
15

Improving Data Quality by Source Analysis
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In many domains, data cleaning is hampered by our limited ability to specify a comprehensive set of integrity
constraints to assist in identification of erroneous data. An alternative approach to improve data quality is
to exploit different data sources that contain information about the same set of objects. Such overlapping
sources highlight hot-spots of poor data quality through conflicting data values and immediately provide
alternative values for conflict resolution. In order to derive a dataset of high quality, we can merge the
overlapping sources based on a quality assessment of the conflicting values. The quality of the resulting
dataset, however, is highly dependent on our ability to asses the quality of conflicting values effectively.

The main objective of this article is to introduce methods that aid the developer of an integrated system
over overlapping, but contradicting sources in the task of improving the quality of data. Value conflicts
between contradicting sources are often systematic, caused by some characteristic of the different sources.
Our goal is to identify such systematic differences and outline data patterns that occur in conjunction with
them. Evaluated by an expert user, the regularities discovered provide insights into possible conflict reasons
and help to assess the quality of inconsistent values. The contributions of this article are two concepts of
systematic conflicts: contradiction patterns and minimal update sequences. Contradiction patterns resemble
a special form of association rules that summarize characteristic data properties for conflict occurrence.
We adapt existing association rule mining algorithms for mining contradiction patterns. Contradiction pat-
terns, however, view each class of conflicts in isolation, sometimes leading to largely overlapping patterns.
Sequences of set-oriented update operations that transform one data source into the other are compact
descriptions for all regular differences among the sources. We consider minimal update sequences as the
most likely explanation for observed differences between overlapping data sources. Furthermore, the order
of operations within the sequences point out potential dependencies between systematic differences. Find-
ing minimal update sequences, however, is beyond reach in practice. We show that the problem already is
NP-complete for a restricted set of operations. In the light of this intractability result, we present heuristics
that lead to convincing results for all examples we considered.
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1. INTRODUCTION

Decreasing cost of generating and maintaining scientific data has led to an enormous
increase in the number of scientific data sources on the Web. For example, the num-
ber of entries in the NAR Molecular Biology Database Collection has increased from
202 entries in 1999 [Burks 1999] to 1,107 entries in 2009 [Galperin and Cochrane 2009].
Within this multitude of sources, there are various examples of overlaps between them
for the following reasons.

—Data Replication. Genome data is frequently copied, and modified by different re-
search projects that publish their results as new data sources. This is especially
true for curated databases, where data is constantly copied, altered, extended, and
corrected between hundreds of databases [Buneman et al. 2008].

—Different Groups Analyzing, or Observing, the Same Set of Real-World Objects. A
common practice in scientific research is to distribute the same set of samples, such
as clones, proteins, or patient’s blood, to different laboratories for analysis to en-
hance reliability of the final results [Zehetner and Lehrach 1994]. A typical example
of the same set of clones being sequenced multiple times is the Human Genome
Project [International Human Genome Sequencing Consortium 2004; Venter et al.
2001]. In order to achieve the targeted exactness of 99.99% each base is sequenced
six times on average [Dennis and Gallagher 2002].

Whenever data on a given set of objects is distributed or generated without a controlling
scheme enforcing consistency, there is a high probability that the actual values will dif-
fer, either already from the start due to different measurements, or after changes made
independently in the different sources. Other reasons can be errors in the replication
mechanism, different levels of actuality of the data, or usage of different vocabularies
to describe the same concepts. We refer to these differences as conflicts or contradic-
tions. Note that conflicts need not be rooted in actual errors, but may as well represent
different points-of-view on the same fact [Bleiholder and Naumann 2008].

Example 1.1. Throughout the article, we use an example from structural biology to
showcase our contributions. The OpenMMS project [Bhat et al. 2001] and the Macro-
molecular Structure Relational Database (E-MSD) [Boutselakis et al. 2003] are two
data cleaning projects that focus on different quality aspects of the Protein Structure
Database (PDB) [Berman et al. 2000]. Both work independently from each other on a
copy of the original PDB. When comparing the OpenMMS project data with E-MSD at
a given point in time, we found hundreds of thousands of contradicting values between
them. These contradictions not only affected their respective focus of cleansing activi-
ties, but also such fundamental metadata as the date-of-creation of a PDB entry. Ana-
lyzing these contradictions using the algorithms detailed later, we found a regularity in
this error and were able to track down its root to a parser error in the OpenMMS project.

Example 1.2. An example of conflicts between independently generated data was
published by Steven E. Brenner [Brenner 1999]. He compared functional annotations
for the Mycoplasma genitalium genome generated independently by three different
groups to estimate the accuracy of automatic functional annotation. He found that of
the 468 genes of this bacterium only 340 were annotated by two or more groups, and
that for about 8% of these genes the functional descriptions of at least two of the groups
were completely incompatible.

These examples not only demonstrate the existence of conflicts between overlapping
data sources, but also show the importance of spotting them for guiding a systematic
data cleaning process. Cleaning scientific data, in general, is hampered by our incom-
plete or fuzzy knowledge of domain regularities, which limits our ability to specify a
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comprehensive set of integrity constraints to identify erroneous data. Integrating data
sources with overlapping scope can help to highlight hot-spots of poor data quality as
these often appear as clusters of contradicting values [Müller et al. 2003]. Conflicts,
once detected, may be resolved by domain experts familiar with domain constraints,
regularities, and possible pitfalls in the data generation process; however, these experts
are often overwhelmed by the sheer number of conflicts [Baumgartner et al. 2007]. On
the other hand, conflicts between overlapping data sources often are systematic, that
is, they are produced not at random, but due to some characteristics of the different
systems (such as the parser error in the example given before). A frequent reason for
conflicts is the usage of different vocabularies or measurement units. For instance,
one data source might describe the function of a gene as “metalloenzyme inhibitor ac-
tivity” (term A), while another source uses the term “metalloenzyme inhibition” (term
B). Assuming identical methods to resolve gene function, we can expect to always find
term A in the first source when there appears term B in the second; assuming different
methods, we can expect to frequently find term A in the first source when there appears
term B in the second. In this article, we develop methods for finding such commonalities
in conflicts when faced with thousands of individual contradictions. We contribute by
developing and investigating two concepts of systematic conflicts. Both concepts rely
on identifying meaningful patterns that occur in conjunction with conflicts between
contradicting data sources.
—Contradiction patterns. Contradiction patterns summarize data properties that are

characteristic for the occurrence of conflicts between overlapping sources for a single
attribute. These patterns help in providing answers to questions like “Which are the
conflict-causing attributes, values, or value pairs?” or “What kind of dependencies
exists between the occurrences of contradictions and certain (conflicting) data values
in different attributes?”. To this end, we introduce contradiction patterns, which are
a special kind of association rule [Agrawal and Srikant 1994].

—Minimal update sequences. Contradiction patterns essentially view each conflict
in isolation, which often leads to largely redundant and overlapping patterns. We
therefore introduce a second way to understand systematic conflicts using a process-
oriented model by studying sequences of update operations. Assuming that the di-
vergent sources have a common root (like in Example 1.1), we develop algorithms
that find the minimal number of set-oriented update operations that can explain the
differences. These sequences are a compact representation for all conflicts between a
pair of data sources; furthermore, the order of operations within the sequences point
out potential dependencies between systematic differences.
Evaluated by an expert user, contradiction patterns and minimal update sequences

act as descriptive information providing insights towards: (i) possible conflict reasons,
and (ii) the quality of individual values. Within this space, our main contributions are
as follows.

—We describe a model of systematic conflicts based on contradiction patterns. We
present an adaptation of existing association rule mining algorithms to allow for
efficient contradiction pattern mining over large datasets. Similar to the measures
of support and confidence for association rules, we define interestingness measures
for contradiction patterns that allow us to restrict the set of patterns returned by
our algorithm to those most helpful for the expert user.

—We introduce minimal update sequences as an alternative model for systematic
conflicts. Minimal update sequences fully take into account dependencies between
conflicts, but are more complex to compute than contradiction patterns.

—We prove that, even for a restricted class of update operations, the problem of finding
minimal update sequences is NP-complete.
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Fig. 1. The three-step data integration process.

—We present different algorithms that allow computation of minimal update se-
quences. However, in the light of our intractability result, we also present scalable
heuristics to compute short (yet not necessary minimal) update sequences between
pairs of large data sources.

—We provide experimental evaluations of our models and algorithms using real-world
and synthetic data.

The remainder of this article is structured as follows: Section 2 defines the necessary
concepts and notation. Section 3 defines contradiction patterns while Section 4 devel-
ops algorithms for mining them. Section 5 defines update distance between databases.
Section 6 presents algorithms to determine minimal update sequences. Section 7 de-
fines problem variations and establishes complexity bounds for one of these variations.
Heuristic algorithms are presented in Section 8. We review related work in Section 9.
Section 10 concludes the article and discusses future work.

2. PRELIMINARIES

The methods and algorithms presented in this article assume a three-step data inte-
gration process depicted in Figure 1 [Bleiholder and Naumann 2008] (see Stein [2003],
Hernandez and Kambhampati [2004], and Louie et al. [2007] for surveys on integrating
biological databases). Given a pair of databases, the schema mapping and transforma-
tion step transforms each database to match a unified global schema (see Abiteboul
et al. [1999], Rahm and Bernstein [2001], Lenzerini [2002], and Fagin et al. [2005]).
The first step results in a pair of databases structured under the same schema. The
object identification step assigns a global unique object identifier to each entry in the
resulting databases (see Elmagarmid et al. [2007] and Winkler [1999] for surveys). Ob-
ject identifiers are used to identify matching entries between different databases. The
conflict resolution step resolves value conflicts between matching tuples to derive an
integrated database [Naumann and Häussler 2002; Bleiholder and Naumann 2008].
This work contributes to the conflict resolution step. Information about systematic
conflicts is derived after object identification. The results may then be used to guide
conflict resolution, or to improve the first two steps of the integration process. We now
define the necessary concepts and notations used throughout the article (see Table I
for an overview).

2.1. Contradicting Databases

Databases. Within this article, we solely consider relational databases containing
a single relation following schema R(A1, . . . , An). Let dom(A) denote the domain of
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Table I. Summary of Notations Used Throughout This Article

Contradicting Databases
r Database instance.
t{ j} Tuple with primary key value j.
v(r1, r2) View of matching pairs between r1, r2.
u(r1, r2) Unmatched tuples from r1.
CA Conflict indicator for attribute A.
vC (r1, r2, A) Set of matching pairs with conflict in A.
vN(r1, r2, A) Set of matching pairs without conflict in A.
conflicts(r1, r2) Number of conflicts between r1 and r2.

Data Patterns
τ Term.
ρ Pattern.
sup(τ, r) Support of τ in r.
sup(ρ, r) Support of ρ in r.
PC (r) Set of closed patterns for r.

Database Transformer
ψ Update operation.
ψINS Insert operation.
ψDEL Delete operation.
ψMOD Modification operation.
� Update sequence.
�U (r1, r2) Update distance between r1, r2.

attributes A ∈ R and r ⊆ dom(A1) × · · · × dom(An) denote database instances. For
tuples t ∈ r and attributes A ∈ R, let t[A] denote the value of tuple t for attribute A.
We assume the existence of a primary key constraint for schema R. Without loss of
generality, we assume A1 to be the primary key attribute. We use ID as a synonym
for A1. We refer to the tuple with primary key value j by t{ j}. Note that the equal
database schemas result from the mapping and transformation step, and that primary
keys are assigned within the object identification step. The primary key constraint
further ensures that the individual databases are free of duplicates.

View of Matching Pairs. Given a pair of databases r1, r2. A pair of tuples t1 ∈ r1, t2 ∈
r2 is called a matching pair, if t1, t2 possess identical primary key values, that is,
t1[ID] = t2[ID]. A pair of databases is called overlapping, if there exists at least one
matching pair between them. Conflicts between overlapping databases occur within
matching pairs that disagree on certain attribute values, that is, whenever t1[ID] =
t2[ID] ∧ t1[A] �= t2[A] for A ∈ R. A pair of databases is called contradicting, if there
exists at least one conflict between them. For mining contradiction patterns, we define a
relational representation for the set of matching pairs and conflicts between them. For
a pair of databases r1, r2, the view of matching pairs, denoted by v(r1, r2), is a relational
instance over schema V (ID, A21 , A22 , CA2 , . . . , An1 , An2 , CAn). Attributes Ai1 and Ai2
are renamed versions of attribute Ai ∈ R, 2 ≤ i ≤ n, that represent the different values
for Ai in matching pairs. Attribute CAi is called the conflict indicator for attribute Ai,
and dom(CAi ) = {true, f alse}.

