module types. Mod-
ules within each such class may be compared and mapped
onto each other. This introduction of type equivalences was
motivated by the observation that in the used dataset of
Taverna workflows, especially web-service modules are typed
with a variety of identifiers, such as ’arbitrarywsdl’, ’wsdl’,
or ’soaplabwsdl’.

Importance Projection Preprocessing – Not all mod-
ules in a scientific workflow contribute equally to the work-
flows specific functionality: Modules used most frequently
across different workflows often provide trivial, rather un-
specific functionality, such as splitting a string into a list
of strings [35]. To account for this, we assign a score to
each module indicating the importance of the module for a
workflow’s specific functionality. Only modules with a score
above a configurable threshold are kept for further use in
module and workflow similarity computation. The work-
flow is thus projected onto its most relevant modules. In
order to make full use of this projection in all our structural
similarity measures, all paths between important modules
are preserved as edges in terms of the transitive reduction
of the resulting DAG. That is, if two important modules are
connected by one or more paths along non-important mod-
ules in the original workflow, they are connected by one edge
in the Importance Projection (ip). Figure 3 shows the result-
ing projection of our example workflows 1189 and 2805. The
selection of important modules is currently done manually
based on module types. Modules that perform predefined,
trivial local operations are removed.

2.2 Annotation-based Measures
Purely annotation-based methods use only textual infor-

mation recorded with the workflows in a repository. Such
information includes the workflow’s title, a free form text
description, and assigned keyword tags. Two approaches
to annotational similarity of scientific workflows have been
proposed which we include in our framework:

Bag of Words – Following the work of [11], workflows
are compared by their titles and descriptions using a bag-
of-words approach. Both title and description are tokenized
using whitespace and underscores as separators. The re-
sulting tokens are converted to lowercase and cleansed from
any non alphanumeric characters. Tokens are filtered for
stopwords. The workflows’ similarity is then computed as

simBW =
#matches

#matches + #mismatches



where #matches is the number of tokens found in both
workflows’ title or description, and #mismatches is the
number of tokens present only in either one workflow. This
quotient again corresponds to the Jaccard index for set sim-
ilarity. Please note that our algorithm presented here does
not account for multiple occurrences of single tokens. We did
try variants that do so, but evaluation showed that these
variants performed slightly worse than the one described
here (data not shown).

Bag of Tags – The keyword tags assigned to scientific
workflows in a repository can also be used for similarity as-
sessment, as done in [36]. The tags assigned to a workflow
are treated as a bag of tags and calculate workflow similarity
in the same way as in the Bag of Words approach described
above. Following the approach of [36], no stopword removal
or other preprocessing of the tags is performed. This also
aligns with our expectation of tags to be specifically prese-
lected by the workflow author.

3. PREVIOUS FINDINGS
After the in depth review of existing approaches to the

various steps of scientific workflow comparison in the previ-
ous section, we here summarize results of all previous eval-
uations we are aware of. The concrete type of evaluation
the proposed methods were subjected to varies with the in-
tended use case, e.g., clustering or similarity search. Ad-
ditionally, evaluation settings vary greatly from manual in-
spection of a methods output [11, 36, 34, 18] to systematic
evaluation against a small (and not publicly available) set
of expert provided truth [4] or against ground truth derived
from another method [17]. The following findings have been
reported:

Module Comparison – [4] found that similarity based
on semantic annotations of workflow modules provides bet-
ter results in workflow retrieval than using module similar-
ity based on edit distance of their labels. Note that in this
work, semantic annotations were manually assigned to mod-
ules, whereas scientific workflows in public repositories usu-
ally don’t contain such semantic information. Comparing
modules by matching of labels, [18] found the lowercasing of
labels to slightly improve ranked retrieval on the example of
a single query workflow.

