
DynamicCloudSim: Simulating Heterogeneity in
Computational Clouds

Marc Bux
∗

Humboldt-Universität zu Berlin
Unter den Linden 6

10099 Berlin, Germany
buxmarcn@informatik.hu-berlin.de

Ulf Leser
Humboldt-Universität zu Berlin

Unter den Linden 6
10099 Berlin, Germany

leser@informatik.hu-berlin.de

ABSTRACT
Simulation has become a commonly employed first step in
evaluating novel approaches towards resource allocation and
task scheduling on distributed architectures. However, ex-
isting simulators fall short in their modeling of the insta-
bility common to shared computational infrastructure, such
as public clouds. In this work, we present DynamicCloud-
Sim which extends the popular simulation toolkit CloudSim
with several factors of instability, including inhomogeneity
and dynamic changes of performance at runtime as well as
failures during task execution. As a use case and valida-
tion of the introduced functionality, we simulate the im-
pact of instability on scientific workflow scheduling by as-
sessing and comparing the performance of four schedulers
in the course of several experiments. Results indicate that
our model seems to adequately capture the most important
aspects of cloud performance instability, though a valida-
tion on real hardware is still pending. The source code of
DynamicCloudSim and the examined schedulers is available
at https://code.google.com/p/dynamiccloudsim/.

Keywords
Cloud Computing, Simulation, Instability, Heterogeneity,
Scientific Workflows, Scheduling

1. INTRODUCTION
Over the last decade, cloud computing emerged as a form
of distributed computing, in which computational resources
can be provisioned on-demand over the Internet [1]. In the
Infrastructure-as-a-service (IaaS) model of cloud comput-
ing, computational resources of any scale can be rented in
the form of virtual machines (VMs) from commercial cloud
providers like Amazon or Microsoft [2]. The convenience of
its pay-as-you-go model along with the aggressive promo-
tion by its providers has led to an exponential growth in the
usage of cloud computing over the last years (see Figure 1).

Tailoring highly scalable applications to make efficient use
of cloud resources requires developers to be aware of both

∗To whom correspondence should be addressed

the performance of rented cloud infrastructure and the re-
quirements of the to-be-deployed application. These char-
acteristics are hard to quantify and vary depending on the
application and cloud provider. Since benchmarking a given
application on cloud infrastructure of large scale repeatedly
under various experimental conditions is both tedious and
expensive, simulation constitutes a convenient and afford-
able way of evaluation prior to implementation and execu-
tion on real hardware [3–5].

Unfortunately, available cloud simulation toolkits like Cloud-
Sim [6] do not adequately capture inhomogeneity and dy-
namic performance changes inherent to non-uniform and
shared infrastructures like computational clouds. The effect
of these factors of uncertainty and instability is not negligi-
ble and has been repeatedly observed to strongly influence
the runtime of a given application on commercial clouds such
as Amazon’s Elastic Compute Cloud (EC2) (e.g., [7–13]).

In this work, we present DynamicCloudSim, an extension to
CloudSim which provides an array of capabilities to model
the instability inherent to computational clouds and similar
distributed infrastructures. We showcase the applicability of
DynamicCloudSim in a series of experiments involving the
scheduling of a computationally intensive scientific workflow
which has been repeatedly used for evaluation purposes. We
believe scientific workflow scheduling to be a suitable use
case for demonstrating the capabilities of a cloud simula-
tion framework for two reasons: (1) Scheduling computa-
tionally intensive scientific workflows on distributed and po-
tentially shared architectures presents many opportunities
for optimizing robustness to instability [14]; (2) Simulation
has been repeatedly made use of for evaluating scientific
workflow schedulers (e.g., [15, 16]).

Scientific workflows are directed, acyclic graphs (DAGs), in
which nodes correspond to data processing tasks and edges
constitute data dependencies between these tasks. They
have recently gained attention as a flexible programming
paradigm for modeling, representing, and executing com-
plex computations and analysis pipelines in many different
areas of scientific research [17]. A considerable number of
scientific workflow management systems (SWfMS) has been
developed, including Taverna [18], Kepler [19], and Pega-
sus [20]. A comprehensive survey on SWfMS has been pre-
sented by Yu and Buyya [21]. Many of these systems provide
the functionality to design workflows in a drag-and-drop user
interface, share workflows with other users in public repos-
itories (e.g., myExperiment [22]), or execute workflows on
appropriate computational architectures.

Figure 1: Total number of objects stored in the
Amazon Simple Storage Service (Amazon S3) since
its introduction in 2006. The exponential growth
of the largest cloud provider’s data storage solution
mirrors the trend of compute clouds increasing in
size and popularity. Image has been published on
the Amazon Web Services Blog in April 20121.