The view of matching pairs is the result of joining r1, r2 on the ID attribute and
adding a conflict indicator for attributes A2, . . . , An. We use the following SQL query to
generate the view of matching pairs.
SELECT ID, r1.A2 AS A21, r2.A2 AS A22,
CASE r1.A2 WHEN r2.A2 THEN f alse ELSE true AS CA2,
. . .,
r1.An AS An1, r2.An AS An2,
CASE r1.An WHEN r2.An THEN f alse ELSE true AS CAn

FROM r1, r2 WHERE r1.ID = r2.ID
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Databases:

ID Tissue Location Cofactor Disease

1 Lung Peroxisome Fe+ Lup. Nep.
2 Liver Peroxisome FAD P–NALD
3 Brain Peroxisome Zn+ RCDP2
4 Kidney Peroxisome FAD RCDP3
5 Kidney Membrane Fe+ VDDR–1
6 Heart Membrane Zn+ HSN1
7 Kidney Cytoplasm Mg+ VDDR–1
8 Heart Cytoplasm FAD HSN1

r1 r2

ID Tis1 Tis2 CTis Loc1 Loc2 CLoc Cof1 Cof2 CCof Dis1 Dis2 CDis

1 Lung Lung false Peroxisome Peroxisome false Fe+ Iron true Lup. Nep. Lup. Nep. false
2 Liver Liver false Peroxisome Peroxisome false FAD Zn+ true P–NALD VDDR–1 true
3 Brain Brain false Peroxisome Peroxisome false Zn+ Zn+ false RCDP2 VDDR–1 true
4 Kidney Kidney false Peroxisome Peroxisome false FAD Zn+ true RCDP3 VDDR–1 true
5 Kidney Kidney false Membrane Membrane false Fe+ Iron true VDDR–1 VDDR–1 false
6 Heart Heart false Membrane Membrane false Zn+ Zn+ false HSN1 VDDR–1 true
7 Kidney Kidney false Cytoplasm Cytoplasm false Mg+ Mg+ false VDDR–1 VDDR–1 false
8 Heart Heart false Cytoplasm Cytoplasm false FAD FAD false HSN1 HSN1 false

v(r1, r2)

ID Tissue Location Cofactor Disease

1 Lung Peroxisome Iron Lup. Nep.
2 Liver Peroxisome Zn+ VDDR–1
3 Brain Peroxisome Zn+ VDDR–1
4 Kidney Peroxisome Zn+ VDDR–1
5 Kidney Membrane Iron VDDR–1
6 Heart Membrane Zn+ VDDR–1
7 Kidney Cytoplasm Mg+ VDDR–1
8 Heart Cytoplasm FAD HSN1

Patterns:

ρ1 = {(Location, ’Peroxisome’), (Cofactor, ’Zn+’)}
ρ2 = {(Location, ’Peroxisome’), (Cofactor, ’Zn+’), (Disease, ’VDDR-1’)}

Contradiction pattern for Disease:

ρDisease1 = {(CTis, false), (CLoc, false), (Cof2, ’Zn+’), (Dis2, ’VDDR-1’)}
ρDisease2 = {(Loc1, ’Peroxisome’), (Loc2, ’Peroxisome’)}

Update sequence:

(1) UPDATE r1 SET Cofactor = ’Iron’ WHERE Cofactor = ’Fe+’

(2) UPDATE r1 SET Cofactor = ’Zn+’ WHERE Location = ’Peroxisome’ AND Cofactor = ’FAD’

(3) UPDATE r1 SET Disease = ’VDDR-1’ WHERE Cofactor = ’Zn+’

Fig. 2. A pair of contradicting databases containing information about the predicted involvement of proteins
in certain diseases. Also shown is their view of matching pairs, example patterns, and contradiction patterns,
and one of their minimal update sequences.

Example 2.1. Consider the pair of contradicting databases in Figure 2. Each
database contains information about the same set of proteins. Individual proteins
are identified by their ID. For each protein the databases list the tissue it occurs in,
the subcellular location, the cofactor that activates the protein function, and the pre-
dicted disease the protein is involved in. Contradicting values are highlighted in gray.
Figure 2 also shows the view of matching pairs v(r1, r2).

For each attribute, we further define two disjoint subsets of the view of matching
pairs: the set of conflicting matching pairs, and the set of nonconflicting matching
pairs. Let vC(r1, r2, A) = σCA=true(v(r1, r2)) denote the set of matching pairs that have
a conflict in A. Likewise, let vN(r1, r2, A) = v(r1, r2) \ vC(r1, r2, A) denote the subset of
matching pairs without a conflict in A. Based on these definitions, we compute the
number of conflicts between the databases, denoted by conflicts(r1, r2), as the sum of
the number of conflicting matching pairs for each attribute, that is, conflicts(r1, r2) =
�A∈R\{ID}|vC(r1, r2, A)|.
Unmatched Tuples. There may exist tuples in r1, r2 without a matching partner. We call
these tuples unmatched. Given a pair of databases r1, r2, the set of unmatched tuples
from r1, denoted by u(r1, r2), is defined as r1 \ (r1 �ID r2).
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2.2. Data Patterns

Terms and Patterns. Terms and patterns are conjunctive queries that form the basis for
contradiction patterns and update operations. A term τ over schema R is an attribute-
value pair (A, x), with A ∈ R and x ∈ dom(A). We define attr(τ ) = A and val(τ ) = x.
A term (A, x) represents a query that returns all tuples t that satisfy the condition
t[A] = x. We use τ (r) as a short form of σattr(τ )=val(τ )(r). A pattern ρ over schema R is
a set of terms {τ1, . . . , τk} and ρ(r) denotes the query σattr(τ1)=val(τ1)∧...∧attr(τk)=val(τk)(r). The
empty pattern, denoted by ρ∅, is satisfied by any tuple, that is, ρ∅(r) = r. We further
define the support that a term or pattern has in a database r as the fraction of tuples
that satisfy them, that is, sup(τ, r) = |τ (r)|

|r| , and sup(ρ, r) = |ρ(r)|
|r| , where | · | denotes the

size of a set.

Example 2.2. Pattern ρ1 in Figure 2 is satisfied by tuple t{3} in r1, and by tuples
t{2} – t{4} in r2. Pattern ρ2 is only satisfied by tuples t{2}–t{4} in r2.

Closed Patterns. Patterns are used within this article to summarize sets of tuples,
that is, the set of tuples they select. Different patterns, however, may select the same set
of tuples. In order to avoid such descriptional redundancies, we define closed patterns.
Our definition of closed patterns is in accordance to the definition of closed itemsets
for association rule mining [Pasquier et al. 1999]. A pattern ρ with ρ(r) �= ∅ is a closed
pattern for r if there does not exist a pattern ρ ′ ⊃ ρ with ρ(r) = ρ ′(r), that is, there
exists no superset of ρ that selects the same set of tuples from r. Note that a pattern
that is closed for database r1 may not be closed for database r2, that is, the property
of being a closed pattern can only be evaluated for a given database. Furthermore, for
each pattern ρ, with ρ(r) �= ∅, there exists a corresponding closed pattern ρ ′ such that
ρ ⊆ ρ ′ and ρ(r) = ρ ′(r). From the definition it follows that the corresponding closed
pattern is the set of terms that are common to all the tuples in ρ(r). We denote the set
of closed patterns that select at least one tuple from a database r by PC(r).

Example 2.3. Pattern ρ1 is not closed for either r1 or r2 in Figure 2. The correspond-
ing closed pattern in r1 is the set of terms derivable from t{3}; the corresponding closed
pattern in r2 is ρ2.

2.3. Database Transformer

Update Operations. Update operations are used to modify existing databases. For re-
lational databases there are three types of basic update operations, namely insert,
delete, and modify [Vossen 1991]. Update operations, denoted by ψ in the following,
can be considered as functions that map databases onto each other. An insert opera-
tion creates a new tuple. A delete operation removes a set of tuples satisfying a given
selection criterion. A modification operation changes the value for an attribute within
a set of tuples satisfying a given selection criterion. We use patterns and terms in our
definition of update operations.

—Insert operation ψINS = (τ1, . . . , τn), containing exactly one term for each attribute in
R. An insert operation adds a new tuple tnew to r, with tnew[Ai] = value(τi) for 1 ≤ i ≤ n,
that is, ψINS(r) = r ∪ {tnew}. If there exists a tuple t ∈ r with t[ID] = tnew[ID], then
ψINS(r) = r.

—Delete operation ψDEL = ρ removes those tuples from r that are selected bu pattern
ρ, that is, ψDEL(r) = r \ ρ(r).

—Modification operation ψMOD = (ρ, τ ) modifies all tuples within r that are selected
by ρ. For these tuples, the value for attribute attr(τ ) is set to value(τ ). We exclude
the primary key attribute from being modified, that is, attr(τ ) ∈ R \ {ID}.
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Given a modification operation ψMOD = (ρ, τ ), we refer to τ as the modification term,
to val(τ ) as the modification value, to attr(τ ) as the modified attribute, and to ρ as the
modification pattern. Note that there does not necessarily exist a reverse operation
for each modification operation. For example, there is no single reverse operation for
delete operations that delete more than one tuple.

Database Transformers. An ordered list of update operations � = 〈ψ1, . . . , ψk〉 is called
an update sequence. Applied on a database r1, an update sequence generates (or derives)
a database r2 = �(r1) by executing the update operations in given order on r1, that is,
�(r1) = ψk(. . . (ψ1(r1)) . . .). The databases that are generated by the update operations
of an update sequence while transforming r1 into r2 are called intermediate states.
Obviously, the order of operations within an update sequence is important. We call � a
transformer for databases r1, r2, if �(r1) = r2. The number of update operations within
a sequence is called its length and is denoted by |�|.
Update Distance. An update sequence � is called a minimal transformer, if �(r1) = r2
and there does not exist another transformer � ′ with � ′(r1) = r2, and |� ′| < |�|. There
may be several minimal transformers for a pair of databases. For a pair of databases
r1, r2, the update distance �U (r1, r2) is defined as the length of any minimal transformer
for r1 and r2. Note that the update distance is not a metric as it is not a symmetric
relation.

3. PATTERNS IN CONTRADICTORY DATA

Contradicting databases are valuable sources of information for data cleaning, pro-
vided that we are able to identify and resolve conflicts effectively. Within this section,
we present a model for interesting groups of conflicts, called contradiction patterns.
Contradiction patterns describe regularities in conflicts occurring together with cer-
tain attribute values. These patterns are therefore a very quick way to find quality
hot-spots and help to ignore spurious problems.

Contradiction Patterns. Contradiction patterns highlight characteristic data proper-
ties that occur in conjunction with conflicts in attributes A ∈ R. Thus, a contradiction
pattern is always interpreted in combination with an attribute A. We define a contra-
diction pattern for attribute A, denoted by ρA, as a pattern over schema V for which
ρA(vC(r1, r2, A)) �= ∅ holds, that is, the pattern selects at least one matching pair having
a conflict in A. The terms within a contradiction pattern ρA highlight data properties
that are characteristic for the occurrence of conflicts in A. We exclude the term (CA, true)
from the set of terms that are allowed within ρA.

Example 3.1. Tuples t{2} − t{4}, t{6} in databases r1, r2 in Figure 2 form matching
pairs having a conflict for attribute Disease. Contradiction pattern ρDisease1 selects all
of them. The pattern indicates that conflicts in Disease are caused by value ’VDDR-1’
being used by the second source to denote the disease involvement of the respective
protein. Furthermore, these conflicts occur whenever the second source has identified
the activating cofactor as zinc (’Zn+’). Contradiction pattern ρDisease2 indicates that
conflicts in Disease primarily occur for proteins that are located within peroxisomes.

3.1. Interestingness Measures

Our definition considers any pattern that selects at least one matching pair having a
conflict in A a contradiction pattern. We therefore define three measures of interest to
filter out patterns that are most suitable to represent systematic conflicts. Based on
these interestingness measures we then give the problem statement for contradiction
pattern mining.
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Conflict Relevance. The conflict relevance of contradiction pattern ρA is defined as the
fraction of matching pairs having a conflict in attribute A that are selected by ρA, that
is, the support sup(ρA, vC(r1, r2, A)), denoted by rel(ρA, r1, r2, A). Conflict relevance is a
measure for the support (or relevance) of a pattern ρA in the set of matching pairs
having a conflict in A. The higher the conflict relevance the more conflicts are captured
by the pattern. Since contradiction patterns define groups of conflicts assumed to result
from the same conflict reason, we are particularly interested in patterns having high
conflict relevance.

Conflict Potential. The conflict potential of contradiction pattern ρA is defined as the
ratio of matching pairs in vC(r1, r2, A) that are selected by ρA over the total number of
matching pairs that ρA selects, that is,

pot(ρA, r1, r2, A) = |ρA(vC(r1, r2, A))|
|ρA(v(r1, r2))| .

Conflict potential is a measure for the accuracy of a contradiction pattern in “pre-
dicting” a conflict in attribute A. The higher the conflict potential of a pattern ρA, the
higher the probability for a matching pair selected by ρA to also possess a conflict in
attribute A. Patterns having low conflict potential are therefore almost meaningless in
our scenario since their occurrence is unrelated to the occurrence of conflicts.

Relevance Deviation. Conflict relevance and conflict potential are the primary pa-
rameters to restrict the set of contradiction patterns. Together, they allow the user
to focus on those patterns that frequently and particularly hold in conjunction with
conflicts in the attribute under consideration. For attributes with a large number of
conflicts, however, the influence of the conflict potential diminishes. For example, using
different vocabularies may cause a conflict in every matching pair and every pattern
potentially has conflict potential 1. With the conflict relevance being the only signifi-
cant interestingness measure, we only should combine terms that are highly similar
regarding the sets of tuples they select, that is, whose occurrence is characteristic for
a particular set of tuples.