Topological Comparison – [34] found workflows re-
garded similar by comparison of their sets of modules to also
be structurally similar upon manual inspection, indicating a
correlation between the modules used in a workflow and its
topology. Similarly, comparing the use of maximum com-
mon isomorphic subgraphs (MCS) and module label vectors
for workflow comparison, [33] found that both methods de-
liver similar results. Conversely, [17] found MCS to perform
better than bags of modules, and both of them to be slightly
outperformed by graph kernels.

Normalization – [18], as the only study we are aware of
to provide comparative information about this aspect, sug-
gests that normalization wrt workflow size improves results
of scientific workflow comparison.

Annotational Comparison – Approaches based on work-
flow annotations have been generally reported to deliver sat-
isfying results [11, 36, 17]. They have been found to perform
either as good as or better than structural approaches in
workflow comparison [36, 17].

4. EXPERIMENTAL SETUP
The goal of this work is an unbiased and comprehen-

sive benchmark of different methods for similarity search
in a corpus of scientific workflows. To this end, we re-
implemented all methods described in Section 3, structured
according to the steps of our comparison framework. We
collected a quite comprehensive corpus of similarity ratings
for a set of Taverna workflows from the myExperiment sci-
entific workflow repository [32]. A second set of workflows
was assembled from the Galaxy online repository [20]. Gold
standard ratings were obtained from 15 field experts and ag-
gregated using median ranking. We compare all algorithms
regarding ranking correctness and retrieval precision. These
topics are discussed in more detail in the following. Note
that all data will be made publicly available.

4.1 Workflow Dataset
myExperiment provides a download of all workflows pub-

licly available in its repository. For Taverna workflows, which
make up approx. 85% of myExperiment [35], this dataset
contains an rdf representation of the workflow structure,
along with attributes of the modules used and annotations
provided by authors. We transformed all workflows into a
custom graph format for easier handling. During this trans-
formation, subworkflows were inlined and input and output
ports were removed. The complete dataset contains 1483
workflows. myExperiment - and thus our dataset - is gener-
ally domain agnostic. To match the expertise of our expert
curators, we focussed on workflows from the life sciences do-
main in the evaluation. We will discuss possible implications
of this decision in Section 6.

To investigate transferability of findings to other work-
flow formats, we also created a secondary eval data set of
139 Galaxy workflows from the public Galaxy repository.
These workflows were transformed into the same internal
format as described above and processed using the exact
same methods. We performed most experiments with the
larger myExperiment data and used the Galaxy data set as
independent validation and to study data set specific prop-
erties and their implications on algorithm performance (see
Section 5.3).

4.2 Expert Ratings
We conducted a user study to collect manually assigned

similarity ratings for selected pairs of scientific workflows.
Overall, 15 domain experts from six different institutions
participated. Ratings were obtained in two phases:

In a first experiment, the goal was to generate a corpus
of ratings independent of a concrete similarity measure to
make it suitable for evaluation of large numbers of different
measures, and measures to be developed in the future. 24
life science workflows, randomly selected from our dataset,
(called query workflows in the following) were presented to
the users, each accompanied by a list of 10 other workflows
to compare it to. To obtain these 10 workflows, we ranked
all workflows in the repository wrt a given query workflow
using a naive annotation based similarity measure and drew
workflows at random from the top-10, the middle, and the
lower 30. The ratings were to be given along a four step Lik-
ert scale [24] with the options very similar, similar, related,
and dissimilar plus an additional option unsure. Unsure



Figure 4: Mean ranking correctness (bars) with upper and
lower stddev (errorbars), and mean ranking completeness
(black squares) for single experts’ rankings compared to the
ranking derived as BioConsert expert consensus.

user ratings were not further considered in the evaluation.
The ratings collected in this first experiment were used to
rank the 10 workflows for each of the query workflows. The
individual experts’ rankings were aggregated into consensus
rankings using the BioConsert algorithm [9], extended to al-
low incomplete rankings with unsure ratings. On the basis
of the generated consensus rankings, we evaluate the algo-
rithms’ ranking correctness in Section 5.1. Figure 4 inspects
inter-annotator agreement, comparing each single expert’s
rankings to the generated consensus using the ranking cor-
rectness and completeness measures described below in Sec-
tion 4.3. While we do see a few outliers, most experts are
rather d’accord about how workflows are ranked.