A variety of sophisticated algorithms for scheduling scien-
tific workflows on shared infrastructures such as computa-
tional clouds have been developed (e.g., [23–25]). As an
application example for DynamicCloudSim, we compare the
performance of several established scientific workflow sched-
ulers at different levels of instability. Since some of the in-
vestigated schedulers have been developed to handle het-
erogeneity, dynamic performance changes, and failure, we
expect our experiments to replicate the advertised strengths
of the different workflow schedulers. Results from an exten-
sive number of simulation runs confirm these expectations,
underlining the importance of elaborate scheduling mecha-
nisms when executing workflows on shared computational
infrastructure.

The remainder of this document is structured in the follow-
ing way: The CloudSim framework is described in Section 2,
whereas the features it has been extended with are described
in Section 3. The setup of the scientific workflow scheduling
experiments showcasing the capabilities of DynamicCloud-
Sim is outlined in Section 4. The results of these exper-
iments are presented and discussed in Section 5. Related
Work is summarized in Section 6. Finally, a conclusion and
an outlook to future work is given in Section 7.

2. CLOUDSIM
CloudSim is an extension of the GridSim [26] framework
for simulation of resource provisioning and scheduling algo-
rithms on cloud computing infrastructure developed by Cal-
heiros et al. [6] at the University of Melbourne’s CLOUDS
Laboratory. It provides capabilities to perform simulations
of assigning and executing a given workload on a cloud
computing infrastructure under different experimental con-
ditions. CloudSim for instance has been used to (1) measure
the effects of a power-aware VM provisioning and migration
algorithm on datacenter operating costs for real-time cloud
applications [3], (2) evaluate a cost-minimizing algorithm of
VM allocation for cloud service providers, which takes into
account a fluctuating user base and heterogeneity of cloud
VMs [4], (3) develop and showcase a scheduling mechanism
for assigning tasks of different categories – yet without data
dependencies – to the available VMs [5].

1http://tinyurl.com/6uh8n24

CloudSim operates event-based, i.e., all components of the
simulation maintain a message queue and generate messages,
which they pass along to other entities. A CloudSim sim-
ulation can instantiate several datacenters, each of which
is comprised of storage servers and physical host machines,
which in turn host multiple VMs executing several tasks
(named cloudlets in CloudSim). For a detailed overview, re-
fer to Figure 2. A datacenter is characterized by its policy
of assigning requested VMs to host machines (with the de-
fault strategy being to always choose the host with the least
cores in use). Each datacenter can be configured to charge
different costs for storage, VM usage, and data transfer.

The computational requirements and capabilities of hosts,
VMs, and tasks are captured in four performance measures:
MIPS (million instructions per second per core), bandwidth,
memory, and local file storage. Furthermore, each host has
its own policy which defines how its computational resources
are to be distributed among allocated VMs, i.e., whether
VMs operate on shared or distinctly separated resources and
whether over-subscription of resources is allowed. Similarly,
each VM comes with a scheduling policy specifying how its
resources are to be distributed between tasks. On top of
this architecture, an application-specific datacenter broker
supervises the simulation, requesting the (de-)allocation of
VMs from the datacenter and assigning tasks to VMs.

One of the key aspects of CloudSim is that it is easily ex-
tensible. Several extensions have been presented, includ-
ing (1) NetworkCloudSim [27], which introduces sophisti-
cated network modeling and inter-task communication, (2)
EMUSIM [28], which uses emulation to determine the per-
formance requirements and runtime characteristics of an ap-
plication and feeds this information to CloudSim for more
accurate simulation, or (3) CloudMIG [29], which facilitates
the migration of software systems to the cloud by contrasting
different cloud deployment options based on the simulation
of a code model in CloudSim.

3. DYNAMICCLOUDSIM
CloudSim assumes provisioned virtual machines to be pre-
dictable and stable in their performance: Hosts and VMs are
configured with a fixed amount of MIPS and bandwidth and
VMs are assigned to the host with the most available MIPS.
On actual cloud infrastructure like Amazon EC2, these as-
sumptions do not hold. While most IaaS cloud vendors guar-
antee a certain processor clock speed, memory capacity, and
local storage for each provisioned VM, the actual perfor-
mance of a given VM is subject to the underlying physical
hardware as well as the usage of shared resources by other
VMs assigned to the same host machine. In this section, we
outline the extensions we have made to the CloudSim core
framework as well as the rationale behind them.