Our definition of relevance deviation is motivated by the work on association rule
mining on datasets having skewed support distribution [Xiong et al. 2003]. In tra-
ditional market basket analysis the frequency of items like milk, bread, and butter
is expected to be significantly higher than the frequency of luxury goods like caviar.
Therefore, it is not surprising to find milk present in transactions that contain caviar,
for example. Thus, patterns involving items with substantially different support levels
tend to be uninteresting for analytic purposes. Similarly, we want to be able to exclude
combinations of terms with largely differing conflict relevance that do not yield any
important information. In accordance with the definitions in Xiong et al. [2003], we
therefore define the relevance deviation for a pattern ρA as

reldev(ρA, r1, r2, A) = 1 − min1≤i≤|ρA|{rel({τi}, r1, r2, A)}
max1≤ j≤|ρA|{rel({τ j}, r1, r2, A)}) , τi, τ j ∈ ρA.

Note that a relevance deviation threshold is especially helpful when mining con-
tradiction patterns for attributes with high conflict frequency. For attributes with low
conflict frequency, the relevance deviation allows us to mine for special patterns with
highly related terms. For these attributes, however, a low relevance deviation threshold
can miss relevant contradiction patterns. We therefore regard the relevance deviation
as an additional tool that the user can use in combination with the essential interest-
ingness measures, conflict potential, and conflict relevance.
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Procedure CPMine (r1, r2, A,minrel,minpot,maxdev)

1. CP := ∅;
2. rxlist := FreqUniTermPatterns (r1, r2, A,minrel);
3. root := new Node(∅, rxlist);
4. itt := new ITT (root);
5. CPExtend (itt, root, CP, r1, r2, A,minrel,maxdev);
6. return RemovePatterns (CP,minpot);

Fig. 3. CPMINE algorithm for mining contradiction patterns for attribute A.

3.2. Mining Contradiction Patterns

Closed patterns avoid descriptional redundancies by summarizing sets of patterns
that select the same set of tuples. For mining contradiction patterns, we therefore
intend to focus on closed patterns. Restricting contradiction pattern mining to closed
patterns, however, would not give the expected result. A closed pattern may combine
terms having relevance deviation above a given threshold. In order to get the maxi-
mum information while avoiding redundancies as much as possible, we define contra-
diction patterns that are closed under a given relevance deviation threshold. Given
databases r1, r2, contradiction pattern ρA, and relevance deviation threshold maxdev,
we say that ρA is a closed contradiction pattern under maxdev if rel(ρA, r1, r2, A) > 0,
reldev(ρA, r1, r2, A) ≤ maxdev, and there does not exist another pattern ρ ′

A such that
ρA ⊂ ρ ′

A, ρA(v(r1, r2)) = ρ ′
A(v(r1, r2)), and reldev(ρ ′

A, r1, r2, A) ≤ maxdev. That is, a contra-
diction pattern is closed under a given threshold if we cannot add another term such
that the resulting pattern still satisfies the relevance deviation threshold and selects
the same set of tuples.

Problem Statement. Based on the preceding definitions, the problem of contradiction
pattern mining is defined as follows: Given a pair of databases r1, r2, and attribute A,
the goal is to find the set of contradiction patterns for A in v(r1, r2) that are closed under
the given relevance deviation threshold, and that have conflict potential and conflict
relevance above given thresholds. Note that the case of contradiction patterns being
closed patterns is a special case of our problem statement if the relevance deviation
threshold is 1.

4. MINING FOR PATTERNS IN CONTRADICTORY DATA

We now present our algorithm for contradiction pattern mining and discuss the results
of an experimental evaluation using a real-world dataset.

4.1. CPMine - Closed Pattern Mining

In the following, we use the term closed contradiction pattern to refer to contradiction
patterns that are closed under a given relevance deviation threshold. Our algorithm
for mining closed contradiction patterns, called CPMINE, is an adoption of the closed
frequent itemset mining algorithm CHARM [Zaki and Hsiao 2002]. CPMINE (shown in
Figure 3) takes two databases r1, r2, attribute A, and conflict potential, conflict rele-
vance, and relevance deviation thresholds as parameters. The algorithm returns the
set of closed contradiction patterns for attribute A that satisfy the given thresholds.
CPMINE first determines in a single pass over the data the set of frequent terms (subrou-
tine FREQUNITERMPATTERNS not shown). Terms are called frequent if they satisfy the given
conflict relevance threshold in vC(r1, r2, A). Each distinct attribute-value pair in v(r1, r2)
(excluding terms for conflict indicator CA) represents a valid term. Terms not having
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sufficient conflict relevance are pruned. For each frequent term FREQUNITERMPATTERNS

generates a pattern of length 1.

Example 4.1. When mining contradiction patterns having a conflict relevance of
over 0.7 the set of frequent terms for attribute Disease for the databases of Figure 2
contains the following six elements (also shown are the overall support, conflict
relevance, and conflict potential of the resulting pattern).

Term Overall Conflict Conflict
Support Relevance Potential

τ1: (CTis, false) 1.00 1.00 0.50
τ2: (CLoc, false) 1.00 1.00 0.50
τ3: (Dis2, ’VDDR-1’) 0.75 1.00 0.67
τ4: (Cof2, ’Zn+’) 0.50 1.00 1.00
τ5: (Loc1, ’Peroxisome’) 0.50 0.75 0.75
τ6: (Loc2, ’Peroxisome’) 0.50 0.75 0.75

Similar to CHARM, CPMINE uses a tree structure (called IT-tree) to maintain candi-
date patterns. Each node of the tree is a prefix-list pair. The prefix is a candidate pattern
and the list contains valid extensions of the prefix. CPMINE uses the IT-tree to enumer-
ate closed contradiction patterns that satisfy given conflict relevance and relevance
deviation thresholds. The set of frequent patterns returned by FREQUNITERMPATTERNS

forms the extension list for the root of the IT-tree. The prefix pattern of the root node
is empty. The main computation is performed in subroutine CPEXTEND that returns the
set of candidate patterns satisfying the given conflict relevance and relevance devia-
tion thresholds. The last step of CPMINE then removes those patterns having conflict
potential below minpot.

Subroutine CPEXTEND (shown in Figure 4) recursively builds the IT-tree in depth-first
order. We denote the extension list of a node n by list(n). For each element ρi in the
extension list of the current node ncurr a child node nchild is added to the tree with ρi
being the prefix of nchild. We then generate the extension list for nchild. Elements for
the extension list are generated from pattern pairs (ρi, ρ j), where ρ j ∈ list(ncurr) and
ρ j appears later in order ”>ρ” than ρi. Different ordering criteria are possible for the
elements in the extension list. We use the support of a pattern in increasing order,
that is, if sup(ρi, v(r1, r2)) < sup(ρ j, v(r1, r2)) ⇔ ρi >ρ ρ j . This definition of pattern order
brings patterns with equal support together and thereby allows CPMINE to combine
patterns having the same corresponding closed pattern at an earlier stage (see the
following). For each pair (ρi, ρ j) we first check whether ρi and ρ j are compatible. Two
patterns are compatible if:

(1) the resulting pattern ρi ∪ ρ j is satisfiable, that is, there are no contradicting terms
τi, τ j ∈ ρi ∪ ρ j such that attr(τi) = attr(τ j) ∧ value(τi) �= value(τ j),

(2) the relevance deviation of ρi ∪ ρ j is below the given threshold.

Compatible patterns are merged. The resulting pattern ρm = ρi ∪ ρ j is added to the
extension list of nchild if ρm has sufficient conflict relevance. Note that this procedure
ensures that elements in the extension list of a node: (a) are supersets of the node’s
prefix, and (b) satisfy conflict relevance and relevance deviation thresholds.

Similar to CHARM, CPMINE leverages two basic properties of patterns for efficient
closed pattern enumeration. Recall from Section 2.2 that the corresponding closed
pattern for a pattern ρ is the set of terms that are common to all the tuples in ρ(r).
Given two patterns ρ1, ρ2, and database r with ρ1(r) �= ∅ and ρ2(r) �= ∅. The following
holds.
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Procedure CPExtend (itt, ncurr, CP, r1, r2, A,minrel,maxdev)

1. for each ρi ∈ list(ncurr) do
2. nchild := AddChild (ncurr, (ρi, ∅));
3. for each ρj ∈ list(ncurr) with ρj >ρ ρi do
4. if (Compatible (ρi, ρj ,maxdev))
5. ρm := ρi ∪ ρj ;
6. if (rel(ρm, r1, r2, A) > minrel)
7. if (ρi(r) = ρj(r)) /* Case 1 */
8. remove ρj from list(ncurr);
9. replace ρi with ρm in itt;
10. else if (ρi(r) ⊂ ρj(r)) /* Case 2 */
11. replace ρi with ρm in itt;
12. else if (ρi(r) ⊃ ρj(r)) /* Case 3 */
13. remove ρj from list(ncurr);
14. add ρm to list(nchild);
15. else /* Case 4 */
16. add ρm to list(nchild);
17. if (list(nchild) �= ∅)
18. CPExtend (itt, nchild, CP, r1, r2, A,minrel,maxdev);
19. RemoveChild (ncurr, nchild);
20. if (¬ Subsumed (prefix(nchild, CP )))
21. CP := CP ∪ prefix(nchild);

Fig. 4. CPEXTEND recursively enumerates the complete set of contradiction patterns that satisfy the conflict
relevance and relevance deviation thresholds.

(1) Two patterns that select the same set of tuples have the same corresponding closed
pattern, which in turn is a superset of the union ρ1 ∪ ρ2.

(2) A pattern ρ1 that selects a subset of the tuples selected by a pattern ρ2 has the
same corresponding closed pattern to the union ρ1 ∪ ρ2. The corresponding closed
pattern for ρ2, however, is different.

The first property implies that we replace both patterns ρ1, ρ2 with ρ1 ∪ ρ2. The
second property implies that we only replace ρ1 with ρ1 ∪ ρ2 while retaining ρ2 as a
separate pattern. We use these properties to modify nodes in the IT-tree by replacing or
removing patterns while generating the extension list of nchild. Whenever we replace
or remove a pattern we traverse the tree from the root to the leaf nodes and replace
or remove each occurrence of the pattern in the prefix pattern of a node and in its
extension list. In CPMINE, we distinguish four cases.

(1) ρi(r) = ρ j(r): Both patterns have the same corresponding closed pattern as ρm. We
remove ρ j from the extension list of node ncurr and replace every occurrence of ρi in
the IT-tree with ρm.

(2) ρi(r) ⊂ ρ j(r): The corresponding closed pattern for ρi is the same as for ρm. We
therefore replace every occurrence of ρi in the IT-tree with ρm.

(3) ρi(r) ⊃ ρ j(r): The corresponding closed pattern for ρ j is the same as for ρm. We
remove ρ j from the extension list of node ncurr and continue with ρm instead by
adding it to the extension list of node nchild.

(4) Else: We add ρm to the extension list of node nchild.

Clearly, the first case is the most desirable one regarding reduction of the number
of patterns in the IT-tree. We allow for this by sorting the patterns according to their
support. In addition, pruning incompatible patterns and patterns having relevance
deviation above the given threshold eliminates many of the other three cases. After
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Fig. 5. Example IT-tree when mining closed contradiction patterns for attribute Disease.

generating the extension list of nchild, we call CPEXTEND recursively if the extension list
is not empty. Once all children of nchild have been processed the prefix of nchild is added
to the result set of contradiction patterns. Note that the prefix may have changed due to
replacements performed. We have to check whether the prefix is subsumed by existing
patterns in the result set that have been added while traversing the children of nchild
in recursive calls of CPEXTEND. If the prefix of nchild is subsumed by existing patterns it
will not be added to the result set.

Example 4.2. Figure 5 shows the resulting IT-tree when mining contradiction pat-
terns for attribute Disease using thresholds minrel = 0.7, minpot = 0.7, and maxdev = 0.0.
From the initial set of terms shown in Example 4.1, τ1 and τ2, and τ5 and τ6 are merged
and replaced due to case 1 during IT-tree enumeration. Term τ3 is merged with τ4 and
the latter is replaced by the resulting pattern {τ3, τ4} due to case 2. The relevance devi-
ation threshold prevents {τ5, τ6} to be extended with any other pattern, thus resulting
in contradiction pattern ρDisease2 (see Figure 2). The contradiction pattern containing
only term τ3 does not satisfy the conflict potential threshold, and all other patterns are
subsumed by ρDisease1.

CHARM maintains tid-lists for items to perform fast checking of itemset support. In
CPMINE, we use disjunctive lists tidlistC and tidlistN that represent the primary keys of
tuples in vC(r1, r2, A) and vN(r1, r2, A). The tid-list of a pattern is the intersection of the
according tid-lists of all of the terms in the pattern. The primary keys in a tid-list are
sorted in ascending order to allow efficient intersection. Conflict potential and conflict
relevance for candidate patterns can be determined using the length of tidlistC and
tidlistN, that is,

rel(ρA, r1, r2, A) = |tidlistC(ρA)|
|vC(r1, r2, A)| , and pot(ρA, r1, r2, A) = |tidlistC |

|tidlistC | + |tidlistN| .