In a second experiment, the selected algorithms were run
to each retrieve the top-10 similar workflows from our com-
plete dataset of 1483 Taverna workflows for eight of the 24
query workflows from the first experiment. The results re-
turned by each tested algorithm were merged into single
lists between 21 and 68 elements long (depending on the
overlap in the algorithm’s top-10). Naturally, these lists did
contain workflows already rated in the first experiment. Ex-
perts were now asked to complete the ratings using the same
scale as before. The ratings provided in this second exper-
iment qualify each workflow in the search results of each
of the used algorithms wrt their user-perceived similarity.
Using these completed ratings we evaluate the algorithms’
retrieval precision in Section 5.2 (definition below). Differ-
ent experts’ opinions were aggregated as the median rating
for each pair of query and result workflow.

Altogether, we presented 485 workflow pairs (24 x 10 from
the first experiment and 255 non-overlapping pairs from the
second) to the 15 experts and received a total of 2424 rat-
ings.

4.3 Evaluation Metrics
As proposed in previous work [4], we use the measures of

ranking correctness and completeness [8] to compare the al-
gorithms’ rankings against the experts’ consensus rankings
in our first experiment. To evaluate the algorithms’ retrieval

performance on the ratings from our second experiment, we
compute precision at k of the algorithmic search results.

Ranking Correctness – For ranking correctness, the
order of each pair of elements in the rankings is compared. If
in both rankings the elements are not tied and their order is
the same, the pair’s order is called concordant. If their orders
differ, the pair is discordant. Pairs tied in either of the two
rankings do not count for correctness, which is computed as

correctness =
#concordant−#discordant

#concordant + #discordant

where #concordant and #discordant are the numbers of
concordant and discordant pairs, respectively. Correctness
values range from -1 to 1, where 1 indicates full correlation
of the rankings, 0 indicates that there is no correlation, and
negative values are given to negatively correlated rankings.

Ranking Completeness – Ranking completeness, on
the other hand, measures the number of pairs of ranked
elements that are not tied in the expert ranking, but tied in
the evaluated algorithmic ranking.

completeness =
#concordant + #discordant

#pairs ranked by experts

The objective here is to penalize the tying of elements by the
algorithm when the user distinguishes their ranking order.

Retrieval Precision at k – The algorithms’ retrieval
precision at k is calculated as

P@k(result list) =
1

k

k∑
i=1

rel(ri)

at each rank position 0 < k ≤ 10, with rel(ri) ∈ 0, 1 being
the relevance of the result at rank i. As the expert ratings on
whether a workflow is a relevant result for similarity search
with a given query workflow are quaternary by the Likert
scale used, we consider different relevance thresholds: very
similar, similar or related. For instance, only workflows with
a median rating of similar are regarded to be relevant.

5. RESULTS
We now present the results obtained from the two exper-

iments on algorithmic workflow ranking and workflow re-
trieval. We start with a baseline evaluation, focussing on
the methods of comparing workflows proposed in previous
work: Sets of Modules [34, 33, 36], workflow substructures
[33, 18, 17] in terms of their Sets of Paths [22], Graph Edit
Distance [38], Bags of Words [11], and tag-based workflow
comparison [36, 17] as Bags of Tags. We then investigate
each step of workflow comparison in detail, from different
approaches to module comparison to the inclusion of exter-
nal knowledge in the comparison process. As we will see,
each of these steps plays a defining role for result quality,
and using the right settings can significantly improve result
quality.