3.1 File I/O
In CloudSim, the amount of time required to execute a given
task on a VM depends solely on the task’s length (in MI) and
the VM’s processing power (in MIPS). Additionally, the ex-
ternal bandwidth (in KB/s) of VMs and their host machines
can be specified, but neither have an impact on the runtime
of a task. Moreover, many data-intensive tasks are neither
computational- nor communication-intensive, but primar-
ily I/O-bound. Especially in database applications, a sub-
stantial amount of tasks involves reading or writing large
amounts of data to local or network storage [7].

Datacenter
- A policy for assignment

 of VMs to Host machines

- Cost policies: Storage,
 VM leasing, Data transfer

- Number of Cores and MIPS per Core
- Other Resources: Memory, Bandwidth, Storage

- A policy for assignment of Resources to VMs

Host

VM
- Resources: MIPS, Memory, Bandwidth, Storage
- A policy for assignment of Tasks to Resources

Task
- Length in Million Instructions (MI)
- Input and Output Files

- Memory Requirement

Storage
- Hard Disk Storage
- Storage Area Network

Figure 2: The architecture of the CloudSim framework.

DynamicCloudSim introduces external bandwidth as a re-
quirement of tasks and file I/O as an additional performance
characteristic of tasks, VMs and hosts. It takes into account
all performance requirements of a task when determining
how long it takes to execute the task on a given VM. Hence,
DynamicCloudSim allows the simulation of executing differ-
ent kinds of tasks (CPU-, I/O-, bandwidth-bound) on VMs
with different performance characteristics.

3.2 The Need for Introducing Instability
In a performance analysis spanning multiple Amazon EC2
datacenters, Dejun et al. [7] observed occasional severe per-
formance drops in virtual machines, which would cause the
response time of running tasks to greatly increase. Further-
more, they reported the response time of CPU- and I/O-
intensive application to vary by a factor of up to four on
VMs of equal configuration. Notably, they detected no sig-
nificant correlation between CPU and I/O performance of
VMs. Zaharia et al. [8] found the I/O throughput of “small”-
sized VM instances in EC2 to vary between roughly 25 and
60 MB per second, depending on the amount of co-located
VMs running I/O-heavy tasks.

In a similar evaluation of Amazon EC2, Jackson et al. [9]
detected different physical CPUs underlying similar VMs:
Intel Xeon E5430 2.66 GHz, AMD Opteron 270 2 GHz,
and AMD Opteron 2218 HE 2.6 GHz. They also observed
network bandwidth and latency to depend on the physi-
cal hardware of the provisioned VMs. When executing a
communication-intensive task on 50 VMs, the overall com-
munication time varied between three and five hours over
seven runs, depending on the network architecture underly-
ing the provisioned VMs. In the course of their experiments,
they also had to restart about one out of ten runs due to
the occurrence of failures. Similar observations have been
made in other studies on the performance of cloud infras-
tructure [10, 11].

Another comprehensive analysis of the performance variabil-
ity in Amazon EC2 was conducted by Schad et al. [12]. Once
per hour over a time period of two months they measured the
CPU, I/O, and network performance of newly provisioned

VMs in Amazon EC2 using established microbenchmarks.
Performance was found to vary considerably and generally
fall into two bands, depending on whether the VM would
run on Intel Xeon or AMD Opteron infrastructure. The
variance in performance of individual VMs was also shown
to strongly influence the runtime of a real-world MapReduce
application on a virtual cluster consisting of 50 EC2 VMs.
A further interesting observation of this study was that the
performance of a VM depends on the hour of the day and
day of the week. Iosup et al. [13] made similar observations
when analyzing more than 250,000 real-world performance
traces of commercial clouds.

Evidently, the performance of computational cloud infras-
tructure is subject to different factors of instability:

1. Heterogeneous physical hardware underlying the pro-
visioned VMs (Het)

2. Dynamic changes of performance at runtime (DCR)

3. Straggler VMs and failed task executions (SaF)

In the remainder of this section, we describe in detail how
DynamicCloudSim attempts to capture these factors of in-
stability.

3.3 Heterogeneity
Similar to Amazon EC2, the provisioning of resources to
virtual machines in DynamicCloudSim is based on compute
units instead of fixed performance measures. Different host
machines provide a different amount of computing power
per provisioned compute unit, effectuating in heterogeneity
(Het) among VM performance. Furthermore, in contrast to
CloudSim, DynamicCloudSim does not assign new VMs to
the host with the most available resources, but to a ran-
dom machine within the datacenter. Hence, VMs of equal
configuration are likely to be assigned to different types of
physical machines providing varying amounts of computa-
tional resources. Similar to a commercial cloud like Amazon
EC2, the user is oblivious to the hardware underlying the
provisioned VMs and has no control over the VM allocation

0

100

200

300

400

500

600

0 31 60 91 121 152 182 213 244 274 305 335 366 397 425 456 486 517 547 578 609 639 670 700 731 762