With respect to time complexity, consider the general case of mining contradiction
patterns for a database instance with n attributes, v tuples, and k different values for
each attribute. The total number of terms for such a database is n × k. To generate
the list of frequent terms we need to count the frequency for each term. We currently
maintain a term index for each attribute. FREQUNITERMPATTERNS therefore performs n×v×
log2(k) index lookup operations. In CPEXTEND we enumerate all contradiction patterns
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using the set of frequent terms. In the worst case, each term is frequent and overlaps
with each of the k terms for each of the compatible attributes. Thus, the total number of
contradiction patterns generated by CPEXTEND is (k+ 1)n. For each of these patterns we
need to compute the conflict relevance and check subsumption. Computing the conflict
relevance requires n× v comparisons to compute the size of the intersection of tid-lists
of terms within a pattern. Checking for subsumption, in the worst case, requires to
compare the set of terms of each pattern against the set of terms of all other patterns
in the current result set. Thus, the overall worst-case time complexity for CPMINE is
O(n × v × log2(k)) + O((k + 1)n × ((n × v) + (n × ((k+1)n+1)×(k+1)n

2 ))).

4.2. Experiments

The algorithms presented in this section were motivated by COLUMBA, a database of in-
tegrated protein annotations [Trißl et al. 2005]. COLUMBA pays special attention to the
aspect of data quality in merging overlapping databases. The developers of COLUMBA

quickly found that the number of inconsistencies are overwhelming and that they
therefore need to focus on the most interesting (= most annoying) ones. Using our
algorithm CPMINE, this focus was achieved leading to the detection of various parser er-
rors, different understanding of data in the databases, and, especially, truly conflicting
data. In the following, we show how variations to the interestingness measures used
in contradiction pattern mining affect the number of identified patterns and discuss
example contradiction patterns found by CPMINE.

Data. For our experiments, we use two relational instances of protein structure data.
The first relation is directly derived from flat-files of the Protein Structure Database
(PDB) [Berman et al. 2000]. The second relation results from parsing mmCIF-files us-
ing the OPENMMS Toolkit, a data cleaning project aiming at removing inconsistencies
in PDB data [Bhat et al. 2001]. We refer to these datasets as PDB and OPENMMS,
respectively. The schema consists of 10 attributes containing the PDB entry identi-
fier, information about the deposition date and year of an entry, the resolution of the
protein structure described, a measure of the quality of the atomic model obtained
from the crystallographic data (R Free), as well as the experimental methods used for
determining resolution and atomic structures. The relational instance resulting from
the PDB flat-files has 26,764 tuples. The instance resulting from OPENMMS contains
24,202 tuples. Identification of matching tuples is trivial using the original ID for all
PDB entries. The number of matching pairs between PDB and OPENMMS is 23,614.
None of the attributes is free of conflicts, with conflict rates between 0.003% to 100%.

Parameter Values. Figure 6(a) shows the influence of the relevance deviation on the
number of patterns returned by CPMINE. We fix conflict relevance and conflict potential
to 0.02 and 0.25, respectively. For relevance deviation threshold between 0 (no devi-
ation allowed at all) and 0.4 the number of patterns remains almost constant at an
overall low level. The number of patterns starts to increase significantly for threshold
values that are above 0.5, that is, with decreasing influence of the relevance deviation
threshold. Figure 6(b) shows the influence of the conflict relevance parameter using
conflict potential and relevance deviation thresholds of 0.25 and 1, respectively. In gen-
eral, for attributes with a large number of conflicts (e.g., A7, A8) the number of patterns
increases significantly when lowering the conflict relevance threshold. For attributes
with a small number of conflicts (e.g., A2, A5) the overall number of terms occurring in
conjunction with these conflicts in general is small and so is the number of patterns.
The inability of conflict potential to restrict the number of patterns for attributes con-
taining a large number of conflicts is shown in Figure 6(c). For attributes A7 and A8 the
number of patterns remains (almost) constant. For all other attributes, increasing the
conflict potential threshold (with conflict relevance and relevance deviations being
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Fig. 6. Experimental study showing the influence of varying the threshold values for conflict relevance,
conflict potential, and relevance derivation on the number of returned closed contradiction patterns.

0.25 and 1, respectively) leads to a decrease in the number of contradiction patterns.
We also performed experiments that vary the conflict relevance and conflict potential
thresholds for a fixed relevance deviation of 0.5. Figure 6(d) shows the results for at-
tribute A5 for which there are 2,853 conflicts between PDB and OPENMMS. Especially
for small conflict relevance values the potential significantly constrains the number of
patterns. This behavior is desirable when searching for patterns that describe smaller
subsets of conflicts in an attribute with high accuracy. Only in a few rare cases we
expect to be able to find a single pattern that describes all the conflicts in an attribute.
Instead, we are often looking for patterns that are closely related to the occurrence of
conflicts.

Pattern Evaluation. In the following, we present a selection of contradiction patterns
returned by CPMINE for PDB and OPENMMS. These patterns were helpful to the devel-
opers of COLUMBA to identify data quality problems. Contradiction patterns summarize
and highlight groups of conflicts. Discussion of the common pattern within each group
of conflicts with structural biology experts lead to the detection of various errors in
the PDB and OPENMMS instances and parsers. This information was used in COLUMBA

to resolve data conflicts, and to improve the data parsers. Thus, instead of having to
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inspect each conflict individually, sets of conflicts could be solved at once by evaluating
each contradiction pattern.

—ρR Free : {(R FreePDB, ’+0.00000E+000’)}
Looking at dataset PDB shows that ’+0.00000E+000’ is the only value that occurs
in attribute R Free. Accordingly, there is a contradiction pattern stating that this
value occurs in all conflicts since tuples in OPENMMS have nonzero values for at-
tribute R Free. The conflicts were a consequence of the flat-file parser for PDB files
not considering the value appropriately. The same was true for conflicts in other
attributes.

—ρYear : {(YearPDB, ’2000’), (YearOpenMMS, ’1900’)}
Each time the value ’1900’ occurs as deposition year in OPENMMS the according
value in PDB is ’2000’. This pattern has a conflict relevance of about 50%. Conflict
potential and relevance deviation are 100% and 0% respectively. Deposition years are
extracted from deposition dates of PDB entries. Looking at the PDB flat-file format
reveals that the conflicts presumably result from parsing error in the OPENMMS
parser in conjunction with the Y2K problem. The deposition date is represented in
format DD-MM-YY in flat files. Thus, in some cases a year ’00’ is transformed into
year ’1900’ by the parser. Note that this is not true for all deposition dates having
’00’ as their year value. However, knowing that PDB was established in the 1970s
the solution for these conflicts is obvious.

—ρResolution : {(StructMethodOpenMMS, ’NMR’), (ResolutionPDB, ’0.0’),
(ResolutionOpenMMS, NULL)}
When taking a closer look at attribute Resolution we see that either source contains
only a single unique value if the method used for determining atomic structures
(StructMethod) is ’NMR’ (Nuclear Magnetic Resonance). This fact is not surprising as
resolution is not recorded for method NMR. However, the sources represent this fact
differently: PDB uses ’0.0’ while OPENMMS uses NULL.

—ρNMR Structs: {(StructMethodPDB, ’NMR’)
(StructMethodOpenMMS, ’NMR, n STRUCTs’), (NMR StructsPDB, ’n’)}
This is actually a group of patterns for different values of n (e.g., 9, 20). Each pat-
tern reveals that in OPENMMS for structure method NMR the number of identified
structures is encoded in the method name while PDB separately lists the number of
structures in attribute NMR Structs. Note that the first term of these patterns, that
is, (StructMethodPDB, ’NMR’), is not included in patterns for small relevance deviation
values due to its frequent occurrence with many of these (syntactically) different
conflicts.

5. MINIMAL UPDATE SEQUENCES

Contradiction patterns provide valuable information about systematic differences
within a single attribute. The full set of contradiction patterns, however, often con-
tains highly similar and overlapping patterns. Within this section, we introduce a
second concept for understanding systematic differences based on sequences of update
operations.

Example 5.1. Consider the patterns ρDisease1 and ρDisease2 in Figure 2. Both patterns
overlap in 3 out of 4 tuples they select from v(r1, r2), namely tuples t{2} – t{4}. Further-
more, the union ρDisease1 ∪ ρDisease2 may also (depending on thresholds) be included in
the set of contradiction patterns for Disease.

In many cases, contradicting databases are (or can be seen as) modified copies of a
common ancestor (e.g., Example 1.1). Update sequences that transform one database
into the other have to undo and redo update operations that have been applied on the
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respective database copies. Update sequences thereby form a compact representation
of all the differences between a pair of databases. Furthermore, the order of operations
within an update sequence enables identification of dependencies between conflicts in
different attributes that are not revealed by contradiction patterns. Such dependencies
arise for example in data cleaning workflows [Rahm and Do 2000; Galhardas et al.
2001; Raman and Hellerstein 2001] or in annotation pipelines [Curwen et al. 2004].
Each update sequence is as long as the update distance is one of the simplest possible
explanations for the observed differences. Following the “Occams Razor” principle, we
conclude that the simplest explanations are usually the most likely.

Example 5.2. Consider the sequence of update operations in Figure 2 that trans-
forms r1 into r2. The first operation indicates the different representations for iron
cofactors in r1 and r2. The second operation suggests erroneous cofactor identifica-
tion by the second database for peroxisome proteins when the actual cofactor is FAD.
The third operation outlines a possible dependency between conflicts in Cofactor and
Disease. After erroneously determining cofactors Zn+ the second source may, again in
error, have assigned vitamin D-dependent rickets type 1 (’VDDR-1’) involvement to all
proteins with previously identified cofactor Zn+.

Since we consider minimal transformers as explanations for systematic differences
between two databases, we want to avoid meaningless (or trivial) update sequences like:
(1) delete all tuples in r1, and then (2) for each tuple in r2 perform an insert operation.
We therefore allow only valid update operations within minimal transformers. For any
intermediate state ri in the process of transforming r1 into r2 an operation ψ is valid,
if ψ(ri) �= ri and:

—ψ is an insert operation and tnew ∈ u(r2, r1),
—ψ is a delete operation and ψDEL(ri) ⊆ u(r1, r2), or
—ψ is a modification operation.

That is, we allow inserts only for tuples from r2 that do not have a matching partner in
r1, and deletions for tuples in r1 that haven’t got a matching partner in r2. Modification
operations are unrestricted. Note that our algorithms for computing minimal update
sequences work for an unrestricted set of update operations. Our definitions for the
upper and lower bound of the update distance, however, will have to be modified in
order to account for the trivial transformer that is of length |r2| + 1. In the following,
we consider valid update operations only.

5.1. Upper and Lower Bounds

In the following, we derive upper and lower bounds that are important for optimization.
Based on these definitions, we describe our algorithm for calculating minimal update
sequences for a given pair of databases in Section 6. Problem variations and heuristic
algorithms are discussed in Section 7 and Section 8.

Example 5.3. To give an idea of the complexity of the problem, consider the
databases r1, r2 in Figure 7. Clearly, their update distance can be determined by enu-
merating update sequences of increasing length until one sequence is found that imple-
ments all necessary changes. This procedure, however, generates 294,998 intermediate
states. An intuitive idea to prune the search space would be to use a greedy strategy,
that is, to select at each stage the operation that solves the most conflicts. The short-
est sequence found using such an approach has four elements (update sequence a)),
although the update distance between databases r1 and r2 is three (update sequence
c)). Another pruning idea might be to avoid modification operations that introduce new
conflicts. This results in only 32 generated intermediate states. However, using this
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Databases: Update sequences:

r1
A1 A2 A3

1 1 1
2 1 1
3 1 1
4 2 1
5 3 1
6 4 1
7 5 1
8 6 1
9 1 0
10 1 0

r2
A1 A2 A3

1 1 1
2 1 1
3 1 1
4 2 0
5 3 0
6 4 0
7 5 0
8 6 0
9 1 0
10 1 0

a) UPDATE r1 SET A3 = 0
UPDATE r1 SET A3 = 1 WHERE A1 = 1
UPDATE r1 SET A3 = 1 WHERE A1 = 2
UPDATE r1 SET A3 = 1 WHERE A1 = 3

b) UPDATE r1 SET A3 = 0 WHERE A1 = 4
UPDATE r1 SET A3 = 0 WHERE A1 = 5
UPDATE r1 SET A3 = 0 WHERE A1 = 6
UPDATE r1 SET A3 = 0 WHERE A1 = 7
UPDATE r1 SET A3 = 0 WHERE A1 = 8

c) UPDATE r1 SET A3 = 2 WHERE A2 = 1
AND A3 = 1
UPDATE r1 SET A3 = 0 WHERE A3 = 1
UPDATE r1 SET A3 = 1 WHERE A3 = 2

Fig. 7. An example for the need to introduce conflicts in order to find an optimal solution.

heuristic worsens the result, as now the shortest sequence is of length five (update se-
quence b)). Intuitively, it is often necessary to use operations that in first place introduce
new values (and thereby new conflicts) that can be used as discriminating conditions
in later update operations. The first operation in update sequence c) temporarily in-
creases the total number of conflicts, but this is compensated in later operations that
are now able to solve more conflicts within one statement.

We prove in Section 7.2 that computing the set of minimal transformers is NP-
complete when using only a restricted set of operations. While the calculation of the
update distance is nontrivial, we can define upper and lower bounds.