5.1 Workflow Ranking

5.1.1 Baseline Evaluation
Figure 5 shows mean ranking correctness and complete-

ness over all query workflows for each of the similarity al-
gorithms under investigation. Note that for Graph Edit



Figure 5: Mean ranking correctness (bars) with upper and
lower stddev (errorbars), and mean ranking completeness
(black squares) for similarity algorithms against BioConsert
expert consensus. Numerical values denote mean average
correctness.

Table 2: Algorithm shorthand notation overview

Notation Description

MS Module Sets topological comparison
PS Path Sets topological comparison
GE Graph Edit Distance topological comparison
BW Bag of Words annotation based comparison
BT Bag of Tags annotation based comparison

np No structural preprocessing of workflows
ip Importance projection workflow preprocessing

ta No module pair preselection for comparison
te Type equivalence based module pair preselection

pw0 Module comparison with uniform attribute weights
pw3 Module comparison on tuned attribute weights
pll Module comparison by edit distance of labels only
plm Module comparison by matching of labels only

Distance, we allowed match cost computation of each of the
240 pairs of scientific workflows to take a maximum of 5
minutes. 23 pairs not computable in this timeframe were
disregarded in the evaluation. All algorithms are used in
their basic, normalized configurations with uniform weights
on all module attributes. The simBW algorithm has the
best results in terms of ranking correctness. simBT and the
structural similarity measure simPS almost tie, followed by
simMS . simGE delivers worst performance and is the only
algorithm in this set with a statistically significant (p<0.05,
paired ttest) difference to simBW . These findings largely
confirm those of previous work (see Section 3) that anno-
tational measures outperform structural workflow similarity
— in certain settings. The good performance of simBW is
not surprising: Well written titles and descriptions capture
the main functional aspects of a workflow, and provide a
strong means for judging workflow similarity.

Interestingly, while most structural similarity measures
are complete in their ranking, both annotational measures
tie some of the compared workflows where experts see them
differently ranked. This is especially true for simBT , which,
additionally, is not able to provide rankings for four of the
given query workflows due to lack of tags. These workflows
were not considered for computation of simBT ranking per-
formance. Note that around 15% of the workflows in our
complete dataset lack tags.

As for the different structural comparison methods, simGE

is clearly outperformed by the other two. This indicates that
many functionally similar workflows, while sharing modules
and substructures, do differ in their overall graph layout.
We will see this observation confirmed in Section 5.1.4, when
workflows are preprocessed to remove structural noise.

(a)

(b)

Figure 6: Mean ranking correctness for (a) simMS with vari-
ous module attribute weightings, and (b) simPS and simGE

with pw3.

With these initial evaluation results as a baseline, we in-
spect several aspects of workflow comparison for their im-
pact on ranking performance.

5.1.2 Module Comparison (pX)
Figure 6a shows the impact of the different module simi-

larity schemes (see Section 2.1.1 and Table 2 for an overview
of the used notation) on ranking correctness by the example
of the simMS algorithm. Trends are similar for the other
measures (data not shown). Clearly, the uniform weighting
scheme pw0 used in the baseline evaluation of Figure 5 per-
forms worst (p<0.05). Using only the edit distance of labels
for module comparison (pll) is on par with the more complex
scheme pw3 (using refined weights on various attributes) in
terms of mean ranking correctness. Note that there is a
minimal reduction in ranking completeness for pll, resulting
from the less fine grained similarity assessment. This reduc-
tion in completeness is much more pronounced when using
label matching (plm) for assessing module similarity. Fur-
ther investigation showed that the striking increase in rank-
ing correctness plm achieves is in fact due to this reduction
in ranking completeness, as pairs of workflows tied by the
algorithmic ranking are not accounted for when determin-
ing ranking correctness: while the most similar workflows
are ranked high, less similar ones are not distinguished in
terms of their similarity any more.
The (to us) surprisingly good performance of the label only
approaches, especially pll, shows that while the author base
of the workflows in our dataset is heterogeneous, the la-
bels given to modules mostly do reflect their function and
thus convey measurable information about their similarity.
Yet, the strict matching of labels, as used in many previous
studies, offers to little fine grained similarity for differenti-
ated assessment of workflow similarity. We will see how this
observation affects workflow retrieval in Section 5.2.

The change in the algorithms’ ranking performance in-
duced by both the pw3 and pll weighting schemes (see Fig. 6a
and b) puts these algorithms ahead of simBW , if yet not sig-
nificantly. The exception here is simGE , where the impact of
different weighting schemes is less pronounced. The reason
for this most probably lies in the specific type of structural
comparison applied: The more overall workflow topology is
taken into account, the less do differences in similarity as-
sessment of single pairs of modules matter.

From here on, we denote the module weighting scheme



Figure 7: Mean ranking correctness for simMS with greedy
mapping of modules and simGE without normalization of
edit distance.

(a)

(b)

Figure 8: Mean ranking correctness for (a) simMS , and (b)
simPS and simGE when including external knowledge.

used with an algorithm by specifying the corresponding pX
in its name (e.g., GE pw3 refers to the simGE using the pw3
module attribute weighting scheme for module comparison).

5.1.3 Module Mapping and Normalization
We investigated the impact of different module mapping

strategies and of using normalization or not. Figure 7 ex-
emplifies our findings on two settings that have been used
in previous approaches: (1) Greedy mapping of modules
in the Module Sets measure [34] has no impact on ranking
quality when compared to using maximum weight matching
(see Fig. 5). Remarkably, this indicates that in the set of
workflows studied, the mappings of modules are rather non-
ambiguous, i.e. modules mostly have a single best mapping
partner in the respective other workflow. (2) The omission
of normalization of similarity values with Graph Edit Dis-
tance [38], on the other hand, significantly reduces ranking
correctness (p<0.05) when compared to results for normal-
ized simGE (see Fig. 5). This data confirms the results from
[18], but on a much larger data base.

5.1.4 Including Repository Knowledge
Module Pair Preselection (tX) – Figure 8a (first bar)

shows the impact of the type equivalence (te) module pair
preselection strategy proposed in Section 2.1.5 for simMS .
The trends of these changes are similar for all algorithms:
While strict type matching significantly decreases the al-
gorithms’ ranking correctness (data not shown), the use of
equivalence classes results in correctness values comparable
to those without any restrictions on module pair selection.
This is remarkable, as it shows that a) the technical classes
of modules (web-service, script, local operation) do play an
important role in determining a modules function; and b)
this technical distinction of modules is also detected when
comparing all pairs of modules - even when using only labels.

While te doesn’t lead to an improvement of user perceiv-
able ranking quality, the exclusion of certain module pairs

(a)

(b)

Figure 9: Mean ranking correctness for (a) single algorithms’
best configurations (shaded: baseline evaluation, see Fig. 5),
and (b) the best ensembles of two (see text).

from comparison yields a reduction of such pairwise module
comparisons by a factor of 2.3 (172k/74k on the evaluation
dataset of experiment 1) and thus a notable runtime reduc-
tion. From here on, we denote the module pair selection
used with an algorithm by specifying ’te’ for equivalence
class based selection and ’ta’ for selection of all pairs of
modules in the algorithm’s name.

Importance Projection (Xp) – As shown in Figure 8a
and b, most algorithms benefit from adding Importance
Projection (ip) preprocessing (Section 2.1.5), with the ex-
ception of simPS showing stable results. The reduction in
structural noise is especially visible in simGE : As different
ways of transforming intermediate results within the work-
flow are removed, similarities in the constellations of the
most specific functional modules become more pronounced.
This positive impact of ip on the correlation of algorithm
rankings with expert rankings confirms our intention of re-
moving presumably unimportant modules, and confirms our
selection of modules to keep. Yet, such manual selection
is only possible with both in depth understanding of the
types of modules used in a dataset of scientific workflows,
and knowledge about their specific relevance to a workflow’s
functionality. An interesting line of research to be explored
in future work are methods to perform such a preselection
automatically, for instance, based on module usage frequen-
cies.