LEMMA 5.4. An upper bound for the update distance between databases r1, r2, denoted
by ub(r1, r2), is given by |u(r1, r2)| + |u(r2, r1)|+conflicts(r1, r2).

PROOF. In order to transform r1 into r2, we have to: (i) remove the tuples from r1
without a matching partner in r2, (ii) solve the conflicts within the matching pairs,
and (iii) insert those tuples that exist in r2 but not r1. Due to the primary key and our
restriction of modification terms every tuple t ∈ r is always individually selectable by a
pattern ρ = {(ID, t[ID])}. The deletions are accomplished using a single delete operation
for every unmatched tuple in r1. Each conflict is individually solved using a single
modification operation. The inserts are performed by executing an insert operation
for every unmatched tuple from r2. Overall, this requires |u(r1, r2)| delete operations,
conflicts(r1, r2) modification operations, and |u(r2, r1)| insert operations. Any sequence
of these operations is a transformer for r1 and r2. �

To define a lower bound for the update distance, we make use of the following obser-
vation. Consider again the databases in Figure 2. For attribute Cofactor, values ’Iron’
and ’Zn+’ in r2 appear in conflicts between r1 and r2. Transforming r1 into r2 requires at
least two modification operations, one having modification term (Cofactor, ’Iron’) and
another having modification term (Cofactor, ’Zn+’). For attribute Disease, ’VDDR-1’ is
the only value in r2 that occurs in conjunction with conflicts. We therefore need at least
one more modification operation having modification term (Disease, ’VDDR-1’). In gen-
eral, when transforming r1 into r2 we need at least one modification operation for each
attribute Aand each distinct value in r2 that occurs within a conflict with r1. That is, for
each value c ∈ πAi2

(vC(r1, r2, Ai)), 2 ≤ i ≤ n, we need at least one modification operation
with (Ai, c) as the modification term. Let NMT(r1, r2) = ⋃

Ai ,2≤i≤n Ai×πAi2
(vC(r1, r2, Ai))

denote the set of necessary modification terms when transforming r1 into r2.
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LEMMA 5.5. The lower bound for the update distance between a pair of databases
r1, r2, denoted by lb(r1, r2), is given by

lb(r1, r2) = |u(r2, r1)| + |NMT(r1, r2)| +
{

1 if u(r1, r2) �= ∅
0 else

.

PROOF. The proof follows directly from our definition of update operations and the
observation that we need at least one modification operation per term in NMT(r1, r2).
To transform r1 into r2 we need to: (a) insert all unmatched tuples in u(r2, r1) into r1
using a single insert operations for each tuple, (b) delete all unmatched tuples in r1
requiring at least one delete operation if u(r1, r2) is not empty, and (c) solve all conflicts
between r1 and r2 requiring at least NMT(r1, r2) modification operations. Any update
sequence shorter than lb(r1, r2) would either have to insert more than one tuple per
insert operation, solve conflicts in more than one attribute per modification operation,
or modify values in the ID attribute. This, however, violates our definition of update
operations. Likewise, an update sequence that first deletes all tuples in r1 and then
inserts all tuples from r2 would violate our definition of valid update operations. �

6. TRANSIT - FINDING MINIMAL TRANSFORMERS

This section describes the TRANSIT algorithms to determine the set of minimal trans-
formers for contradicting databases. Given a pair of databases ro and rt, called origin
and target, the TRANSIT algorithms enumerate the space of databases reachable by ap-
plying sequences of modification operations to ro. Doing so efficiently poses several
challenges for which we describe solutions. We describe two algorithms that resemble
a branch-and-bound approach [Land and Doig 1960] based on the bounds defined in
Section 5.1. These algorithms differ in the way they explore the search space, that is,
in breadth-first or in depth-first manner.

In general, an early execution of insert operations does not provide any benefit re-
garding the minimization of transformer length. Instead, early inserts bear the chance
that following modification or delete operations affect the inserted tuples and cause
additional conflicts. Inserts are therefore delayed until the end. Delete operations can
be handled as special cases of conflict resolution with modification operations. We post-
pone a separate treatment of deletes to Section 6.4. Throughout the other sections of
this article, we only consider modification operations and restrict the algorithms to
database pairs without unmatched tuples.

6.1. Search Space Exploration

We represent the search space using a directed labeled graph, called a transition
graph. Vertices of this graph are databases connected by directed edges representing
modification operations. Let GT = (V, E) denote the transition graph, with vertices V
and edges E. For each edge e = (r1, r2, ψ) ∈ E, r1, r2 ∈ V , the edge label ψ represents
the modification operation ψ(r1) = r2. Figure 8 shows an example transition graph.
The different levels of update distance are outlined by horizontal lines.

Breadth-First Algorithm. The TRANSIT algorithms iteratively construct the transition
graph starting with ro as the only vertex. In the breadth-first algorithm, we enumerate
databases reachable from ro at levels of increasing update distance. After finishing
enumeration of databases at level k we continue by enumerating all databases at level
k + 1. The procedure ensures that the level at which a database r is first generated
represents the update distance �U (ro, r).

We use the upper and lower bounds for pruning. Let β denote the current upper
bound for the update distance between ro and rt. This bound is initialized as ub(ro, rt).
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Fig. 8. An exemplified transition graph as generated by the TRANSIT algorithm without pruning.

Procedure Transit-BFS (ro, rt)

1. GT := ({ro}, ∅);
2. VP := V (GT );
3. ΔU := 0;
4. β := ub(ro,r t);
5. while(rt /∈ VP )
6. ΔU := ΔU + 1;
7. VC := ∅;
8. for each ri ∈ VP do
9. for each ψ ∈ modifier(ri,r t) do
10. rnew := ψ(clone(ri));
11. if ((lb(rnew,r t) + ΔU ) ≤ β)
12. if (rnew /∈ V (GT ))
13. V (GT ) := V (GT ) ∪ rnew;
14. E(GT ) := E(GT ) ∪ {(ri,r new,ψ )};
15. VC := V C ∪ rnew;
16. if ((ub(rnew,r t) + ΔU ) < β)
17. β := ub(rnew,r t) + ΔU ;
18. prune VP ,VC ,G T , β ;
19. else if (rnew ∈ VC)
20. E(GT ) := E(GT ) ∪ {(ri,r new,ψ)};
21. VP := Sort (VC);
22. output MinPaths (GT ,ro,r t);

Fig. 9. The breadth-first algorithm TRANSIT-BFS.

Databases r with insufficient bound, that is, �U (ro, r) + lb(r, rt) > β are excluded from
the transition graph. We decrease β whenever generating a database r having an upper
bound below the current best bound, that is, (�U (ro, r) + ub(r, rt)) < β. Such a database
ensures that there is a transformer �(ro, rt) of length �U (ro, r)+ub(r, rt). Each time β is
decreased, we remove all databases from the transition graph with insufficient bound.

The corresponding algorithm TRANSIT-BFS is shown in Figure 9. Let VP and VC denote
the set of databases from the previous and the current level, respectively. Variable �U
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stores the current level of enumeration. We initialize VP with {ro}. Each database in
VP is processed to enumerate VC . Databases in VC then become the candidates for
enumeration of the next level. We sort the candidates in ascending order of their lower
and upper bounds. This is done with the intention of being able to decrease the current
bound β as soon as possible. After reaching the target the algorithm returns the set of
minimal paths in the transition graph from the origin to the target.

Processing a database ri from VP starts by determining the set of possible modifica-
tion operations, denoted by modifier(ri, rt) (see Section 6.3 for details). Each operation
is applied to a copy of the database, as modification operations alter the given database.
The resulting database rnew is added to the transition graph if its lower bound with rt
does not exceed the current bound. Since different update sequences may generate the
same database, we have to check for duplicates in the transition graph (see Section 6.2
for details). If rnew does not occur within GT it is added to VC . If rnew does occur within
GT , we have to check at which level it occurs. If the database has been derived before
at the current distance level, we add an additional edge to GT . Otherwise, no changes
occur.

Depth-First Algorithm. We refer to the algorithm that constructs the transition graph
in depth-first manner as TRANSIT-DFS. Within this algorithm, after finishing the process-
ing of the current database, we immediately proceed to the next distance level. From
all generated databases, we chose the one with the smallest lower bound as the new
current database. Pruning is performed as described earlier. The depth-first approach
finds a first solution after processing fewer databases then the breadth-first approach.
Although this solution is not necessarily minimal in the number of modification oper-
ations, it often is helpful for pruning. After reaching the target database, TRANSIT-DFS
needs to return to the previous databases and process them as candidates, again in a
depth-first manner. This is continued until all databases that have not been pruned
by the bounding step have been tested. In TRANSIT-DFS we maintain the databases
processed and generated on the current path on a stack to enable upward traversal.
Compared to TRANSIT-BFS search space enumeration is complicated by the fact that
identical databases may be generated multiple times at decreasing levels. Every time
a database is repeatedly derived at a lower level, it has to be considered as a candidate
again.

6.2. Duplicate Detection

Duplicates in transition graph construction occur whenever the same database is de-
rived by different update sequences. We distinguish between interlevel and intralevel
duplicates. Interlevel duplicates occur, if update sequences of different length derive
the same database, that is, the same database is derived at different levels. Dupli-
cates at different levels of the graph may introduce cycles. Since the corresponding
edges (delineated by dotted lines for clarity in Figure 8) cannot be part of a minimal
transformer, they are not included in the graph. Thus, the transition graph is acyclic.
Intralevel duplicates result from different update sequences of equal length that derive
the same database. These duplicate databases result in multiple edges between two
vertices on adjacent distance levels.

Example 6.1. The operations ψ1 = ({(A3, 1)}, (A3, 0)) and ψ2 = (({}, A3, 0)) derive
the same result when applied to database r1 of Figure 7. Update sequences may also
derive a database from itself. The update sequence 〈({(A1, 1)}, (A2, 0)), ({(A1, 1)}, (A2,
1))〉 derives r1 from r1 using two update operations.

A large portion of databases generated in transition graph enumeration are dupli-
cates. We need to detect duplicates efficiently to avoid unnecessary explosion of the
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search space. Duplicate detection requires comparison of entire databases. To reduce
the number of duplicate checks, we compute a hash value for each database and main-
tain a hash table for generated databases. While there are many possible hashing
schemes for databases, we found the following one to be most useful in our case. With-
out a loss of generality we assume the primary keys to be integers in the range 1, . . . , m.
Let vlist(r) = 〈t{1}[A2], . . . , t{1}[An], t{2}[A2], . . . , t{m}[An]〉 be an ordered list of nonkey
values. Let vlist(r)[i] denote the ith element of the list. Given a derived database r and
the target rt, we compute a hash value as follows.

(1) From vlist(r), we remove all elements for which vlist(r)[i] = vlist(rt)[i]. The re-
sulting list, denoted by vlist(r)−rt , is an ordered list of all conflicting values
from r.

(2) We select k values v1, . . . , vk from vlist(r)−rt at equal distant positions, that is,
vi = vlist(r)−rt [(i − 1) × (|vlist(r)−rt |/k)], for 1 ≤ i ≤ k.

(3) The final hash value is an integer with k digits, where the ith-digit is the result of
vi modulo 10.

During search space exploration we check for equality of a pair of databases r1, r2 only
if: (i) their hash values are equal, and (ii) ub(r1, rt) = ub(r2, rt). Overall, this approach
drastically reduces the number of full database comparisons.

6.3. Enumeration of Valid Modification Operations

For a database r the set of valid modification operations is a subset of the Cartesian
product of the set of possible modification terms and the set of possible modification
patterns.

Modification Terms. The set of modification terms is the union of modification terms
for each nonkey attribute. For each attribute A ∈ R \ {ID} this set is A × dom(A). A
problem is the infinite size of dom(A) that leads to an infinite number of modification
terms. Almost all of the generated terms, however, are isomorphic with respect to their
ability to participate in a shortest update sequence. We therefore constrain the set of
possible modification values. For a pair of databases r, rt, and attribute A, we permit
only the following values from dom(A) for modification terms.

—All values occurring for attribute A in the current database r, that is, πA(r). In some
situations increasing the selectivity of individual values enables us to solve more
conflicts using a single modification operation afterward.

—All values from rt that occur within attribute A, that is, πA(rt). Some of these values
are already included in πA(r). The others are needed as modification values for solving
conflicts.

—Any of the remaining values from dom(A) \ (πA(r) ∪ πA(rt)) is a potential modification
value to serve as a unique selection criterion in later stages of the algorithm. Thus,
the actual value does not matter, as long as it is different from all other currently
used values. We choose one value using a random function. We call these values
Skolem constants.

For example, the first modification operation in update sequence c) in Figure 7 uses
Skolem constant 2 as a modification value. The Skolem constants are maintained
within a separate list for each attribute, called skolem(A). Within the final modification
sequence, the occurring Skolem constants can be replaced by any valid subset of dom(A)
of size |skolem(A)| that is disjoint with πA(ro) ∪ πA(rt).

Selection Patterns. For every pattern ρ, with ρ(r) �= ∅, there has to be a modification
operation that allows us to modify the tuples in ρ(r). To avoid redundancies in the set
of selection patterns, we restrict the set of modification patterns to the set of closed
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patterns PC(r) ∪ ρ∅. We add the empty pattern to PC(r) to allow modifications of the
complete database at once. In our algorithms, we use an implementation of CHARM to
enumerate the set of closed patterns for a database.