As a side effect, ip leads to a decrease in the average
number of modules per workflow from 11.3 to 4.7 in our
dataset, resulting in a significant increase in computational
performance of all structural algorithms. This effect is espe-
cially relevant for Graph Edit Distance computation: where
simGE was able to compute the similarities of only 217 of
the 240 workflow pairs of our ranking experiment within the
per-pair timeout of 5 minutes without using ip, it can now
compute all pairs but one. From here on, we denote the use
of importance projection with an algorithm by specifying ’ip’
in its name, and ’np’ for its omission.

5.1.5 Best Configurations
The three modifications pX (module comparison scheme),

tX (module pair preselection), and Xp (importance projec-
tion preprocessing) can be used in all combinations with
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Figure 10: Mean retrieval precision at k against the median expert rating for simMS in various configurations of module
similarity assessment (pX ), with and without ip and te for relevance threshold (a) related, (b) similar, and (c) very similar.
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Figure 11: Mean retrieval precision at k of structural and annotational similarity algorithms for median expert rated relevance
of (a) related, (b) similar, and (c) very similar.

each of the algorithms, resulting in a total of 72 different
configurations (not considering different methods for mod-
ule mapping and normalization). For each algorithm, Fig-
ure 9a shows the configuration with its best standalone rank-
ing performance in direct comparison to the annotation-
based approaches: When tuned appropriately, algorithms
based on workflow structure outperform annotation based
approaches, except when very strict graph comparison is
applied as in simGE . Note that the differences between pw3
and pll are minimal and not significant.

5.1.6 Ensembles of Algorithms
Just as consensus can be generated by aggregating ex-

pert rankings, the rankings produced by the similarity al-
gorithms can be combined into a single ranking. We tested
such ensembles by simply taking the average of the scores
of selected individual ranking algorithms. This especially
allows to integrate the different perspectives of annotational
and structural workflow similarity. We ran experiments for
all combinations of two algorithms and indeed found the
best performing ensembles to aggregate simBW and either
simMS or simPS with ip, te and pll. The resulting im-
provement of ranking performance of these ensembles over
any algorithm used on its own is both significant (p < 0.05)
and substantial (see Fig. 9b). As implied by the reduction
of standard deviation, results are also much more stable.

5.2 Workflow Retrieval
We investigate the algorithms’ retrieval performance over

a whole repository in terms of retrieval precision over the
top 10 search results. We found the results of the first exper-
iment mostly confirmed and only report the most interesting
findings here. We first inspect results for different module
similarity schemes, followed by a comparison of results on
the level of whole workflows. The use of external knowledge
is taken into account on both levels.

5.2.1 Module Comparison
Figure 10 graphs retrieval precision at k for simMS with

various module similarity schemes pX, with and without ip
and te. Three different relevance thresholds related, similar,
and very similar are considered. Interestingly, the differ-
ences in retrieval quality decrease with the increase in rele-
vance level up to the point where all configurations deliver
similar performance for retrieval of very similar workflows.
Apparently, finding the most similar results is independent
of the module similarity scheme used. For the retrieval of re-
lated workflows, on the other hand, where more fine grained
assessment of similarity is required, differences between the
schemes become visible. The strict label matching approach
of plm performs worst, confirming our observations from the
previous experiment. pw3 and pll tie when not using exter-
nal knowledge. The inclusion of such knowledge improves
performance of all configurations, and puts pll ahead of pw3,
both in terms of mean precision and in terms of standard
deviation, which is substantially smaller (not shown).