Filtering Modification Operations. When enumerating modification operations for a
given database, only operations that actually change the database state are valid (see
Section 5). A modification operation has no effect, that is, is invalid, if the modification
term τ also occurs within the modification pattern. In this case, all selected tuples
already possess the new value in the modified attribute. We remove these operations
during enumeration.

6.4. Handling Delete Operations

Delete operations are handled as special cases of modification operations. We therefore
need to slightly alter a given database. The set of tuples from ro to be deleted is given
by u(ro, rt). We add a special attribute A D, a delete flag, to schema R setting t[A D] = 0
for each t ∈ u(ro, rt). We also insert the tuples from u(ro, rt) to rt with value t[A D] = 1.
For all other tuples in ro and rt attribute A D has the same value x �= [0, 1]. Terms for
attribute A D are excluded when enumerating valid selection patterns (see Section 6.3).
However, the term (A D, 1) is allowed as a modification term in operation enumeration.
A modification operation ψMOD = (ρ, (A D, 1)) represents a delete operation ψDEL = (ρ).
A tuple t with t[A D] = 1 then represents a deleted tuple. Following the definition of
valid update operations, we additionally have to restrict ρ in (ρ, (A D, 1)) to select only
tuples from u(ro, rt).

7. PROBLEM VARIATIONS AND COMPLEXITY

The complexity of the presented TRANSIT algorithms limits their applicability to small
databases. In this section, we present problem variations for finding minimal update
sequences that intend to reduce the search space. We start by giving a classification of
modification operations based on how they change the set of conflicts between a pair of
databases. In a variation of the original problem, we then consider only certain classes
of modification operations in our algorithms for finding minimal update sequences.
Based on our classification, we prove that computing minimal update sequences is
NP-complete for a certain class of operations.

7.1. A Classification of Modification Operations

The search space for minimal update sequences is enormous due to the large number of
valid modification operations. In a variation of the update distance problem, we reduce
the search space by restricting the set of modification operations. While the size of the
search space is reduced significantly by this restriction, the update distance will differ
depending on the class of modification operations used.

Given databases r, rt, and modification operation ψMOD = (τ, ρ). Let t ∈ ρ(r) be a
tuple affected when applying ψMOD to r. Let tt ∈ rt be the respective matching partner
for t, that is, t[ID] = tt[ID]. Furthermore, let A = attr(τ ) and v = val(τ ) denote the
modification attribute and modification value. We distinguish four cases regarding the
effects that ψMOD has on t and conflicts between t and tt.

—t[A] = v: ψMOD has no effect.
—t[A] �= v ∧ tt[A] = v: ψMOD solves an existing conflict.
—t[A] �= v ∧ tt[A] �= v ∧ t[A] = tt[A]: ψMOD introduces a new conflict.
—t[A] �= v ∧ tt[A] �= v ∧ t[A] �= tt[A]: ψMOD alters an existing conflict.
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Table II. Using TRANSIT-DFS to Compute �U (r1, r2) for the Databases in Figure 7 with Different
Classes of Modification Operations

Operation Databases Operations Databases Intra- Inter-
Class Tested Executed Added Duplicates Duplicates �U

CLASS0+Skolems 4,275 603,971 4,204 4,417 4,483 3
CLASS0-Skolems 1,384 134,906 1,384 1,578 1,504 4
CLASS1 36 104 36 38 10 4
CLASS2 31 80 31 49 0 5
CLASS3 31 80 31 49 0 5

Based on these four cases we define the following disjoint subsets of ρ(r).

—NEUTRAL+ = {t|t ∈ ρ(r) ∧ t[A] = v}, that is, the set of tuples for which ψMOD has no
effect.

—NEUTRAL− = {t|t ∈ ρ(r) ∧ t[A] �= v ∧ tt[A] �= v ∧ t[A] �= tt[A]}, that is, the set of tuples
for which ψMOD alters an existing conflict.

—NEW = {t|t ∈ ρ(r) ∧ t[A] �= v ∧ tt[A] �= v ∧ t[A] = tt[A]}, that is, the set of tuples for
which ψMOD introduces new conflicts.

—SOLVED = {t|t ∈ ρ(r) ∧ t[A] �= v ∧ tt[A] = v}, that is, the set of tuples for which ψMOD
solves a conflict.

We call the 4-tuple of sets (NEUTRAL+, NEUTRAL−, NEW, SOLVED) the modification finger-
print of ψMOD for r, rt. Tuples in NEUTRAL+ and NEUTRAL− do not represent changes to
the set of conflicts other than a possible change of conflicting values. We include these
sets for the definition of CLASS3 operations in the following. Based on the modification
fingerprint we define four different classes of modification operations.

—CLASS0: The set of all valid modification operations.
—CLASS1: The set of valid modification operations that decrease the overall number

of conflicts, that is, |SOLVED|>|NEW|. We call CLASS1 modification operations conflict
reducer.

—CLASS2: The set of conflict reducers that decrease the overall number of conflicts and
do not introduce any new conflicts, that is, SOLVED �= ∅ and NEW = ∅. We call these
operations conflict solver.

—CLASS3: The set of conflict solvers that solely solve existing conflicts, that is, SOLVED

�= ∅, NEW = ∅, and NEUTRAL− = ∅. We call these operations pure conflict solver.

From our classification it follows that CLASS3 ⊆ CLASS2 ⊆ CLASS1 ⊆ CLASS0. Due to the
primary key property and our restriction of modification operations, there always ex-
ists a transformer of CLASS3 operations for any pair of databases. It follows that for any
of the defined classes there exists a transformer using only operations from that par-
ticular class. Our hierarchical classification ensures that the number of modification
operations for a given pair of databases is reduced by allowing only operations of a
certain class. To reduce the size of generated transition graphs, we change the problem
definition to only allow operations of a certain class in minimal transformers. Table II
indicates the decrease in the number of databases tested and added to the graph when
restricting the set of valid modification operations for TRANSIT-DFS on the databases of
Figure 7. The results show that there is already a significant drop-off in the number of
databases tested and added when disabling the insertion of Skolem constants (CLASS0-
Skolems). Disallowing the insertion of Skolem constants reduces for each attribute the
number of valid modification operations by approximately the number of closed pat-
terns. The biggest reduction, however, comes from disallowing CLASS0 operations that
potentially increase the number of conflicts. Any further restriction is only marginal
in our experiments.
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ro
ID B1 B2 B3 C

1 1 2 2 2
2 1 1 3 3
3 4 1 1 4
4 5 1 5 5
5 1 6 6 6
6 1 7 1 7
7 8 8 8 8

rt
ID B1 B2 B3 C

1 1 2 2 0
2 1 1 3 0
3 4 1 1 0
4 5 1 5 0
5 1 6 6 0
6 1 7 1 0
7 8 8 8 8

Fig. 10. An instance of TRANSIT3 for U = {u1, u2, u3, u4, u5, u6} and S = {s1, s2, s3} with s1 = {u1, u2, u5, u6},
s2 = {u2, u3, u4}, and s3 = {u3, u6}.

We described in Section 6.3 how to determine the set of CLASS0 operations. To deter-
mine whether an operation is of CLASS1– CLASS3, however, requires significantly more
effort. We actually have to access each affected tuple and their respective matching
partner. Therefore, we have to execute the operation until a modification occurs that
violates the given class definition and revoke the changes. In the worst case, we have
to execute the operation completely before being able to decide which class it is in.

7.2. Complexity of Computing Minimal Transformers

We now prove that computing the set of minimal update sequences for a pair of
databases using only CLASS3 operations is NP-complete. We refer to the problem as
TRANSIT3. The problem is stated as follows: Given a pair of databases ro, rt, determine
whether there exists a transformer � of CLASS3 operations such that �(ro) = rt, and
|�| ≤ K.

THEOREM 7.1. TRANSIT3 is NP-complete.

PROOF. We start by showing that TRANSIT3 is in NP. For a given pair of databases ro, rt,
the number of different terms that are used for enumerating modification operations is
finite due to the finite number of different values for each attribute. Recall that A×πA(rt)
defines the set of possible terms for attribute A at any point during transformation
using CLASS3 operations. The length of modification sequences is bounded by the upper
bound and we can guess a modification sequence of length less or equal to K by picking
for each operation a valid subset from A×πA(rt) as a modification pattern and one term
as a modification term. We then test in polynomial time whether the sequence defines a
valid TRANSIT3 transformer for the given pair of databases by executing the modification
sequence. Therefore, TRANSIT3 is in NP. We now reduce the set cover decision problem
to TRANSIT3. The set cover decision problem has been shown to be NP-complete in Garey
[1979]. The remaining proof follows directly from Lemma 7.2 through Lemma 7.5. �

The set cover decision problem is defined as follows: Given a universe of elements
U = {u1, . . . , un}, and a set of subsets S = {s1, . . . , sk}, with si ⊆ U, 1 ≤ i ≤ k. The goal
is to decide whether there exists a set cover C ⊆ S such that U = ⋃

s∈C s, and |C| ≤ K.
Given an instance (U, S) of the set cover decision problem, we define an instance of
TRANSIT3 as follows (see Figure 10 for an example): We represent (U, S) as a database ro
that contains a tuple for each element of U and an attribute for each element of S. The
schema of ro is R(ID, B1, . . . , Bk, C) where ID is the primary key, attributes B represent
the elements in S, and C is used to introduce conflicts between ro and a database rt as
described shortly. Let encode : S → {B1, . . . , Bk} be a mapping that maps each element
s ∈ S to the attribute B ∈ R that encodes the membership of elements in s. For each
ui ∈ U, 1 ≤ i ≤ n, we add a tuple t to ro. We set t[ID] = i, and t[C] = i + 1. For each
s ∈ S we set t[encode(s)] = 1, if u ∈ s, or t[encode(s)] = i + 1 otherwise. We further add
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a tuple t with t[ID] = n + 1, and t[Bj] = t[C] = n + 2, 1 ≤ j ≤ k. We further create a
database rt that is equal to ro except that t[C] = 0 for tuples t{1} – t{n}.

We now show the correctness of this reduction. Let �C3 denote any minimal trans-
former �C3(ro) = rt. The only valid modification term in �C3 is (C, 0), denoted by τC0,
that is, �C3 = 〈(ρ1, τC0), . . ., (ρl, τC0)〉. Any other term introduces or alters conflicts,
thus violating the definition of CLASS3 operations. Furthermore, any pattern selecting
t{n + 1}, for example, the empty pattern ρ∅, cannot be used as modification pattern in
any operation within �C3. Such an operation would lead to a conflict in t{n+1} violating
the definition of CLASS3 operations. Let �i, 1 ≤ i ≤ |�| denote the prefix of � of length
i. Two observations are of importance in the following.

(1) Values in attributes ID, B1, . . . , BK are not changed during any step of executing
�C3(ro), that is, πID,B1,...,Bk(�

i
C3(ro)) = πID,B1,...,Bk(ro), 1 ≤ i ≤ |�C3|. It follows that

any term (A, x), A ∈ {ID, B1, . . . , Bk} will always select the same set of tuples in any
intermediate state �i

C3(ro).
(2) Every modification operation within �C3 selects (and modifies) only a nonempty

subset of {t{1}, . . . , t{n}}.
We can immediately describe how to construct a transformer �(ro) = rt from a given

set cover C. We do so by using patterns {(encode(s), 1)} that select the tuples contained
in elements s ∈ C as modification patterns. Let P(C) = ⋃

s∈C{(encode(s), 1)} denote the
set of patterns selecting subsets of ro that represent the elements in C. We construct a
transformer �(ro) = rt from the set of modification operations P(C) × {τC0}.

LEMMA 7.2. Any permutation of P(C) × {τC0} defines a transformer �(ro) = rt of
length |�C3| ≤ |C|.

PROOF. Following observation (1), every pattern ρ ∈ P(C) will always select the
same set of tuples in any execution of �(ro). Together, all patterns select the tuples
{t{1}, . . . t{n}}. A modification operation within a constructed transformer may however
be invalid, that is, it does not change the database state it is applied on. This happens
if all the tuples selected by its modification pattern have already been modified by
previous modification operations, that is, C is not minimal. In this case, however, we
can just remove the operation from the sequence. Thus, any permutation of P(C)×{τC0}
defines a transformer �(ro) = rt of valid modification operations of length |�C3| ≤ |C|.

�

We now describe how to derive a set cover from a minimal transformer �C3. Let
P(�C3) denote the set of modification patterns in �C3. Following observation (2), only
patterns with terms (C, x) may select a different set of tuples in �i

C3(ro), 1 ≤ i ≤ |�C3|
than in ro. Term (C, 0) is not a valid term in any modification operation of �C3. Any
other term (C, x), x �= 0 may at most select a single tuple in ro and possibly an empty
set of tuples in �i

C3(ro). In the latter case, however, the modification pattern containing
(C, x) would result in an invalid modification operation being contained in �C3. Each
pattern ρ ∈ P(�C3), therefore, selects the same tuples in ro as it does when applied
as a modification pattern during execution of �C3. In the following, we only consider
database ro.

An important property of the patterns in P(�C3) is that each of them selects a set of
tuples representing a subset of items in some element s ∈ S. Recall that membership
of items in sets s ∈ S is encoded in tuples t ∈ ro by t[encode(s)] = 1.

LEMMA 7.3. For every ρ ∈ P(�C3) there exists at least one s ∈ S such that ρ(ro) ⊆
(encode(s), 1)(ro).
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Procedure Greedy-Transit (ro, rt)

1. ΨT := <>;
2. rs := ro;
3. while(rs �= rt)
4. ψnext := GreedyNext (rs, rt);
5. if (ψnext = ⊥)
6. ψnext := pick conflict randomly from rs, rt;
7. rs := ψnext(rs);
8. append ψnext to ΨT ;
9. return ΨT ;

Fig. 11. The greedy algorithm to calculate the update distance of a pair of databases.

PROOF. If ρ(ro) contains only one tuple the lemma is true, as every tuple rep-
resents an item from U which has to be contained in at least one s ∈ S. If ρ(ro)
contains more than one tuple correctness follows directly from the terms that may
occur within patterns. The only terms that are satisfied by more than one tuple are
(encode(s), 1), s ∈ S. For ρ to select more than one tuple, it may only contain (one or
more) terms (encode(s), 1). For each of these terms ρ(ro) ⊆ (encode(s), 1)(ro) is true. �

Let S|ρ = {s|s ∈ S ∧ ρ(ro) ⊆ (encode(s), 1)(ro)} denote the elements from S for which
their respective tuples in ro form a superset of ρ(ro). For each s ∈ S|ρ we can replace ρ
by {(encode(s), 1)} in the respective modification operation in �C3.

LEMMA 7.4. None of the elements in S can occur in more than one set S|ρ for the
patterns in P(�C3).

PROOF. Assume that for any s ∈ S it holds that s ∈ S|ρ1 and s ∈ S|ρ2, for ρ1, ρ2 ∈
P(�C3). It follows that ρ1(ro), ρ2(ro) ⊆ (encode(s), 1)(ro) In this case, we can replace
(ρ1, τC0) and (ρ2, τC0) with ({(encode(s), 1)}, τC0) and �C3 would not be minimal. �

Based on Lemma 7.4, we can derive a set cover for U from a given �C3 as follows:
for each ρ ∈ P(�C3) randomly pick one of the elements in S|ρ. Let C(�C3) denote such
a set cover derived from �C3.

LEMMA 7.5. C(�C3) defines a set cover for U of size |�C3|.

PROOF. Clearly the elements in C(�C3) fully cover U as each element represents a
superset of a pattern in �C3. Lemma 7.4 ensures that C(�C3) contains |P(�C3)| = |�C3|
distinct elements. �

8. UPDATE DISTANCE FOR LARGE DATABASES

In this section, we describe two different heuristics that allow computation of update
sequences for large databases while not necessarily finding the best (exact) solution. In
our experiments, we analyze the quality of the computed results and show that even a
simple greedy approach gives results of good accuracy.

8.1. Greedy TRANSIT

A first heuristic to cope with the computational complexity of the problem is to apply
a greedy algorithm. Figure 11 shows the algorithm GREEDY-TRANSIT that returns a single
transformer for a given pair of databases ro, rt. Let rs denote the current starting point.
GREEDY-TRANSIT selects at each level the modification operation ψnext that reduces the
number of conflicts between rs and rt most (algorithm GREEDYNEXT described shortly).
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Procedure GreedyNext (rs, rt)

1. ψmax := ⊥;
2. minsup := 2;
3. while (ρ = NextPattern (rs,minsup))
4. for each τ ∈ NMT (rs, rt) do
5. if (|πID(ρ(rs)) ∩ πID(τ (rt))|≥minsup)
6. rc := (τ, ρ)(r);
7. if (ub(rs, rt) − ub(rc, rt) ≥ minsup)
8. ψmax := (τ, ρ);
9. minsup := (ub(rs, rt) - ub(rc, rt)) + 1;
10. return ψmax;

Fig. 12. GREEDYNEXT avoids enumerating the complete set of modification operations by interleaving pat-
tern generation and operation enumeration.

The starting point for the next level is then set to ψnext(rs). The algorithm terminates
when rt is reached. The database chosen as the starting point always contains fewer
conflicts with rt than any of the previous databases. Therefore, duplicated databases
cannot occur.

Example 8.1. For the databases of Figure 7 the transformer returned by GREEDY-
TRANSIT, that is, update sequence a), has a length of 4, whereas the update distance
�U (r1, r2) is actually 3.

The main challenge for the greedy algorithm is the enumeration of modification op-
erations to determine ψnext. Enumerating the complete set of modification operations
is infeasible for large databases due to the large number of closed patterns. However,
it is also not necessary. We avoid enumerating modification operations that are no can-
didate for the final transformer by interleaving closed pattern mining with operation
enumeration. The algorithm, called GREEDYNEXT, is outlined in Figure 12. Let minsup
denote the minimal support (in number of tuples) a closed pattern has to satisfy in
order to be considered in modification operation enumeration. We use minsup as sup-
port constraint for pattern mining (NEXTPATTERN). Whenever a modification operation
is enumerated that performs better, that is, solves more conflicts, than the currently
best operation ψmax, we are able to increase minsup according to the number of conflicts
solved. That is, minsup is set to number of conflicts solved by ψmax + 1. We thereby
avoid further enumeration of patterns that cannot solve more conflicts than the new
ψmax.

For each closed pattern ρ (satisfying minsup) that is returned by the mining algorithm
NEXTPATTERN (not shown), we enumerate all modification operations that are able to
reduce the number of conflicts more than the current ψmax. Recall that NMR(rs, rt)
denotes the set of necessary modification terms when transforming database rs into rt
(Section 5.1). When enumerating modification operations for ρ only operations having
a modification term τ ∈ NMR(rs, rt) can reduce the number of conflicts. Furthermore,
at least minsup of the tuples in ρ(rs) have to have a matching partner t ∈ rt with
t[attr(τ )] = val(τ ). That is, the matching partners have to possess the modification
value in order to solve conflicts. Thus, the operation (τ, ρ) can only solve more conflicts
than ψmax if |πID(ρ(rs)) ∩ πID(τ (rt))| ≥ minsup holds.

GREEDY-TRANSIT calls GREEDYNEXT for each database rs. Note that the result of GREEDYNEXT

can be empty as we use 2 as the initial minsup. In this case, we solve one of the existing
conflicts randomly using the ID of the tuple where the conflict occurs as selection
criteria.
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Procedure Greedy-Solution-Cost (ro, rt, τ )

1. cost := 0;
2. st := starget(ro, rt, τ );
3. sn := sneutral(ro, rt, τ );
4. Pvalid := PC(ro) ∪ {ρ∅};
5. for each ρ ∈ Pvalid do
6. if ((ρ(ro) ⊂ sn)||(ρ(ro) \ (st ∪ sn) �= ∅))
7. Pvalid := Pvalid \ ρ;
8. while (st �= ∅)
9. ρmax := MaxSelect (Pvalid, st);
10. st := st \ ρmax(st)
11. Pvalid := Pvalid \ ρmax;
12. cost := cost + 1;
13. return cost;

Fig. 13. A greedy algorithm for calculating the solution cost.

8.2. Approximation of Update Distance

Our second heuristic algorithm approximates the update distance based on solving
groups of conflicts independently. We thereby completely disregard the possible impact
that the modification of values for some of the tuples may have on solving conflicts for
other tuples. The sum of operations needed for solving all conflicts then represents an
approximation for the update distance.

Given a pair of databases ro, rt, we consider conflicts that are solvable using the same
modification term independently. For each term τ ∈ NMT(ro, rt), let starget(ro, rt, τ ) =
(ro \τ (ro))�ID τ (rt) = σattr(τ )�=val(τ )(ro)�ID σattr(τ )=val(τ )(rt) denote the set of tuples in ro that
have a conflict in attr(τ ) with their matching partner in rt. We call starget the solution
target set as it defines the set of tuples whose conflict in attr(τ ) can be solved using τ
as modification term. Furthermore, let sneutral(ro, rt, τ ) = τ (ro) �ID τ (rt) denote the set of
tuples that are unaffected by a modification operation having τ as modification term.
We call sneutral the solution neutral set. When approximating the update distance, for
each group of conflicts defined by starget(ro, rt, τ ) we want to find a minimal number
of modification operations using τ to solve the conflicts in starget(ro, rt, τ ). However,
finding such a minimal number of modification operations is still expensive (as shown
for example in Section 7.2 when using CLASS3 operations). We therefore implement a
greedy approach called GREEDY-SOLUTION-COST that is shown in Figure 13. The algorithm
starts by determining the set Pvalid of modification patterns that: (i) select at least one
tuple from starget(ro, rt, τ ), and (ii) only select tuples from starget(ro, rt, τ ) ∪ sneutral(ro, rt, τ ).
We then choose the pattern ρmax that selects the largest subset from st, which initially
contains the tuples in starget(ro, rt, τ ). We remove ρmax from Pvalid and ρmax(st) from st.
The algorithm terminates when st is empty, that is, all tuples in starget(ro, rt, τ ) have
been selected.

Our algorithm for approximating the update distance, called TRANSIT-APPROX, calls
GREEDY-SOLUTION-COST for each τ ∈ NMT(ro, tr). Since NMT(ro, tr) represents the set of
necessary modification terms when transforming ro into rt, we ensure that our ap-
proximation considers all the conflicts that exist between ro and rt. Note that this
approximation can be greater or smaller than the actual update distance. The first
case occurs whenever there are positive side-effects of solving conflicts in one attribute
for solving conflicts in other attributes. The latter occurs whenever the respective mod-
ification operations interfere with each other, that is, after executing one of them, the
other is no longer executable or has a different result.
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8.3. Experimental Results

We now discuss the results of our experimental evaluation of the described heuristics.
The main aim of our experiments is to assess the accuracy of GREEDY-TRANSIT and TRANSIT-
APPROX in determining the update distance. All experiments were performed on a Citrix
MetaFrame Server containing two Intel Xenon 2,4 GHz processors and 4GB main
memory.

Data. For the first series of experiments we extracted three datasets from the En-
sembl public MySQL Server1 having 10 attributes and 100, 1,000, and 10,000 tuples
respectively. These databases are used as origins ro in our experiments. For each of the
databases we generate modified copies (target databases) rt using update sequences
of randomly picked modification operations of length 5, 10, . . . , 50. We refer to the up-
date sequence that generated rt from ro as the generating sequence. For each pair of
databases ro, rt we then compute the update distance �U (ro, rt) using GREEDY-TRANSIT and
TRANSIT-APPROX. The chosen setup provides us with a tighter upper bound for the update
distance, that is, the length of the generating sequence, in order to assess the accuracy
of our algorithms.

Results. The resulting update distances computed by GREEDY-TRANSIT and TRANSIT-APPROX

for the three databases are shown in Figure 14(a) through Figure 14(c). All values are
averaged over ten runs. The actual update distance for the databases is between the
length of the generating sequence (shown as a solid line) and the lower bound. Note
that the generating sequence is not necessarily minimal. The greedy approach and the
approximation are both surprisingly accurate for short update sequences. For longer
update sequences the accuracy decreases but remains in reasonable bounds. The main
reason for this increase is: (a) in the increasing number of conflicts, and (b) in the higher
probability of dependencies between operations in the generating sequence. Overall,
GREEDY-TRANSIT performs better than TRANSIT-APPROX due to the advantage of taking the
order of operations into account. Recall that TRANSIT-APPROX regards all conflicts inde-
pendently. Thus, it does not benefit from previously executed modification operations
as GREEDY-TRANSIT does. As a result, TRANSIT-APPROX more often has to solve remaining
conflicts randomly one by one, leading to higher update distances.

When generating the contradicting databases for the accuracy experiments, we ran-
domly chose one operation from the set of valid modification operations for the current
database. The accuracy of GREEDY-TRANSIT and TRANSIT-APPROX decreases if we restrict the
chosen modification operation to affect a minimum of n tuples. Figure 14 shows the
update distances computed by both algorithms when allowing only modification op-
erations whose patterns select at least 5% of tuples (for the database having 1,000
tuples in total). Using patterns that affect more tuples increases the number of con-
flicts between the resulting databases without increasing the length of the generating
sequences. Again, the limited ability of the heuristic algorithms to detect update op-
erations that influenced each other leads to a decrease in accuracy with increasing
number of conflicts between the databases. The update distance computed by GREEDY-
TRANSIT, however, is still less than 10% of the overall number of conflicts.

Overall, the greedy approach outperforms the approximation in accuracy. On the
other hand, the execution time for TRANSIT-APPROX is only a few milliseconds for the
tested database while for the GREEDY-TRANSIT it is between 875 and 74,000 ms.

We further applied GREEDY-TRANSIT on the protein structure databases OPENMMS and
PDB having nearly 100,000 conflicts between them. The resulting update sequence
contained 15,267 update operations and computation took more than 24 hours. The
result in Figure 15 shows that over 97% of the operations in the sequences solved

1http://www.ensembl.org/info/data/mysql.html.
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(b) 1,000 tuples.
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(c) 10,000 tuples.
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(d) 1,000 tuples with 5% affected.

Fig. 14. Experimental study showing the accuracy of GREEDY-TRANSIT and TRANSIT-APPROX for databases
of different size.