5.2.2 Workflow Similarity
Figure 11 shows retrieval precision for the structural and

annotational workflow comparison approaches under evalu-
ation. The structural approaches are used with the pll mod-
ule similarity scheme of edit distance comparison of labels,
and have been applied with and without ip and te. Note that
for simGE we only include results for preprocessed workflow
graphs (ip). The strict topological comparison applied by
simGE does find the most similar workflows equally well as
its structural contenders, but provides much worse results
when looking for similar or related workflows: As simGE

puts a strong emphasis on workflow structure, it also re-
trieves workflows from other domains than the query work-
flow, which happen to be similar to the query workflow in
terms of their graph structure. simMS and simPS provide
equivalent result quality and provide best results for both



Figure 12: Mean ranking correctness for algorithms with
different module comparison schemes (see text) on Galaxy
workflows.

related and similar workflows. Notice that the difference
between configurations with ip and te and those without
is most pronounced for retrieval of related workflows, where
the inclusion of external knowledge improves both mean pre-
cision and stability of the algorithms’ performance in terms
of standard deviation from the mean. simBW , while less pre-
cise in retrieval than simMS and simPS , is best at retrieving
related and similar workflows, while it fails to deliver work-
flows with a median expert rating of very similar within the
very top of its search results for the set of workflows studied.

5.3 Evaluation on Second Data Set
Figure 12 shows ranking results on our second dataset of

Galaxy workflows, for which we repeated our first experi-
ment on workflow ranking using 8 query workflows. The
module comparison schemes used are gw1, comparing a se-
lection of attributes with uniform weights, and gll, compar-
ing only module labels by their edit distance. The most
striking observation is that simBW doesn’t provide satisfy-
ing results on this data set, as the Galaxy workflows carry
less annotations. While, overall, results for the structural
algorithms are less convincing than on Taverna workflows,
our observations are generally confirmed: structure agnos-
tic comparison by simMS and comparison respecting sub-
structures by simPS outperform the strict comparison of
full workflow structure performed by simGE . Interestingly,
here label-only comparison of modules offers less correct re-
sults than comparison of multiple attributes. As previously
observed, simPS provides more stable results.

6. CONCLUSION
In this study, we compared a multitude of existing ap-

proaches to scientific workflow comparison on the to-date
largest human-curated corpus of similarity ratings for sci-
entific workflows. We paid special attention to deconstruct
every method into their most important conceptual steps
and to align these to a common framework, with the goal to
increase comparability and to be able to pinpoint observed
differences in result quality to their precise cause. Our eval-
uation clearly showed that each step in the process of work-
flow comparison makes an important contribution to overall
result quality. While, for practical reasons, our evaluation
did focus on workflows from the life sciences domain, the
used algorithms are domain agnostic and do not make use
of any domain specific knowledge. We do, however, believe
that the life sciences are a particularly difficult domain for
workflow comparison, due to the large number of different
groups developing different tools (and workflows), even for

similar tasks, leading to difficult task-matching issues. Our
most important findings are:

1. For module comparison, the edit distance of module
labels seems to be the best approach: It provides best re-
sults in retrieval and does not require refinement of multiple
attribute weights; and it provides a more fine grained as-
sessment of similarity than label matching, which, in turn,
can only be recommended for retrieval of the few most sim-
ilar results. Of course, these findings are only valid if labels
are telling, i.e., are indicative for the functionality of the la-
beled module. Such workflows include the studied Taverna
workflows from the myExperiment repository, but also the
majority of workflows found in the SHIWA repository [2].

2. We have shown that structural approaches can out-
perform annotational ones when configured appropriately.
Especially in repositories where workflows are not well an-
notated by descriptions or tags, such as the Galaxy repos-
itory [20] inspected here, or the CrowdLabs repository of
VisTrails workflows [28], structural approaches are indispen-
sible. While full structural comparison by Graph Edit Dis-
tance appears to be to strict - similar to label matching on
the module level -, comparing workflows either by substruc-
tures such as paths or by the sets of modules they contain
provide comparably convincing results. This is good news,
as module set comparison is computationally far less com-
plex than comparing substructures. Yet, the fact that Path
Sets comparison is more stable in its results across different
configurations indicates room for further research to include
topological information with less computational complexity.