Fig. 15. The figure shows the number of conflicts solved by the first 100 operations in the update sequence
for databases OpenMMS and PDB. The total sequence contains 15,267 operations.
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less than 10 conflicts. This effect might be an argument for the disadvantage of the
greedy approach. However, it more likely points toward the fact that a large number
of arbitrary conflicts exists between the databases that do not follow a systematic
reason. By interpreting the operations at the start of the sequence, we discovered
update operations that describe the commonly known systematic differences between
the databases, like usage of different value representations or vocabularies in some of
the attributes.

9. RELATED WORK

Within this section we review existing work related to conflict resolution, contradiction
pattern mining, and database update distance.

9.1. Conflict Resolution

While there has been a large body of work on the first two steps in data integra-
tion, that is, schema mapping and transformation, and object identification, conflict
resolution has received little research attention so far. In fact, many data integra-
tion platforms rely on the user to decide and specify how to cope with data value
conflicts. Bleiholder and Naumann were the first to give a classification of conflict han-
dling strategies [Bleiholder and Naumann 2006]. According to their classification of
conflict ignorance, conflict avoidance, and conflict resolution, our work focuses on the
third strategy. Conflict resolution in general is done using a set of resolution functions
[Naumann and Häussler 2002]. These functions are applied for individual attributes
under certain conditions in a specified order. Recent work proposes a declarative spec-
ification of conflict resolution strategies [Naumann and Häussler 2002; Bleiholder and
Naumann 2005]. Our work is orthogonal to this body of work. We aim to assist the user
in identifying conflict reasons, providing information which then is used to specify a
conflict resolution strategy.

In Fan et al. [2001], the authors discern between context-dependent and context-
independent conflicts. Context-dependent conflicts represent systematic disparities,
which are consequences of conflicting assumptions or interpretations. Context-
independent conflicts are idiosyncratic in nature and are consequences of random
events, human errors, or imperfect instrumentation. According to their separation, we
consider context-dependent conflicts. However, in contrast to Fan et al. [2001], we do
not discover complex data conversion rules for conflict resolution, but only assist in
assessing the quality of contradicting values. Discovering conflict conversion rules is
considered part of future work.

Recently, there has been work on identifying true values from contradicting values
provided by different data sources on the Web [Dong et al. 2009; Galland et al. 2010; Yin
et al. 2007]. Based on different probabilistic models, each of the approaches estimates
the most likely true state of the data from a given set of contradicting sources. All
approaches rely heavily on the fact that there exists a large number of contradicting
sources. The algorithms presented in this article, on the other hand, are designed for
pairs of data sources, as in the structural biology example (Example 1.1). Furthermore,
our work intends to outline possible reasons for contradictions in order to improve the
data generation process and avoid such problems in the future.

9.2. Contradiction Pattern Mining

Contradiction patterns were initially defined in Müller et al. [2004] based on an a
priori approach for pattern mining [Agrawal and Srikant 1994]. A priori mining ap-
proaches usually generate a huge number of redundant rules, thus overwhelming the
user with redundant patterns. Within this article, we present a new algorithm (CPMINE)
for contradiction pattern mining that is based on closed contradiction patterns. Closed
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patterns, in general, avoid descriptional redundancies by summarizing sets of patterns
that select the same set of tuples. The set of closed contradiction patterns returned by
CPMINE in general is orders of magnitude smaller than the set of patterns in Müller
et al. [2004] while still containing all the information needed by the expert user to
identify possible reasons for systematic differences.

There is a close relationship between contradiction patterns and class association
rules [Liu et al. 1998]. In general, an association rule ρ1 ⇒ ρ2 in a database r is a
statement about the co-occurrence of patterns ρ1, ρ2 in tuples of r, that is, tuples that
satisfy ρ1 also satisfy ρ2 with a certain confidence and support [Agrawal and Srikant
1994]. A class association rule is an association rule having a right-hand side that
contains a single item. Accordingly, a contradiction pattern ρA can be interpreted as a
class association rule ρA ⇒ {(CA, ’true’)} for v(r1, r2). It is easy to show the relationship
between conflict potential and conflict relevance for contradiction patterns and support
and confidence for class association rules. However, there is no adequate parameter
to specify a relevance deviation threshold in class association mining algorithm CBA-
RG presented in Liu et al. [1998]. Similar to contradiction patterns defined in Müller
et al. [2004], CBA-RG is based on an a priori approach for pattern mining [Agrawal and
Srikant 1994].

The comparison of datasets using statistical methods is also described in Bay and
Pazzani [2001] and Webb et al. [2003]. In contrast to our approach, the authors do
not compare overlapping data sources. Instead, the authors try to identify trends or
other noticeable differences between datasets. For example, comparing customer data
from different branches can reveal customer preferences and behavior by region, group,
or month. In Bay and Pazzani [2001] the authors present STUCCO, an algorithm for
mining contrast sets. A contrast set is basically a pattern having a meaningful different
distribution in different datasets. Contradiction patterns can be seen as a special case
of contrast sets by considering the set of conflicting and nonconflicting matching pairs
for an attribute as the different sets to be compared. The algorithm presented in Bay
and Pazzani [2001], however, is designed to identify patterns that show any kind of
difference in their distribution. For contradiction patterns we are mainly interested
in patterns that have significantly large difference in their distribution between the
two datasets. Thus, the set of contradiction patterns is significantly smaller than the
number of contrast sets. In Webb et al. [2003] contrast set mining is compared with
decision tree induction and class association rule mining in their ability to describe
differences between two datasets. The patterns found by each of the methods were
assessed regarding their potential usefulness. The results for two different retailer
datasets show that class association rule mining has the overall best ability to identify
potentially surprising and useful patterns. Our approach is closely related to class
association rule mining. However, we use a closed pattern mining approach to reduce
redundancies in the set of contradiction patterns. Furthermore, we define an additional
measure of interestingness to help focus on those patterns that contain only terms that
occur in close conjunction with conflicts between the overlapping databases.

In general, statistical methods are becoming a popular tool to assist in quality assess-
ment and data cleaning. For example, association rule mining is used to derive integrity
constraints [Maletic and Marcus 2000; Hrycej and Hipp 2004]. Recently, theses ideas
have been revived for mining conditional functional dependencies [Chiang and Miller
2008; Golab et al. 2008; Fan et al. 2009]. Conditional Functional Dependencies (CFDs)
are traditional functional dependencies that hold on a database under conditions [Fan
et al. 2008]. The common goal of all these mining approaches is to find a set of pat-
terns that hold with high confidence over (part of) a given database. Tuples that fail
the mined association rules or CFDs are considered violations, that is, values of poor
data quality. Contrary to our mining approach, in Maletic and Marcus [2000], Hrycej
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and Hipp [2004], Chiang and Miller [2008], Golab et al. [2008], and Fan et al. [2009]
the violations (or conflicts) are not known a priori, that is, the goal is to identify the
violations and not to describe characteristics for a given set of conflicts. One interesting
aspect, however, arises from the work in Golab et al. [2008] where the goal is to find
an optimal (nonoverlapping) set of patterns. We currently consider mining a minimal
set of nonoverlapping contradiction pattern one possible direction of future work.

9.3. Update Distance

The problem of finding minimal sequences of set-oriented operations for relational
databases was first considered in Müller et al. [2006]. Within this article, we extend
the work of Müller et al. [2006] by presenting variations of the original problem and
establishing complexity bounds for one of these variations. Furthermore, we describe
an approximation algorithm for the general update distance problem.

There exist various distance measures for objects other than databases, like the well-
known Hamming distance [Hamming 1950] or the Levenshtein distance [Levenshtein
1966] for binary codes and strings. The updated distance for databases follows the
Levenshtein distance, defined as the minimal number of edit operations necessary to
transform one string into another. The only other distance measure for databases,
which is related to this definition, is defined in Arenas et al. [1999]. Here, the distance
of two databases is defined as the number of tuples from each of the databases without a
matching partner in the other database. The definition is used in the area of computing
consistent query answers for inconsistent databases [Arenas et al. 1999; Chomicki and
Marcinkowski 2005; Wijsen 2002]. Given a query Q, a set of integrity constraints IC,
and a database r, which violates IC, the consistent query answering problem is to
determine the set of tuples that satisfy Q and are contained in each possible repair for
database r. A repair for database r is defined as a database r, which satisfies IC and
is minimal in distance to r in the class of all databases satisfying IC [Arenas et al.
1999]. While the approaches Arenas et al. [1999] and Chomicki and Marcinkowski
[2005] only allow insertion and deletion of tuples in order to find the repairs, Wijsen
[2002] also considers the modification of existing values. All these approaches rely on
integrity constraints to identify contradicting values. For the update distance problem,
on the other hand, the repair is already given by the target database. Therefore, one
is not interested in finding the nearest database in a plethora of possible repairs for
an inconsistent database, but in identifying update sequences that transform given
databases into each other.

The manipulation of existing database values to satisfy a given set of integrity con-
straints is also considered in Bohannon et al. [2005]. In their approach, modification
as well as insertion of tuples is allowed. A certain cost is assigned with each modifica-
tion and insertion operation. For a given database and a set of integrity constraints,
which are violated by the database, the problem then is to find a repair, that is, a
database satisfying a given set of constraints, with minimal cost. Again, the update
distance problem is not about determining the optimal value modifications in order
to solve a set of conflicts, as the solutions of existing conflicts are predetermined by
the target database. The focus is rather on how to perform the (a priori known) nec-
essary modifications with minimal effort in terms of the number of SQL-like update
operations. All other approaches described so far do not consider this problem, as they
implicitly expect to modify the values one at a time after they determine a conflict
solution.

So-called ”update deltas” are used in several applications to represent differences
between databases. In database versioning they are used as memory effective rep-
resentation of different database versions [Dadam et al. 1984]. However, versioning
collects the actual operations during execution instead of having to re-engineer them
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from two given versions. In Labio and Garcia-Molina [1996] sequences of insert, delete,
and update operations are used to represent differences between database snapshots.
However, only operations that affect a single tuple are considered. Since databases
are manipulated with set-oriented SQL commands, we consider an approach using
set-oriented update operations as more natural than a tuple-at-a-time approach. The
detection of minimal sequences of update operations is considered in Chawathe and
Garcia-Molina [1997] for hierarchically structured data. The authors consider an ex-
tended set of update operations to meet the requirements of the manipulation of hier-
archically structured data. The data is represented as a tree structure and there are
operations that delete, copy, or move complete subtrees. However, the corresponding
update operation, that is, to manipulate single data values, considered in Chawathe
and Garcia-Molina [1997] is tuple (or node)-at-a-time.

Buneman et al. study the complexity of updating relational databases through
views [Buneman et al. 2002]. The view deletion problem is to find a minimal set of
tuples to be deleted from a database in order to delete a tuple t from a view defined by a
conjunctive query. Buneman et al. show a dichotomy in the complexity, that is, the prob-
lem is either in P or is NP-hard for queries in the same class. We consider our work as
being orthogonal to the problems considered in Buneman et al. [2002]. That is, we are
interested in finding minimal sequences of update operations rather that minimal sets
of tuples that need to be updated (or deleted). The complexity in our case is caused by
the order of update operations as operations may influence each other. Buneman et al.
[2002], on the other hand, try to identify a minimal set of tuples to be modified. They
do not, however, consider the sequence of update operations that updates the tuples.

10. CONCLUSION

Contradicting databases provide valuable information for data cleaning, provided that
we are able to assess the quality of conflicting values effectively. Within this article
we present two concepts of systematic conflicts intended to assist the task of quality
assessment for data sources and data values. Contradiction patterns are a quick way
to highlight interesting groups of systematic conflicts. We define interestingness mea-
sures for contradiction patterns and adopt existing association mining algorithms for
mining contradiction patterns. The effectiveness of contradiction patterns has been
shown in COLUMBA, where the algorithms presented in this article helped to detect and
resolve various errors and differences between a pair of real-world databases. Minimal
update sequences, on the other hand, are a compact representation for all contradictions
between a pair of databases. Furthermore, the order of operations within an update
sequence enables identification of dependencies between conflicts that, for example,
arise from data cleaning workflows or in genome annotation pipelines. We describe
algorithms and problem variations for finding minimal update sequences. While the
problem of finding such sequences is expensive, we define heuristic algorithms and
demonstrate their high accuracy within our experimental evaluation.

All algorithms presented within this article operate on relational databases consist-
ing of a single relation. While the problem of mining contradiction patterns can easily
be extended to databases with multiple relations, the problem of finding minimal up-
date sequences for such databases remains an open problem. We also consider several
other extensions to our minimal update sequence approach. First, enhancing the ex-
pressiveness of modification operations, including modifications like SET A = f(A) as
described in Fan et al. [2001], would be very important; yet the cost of finding such
functions is probably prohibitive. Second, assuming that two contradicting databases
have been derived from a single ancestor database, it is natural to ask the following
question (studied in biology under the term phylogenetics): Given a pair of databases
r1, r2, compute the database r whose update distance to r1 plus its update distance to r2
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is minimal. We refer to database r as the database with minimal phylogenetic distance.
Solving the minimal phylogenetic distance problem would allow us to reconstruct the
original database.
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MÜLLER, H., LESER, U., AND FREYTAG, J.-C. 2004. Mining for patterns in contradictory data. In Proceedings of
the International Workshop on Information Quality in Information Systems (IQIS’04).
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