3. Normalization of the similarity values derived from
workflow comparison wrt workflow size is, as clearly shown,
indispensable for similarity search of scientific workflows.

4. Next to the intrinsic steps of workflow comparison,
we have also looked at several options for further tuning.
The use of external knowledge, potentially derived from the
workflow repository itself, reduces computational complex-
ity and often improves result quality. Yet, manual acquisi-
tion of such knowledge as done in this study, requires ex-
tra work to be invested prior to comparisons; furthermore,
properties derived from a given repository usually are not
transferable to other repositories. Finding suitable ways to
automatically derive the required knowledge from the repos-
itory, is an interesting area of future research.

5. Another line of future work is to further investigate
ensembles of different algorithms: we have shown that such
ensembles can significantly improve result quality when com-
pared to single algorithms. The approach of using the algo-
rithms’ mean similarity presented here provides a starting
ground, leaving room for testing advanced methods such as
boosting or stacking [26].

Finally, we plan to apply our framework to similarity
search in business model repositories.
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[25] B. Ludäscher, M. Weske, T. McPhillips, and
S. Bowers. Scientific workflows: Business as usual?
Business Process Management, pages 31–47, 2009.

[26] R. Maclin and D. Opitz. Popular ensemble methods:
An empirical study. arXiv:1106.0257 preprint, 2011.

[27] F. Malucelli, T. Ottmann, and D. Pretolani. Efficient
labelling algorithms for the maximum noncrossing
matching problem. Discrete Applied Mathematics,
47(2):175–179, 1993.

[28] P. Mates, E. Santos, J. Freire, and C. Silva.
Crowdlabs: Social analysis and visualization for the
sciences. SSDBM, pages 555–564, 2011.

[29] B. Messmer and H. Bunke. Efficient subgraph isomor-
phism detection: a decomposition approach. Know-
ledge and Data Engineering, 12(2):307–323, 2000.

[30] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger,
R. Greenwood, K. Carver, M. Pocock, A. Wipat, and
L. P. Taverna: a tool for the composition and
enactment of bioinformatics workflow. Bioinformatics,
20(17):3045–3054, 2003.

[31] E. Rahm and P. A. Bernstein. A survey of approaches
to automatic schema matching. VLDB Journal,
10(4):334–350, 2001.

[32] D. Roure, C. Goble, and R. Stevens. The design and
realisation of the myexperiment virtual research
environment for social sharing of workflows. Future
Generation Computer Systems, 25(5):561–567, 2009.

[33] E. Santos, L. Lins, J. Ahrens, J. Freire, and C. Silva.
A first study on clustering collections of workflow
graphs. IPAW, pages 160–173, 2008.

[34] V. Silva, F. Chirigati, K. Maia, E. Ogasawara,
D. Oliveira, V. Braganholo, L. Murta, and
M. Mattoso. Similarity-based workflow clustering.
JCIS, 2(1):23–35, 2011.

[35] J. Starlinger, S. Cohen-Boulakia, and U. Leser.
(Re)Use in Public Scientific Workflow Repositories.
SSDBM, pages 361–378, 2012.

[36] J. Stoyanovich, B. Taskar, and S. Davidson. Exploring
repositories of scientific workflows. WANDS, pages
7:1–7:10, 2010.

[37] I. Wassink, P. Vet, K. Wolstencroft, P. Neerincx,
M. Roos, H. Rauwerda, and B. T.M. Analysing
scientific workflows: Why workflows not only connect
web services. Services, pages 314–321, 2009.

[38] X. Xiang and G. Madey. Improving the reuse of
scientific workflows and their by-products. ICWS,
pages 792–799, 2007.

[39] U. Yildiz, A. Guabtni, and A. Ngu. Business versus
scientific workflows: A comparative study. Services,
pages 340–343, 2009.