P
e

rf
o

rm
an

ce
 (

in
 M

IP
S)

Time (in minutes)

Instability in Performance of VMs in DynamicCloudSim

VM #1

VM #2

VM #3

VM #4

VM #5

VM #6

VM #7

VM #8 (straggler)

baseline

Figure 3: CPU performance of a configuration of eight VMs (including one straggler) running for 12 hours
with default parameters in DynamicCloudSim. The black line represents how the VMs’ performance would
have looked like in basic CloudSim.

policy. In Section 4, we describe how we set up a simula-
tion environment resembling the inhomogeneous hardware
configuration of Amazon EC2

In addition to the heterogeneity achieved by assigning VMs
to different types of hosts, DynamicCloudSim also provides
the functionality to randomize the individual performance
of a VM. If this feature is enabled, the performance char-
acteristics (CPU, I/O, and bandwidth) of a newly allocated
VM are sampled from a normal distribution instead of us-
ing the default values defined by the VM’s host machine.
The mean of this normal distribution is set to the host’s
default value of the performance characteristic and the rel-
ative standard deviation (RSD) can be defined by the user,
depending on the desired level of heterogeneity. Schad et al.
[12] found several of the performance measurements of VMs
in Amazon EC2 – particularly random disk I/O and net-
work bandwidth – to be normally distributed. Hence, while
we plan to introduce sampling from different kinds of distri-
butions for a future version of DynamicCloudSim, we found
the normal distribution to be a good starting point.

Dejun et al. [7] reported average runtimes between 200 and
900 ms – with a mean and standard deviation of roughly
500, respectively 200 – for executing a CPU-intensive task
on 30 VMs across six Amazon EC2 datacenters. Based on
these measurements, we set the default value for the RSD
parameter responsible for CPU performance heterogeneity
to 0.4. In the same way, we determined a default value for
I/O heterogeneity of 0.15. Based on similar measurements
taken by Jackson et al. [9] for communication-intensive tasks
on Amazon EC2, we set the default value for network band-
width heterogeneity to 0.2. These values are backed up by
the performance measurements of Schad et al. [12], who ob-
served an RSD of 0.35 between processor types in EC2 as
well as RSD values of 0.2 and 0.19 for disk I/O and network
performance.

3.4 Dynamic Changes at Runtime
So far we only modeled heterogeneity, which represents per-
manent variance in performance of VMs due to differences
in underlying hardware. Another important concept of in-
stability inherent to cloud computing are dynamic changes
of performance at runtime (DCR) due to sharing of com-
mon resources with other VMs and users, as for instance
reported by Dejun et al. [7]. DynamicCloudSim attempts to
capture two aspects of this concept: (1) Long-term changes
in a VM’s performance due to a certain event, e.g., the co-
allocation of a different VM with high resource utilization
on the same host. (2) Uncertainty or noise, which models
short-term alterations in a VM’s performance.

To simulate the effects of long-term changes, DynamicCloud-
Sim samples from an exponential distribution with a given
rate parameter to determine the time of the next perfor-
mance change. The exponential distribution is frequently
used to model the time between state changes in continuous
processes. In DynamicCloudSim, the rate parameter is de-
fined by the user and corresponds to the average number of
performance changes per hour. In light of the observations
made by Schad et al. [12] and Iosup et al. [13], who found
that the performance of a VM can change on an hourly ba-
sis, we assume the performance of a VM to change about
once every two hours by default.

Whenever a change of one of the performance characteristics
has been induced on a VM, the new value for the given
characteristic is sampled from a normal distribution. The
mean of this distribution is set to the baseline value of the
given characteristic for this VM, i.e., the value that has been
assigned to the VM at allocation time. The RSD of the
distribution is once again set by the user. Higher values in
both the rate parameter of the exponential distribution and
the standard deviation of the normal distribution correspond
to higher levels of dynamics.

Uncertainty (or noise) is the lowest tier of dynamic perfor-
mance changes in DynamicCloudSim. It is modeled by intro-
ducing slight aberrations to a VM’s performance whenever a
task is assigned to it. As with heterogeneity and dynamics,
this is achieved by sampling from a normal distribution with
user-defined RSD parameter.

On Amazon EC2, Dejun et al. [7] observed relative stan-
dard deviations in performance between 0.019 and 0.068 for
CPU-intensive tasks and between 0.001 and 0.711 for I/O-
intensive tasks. We set the default values for the RSD pa-
rameter of long-term performance changes to the third quar-
tile of these distributions, i.e., to 0.054 for CPU performance
and 0.033 for I/O performance. Similarly, we set the default
RSD value for the noise parameter to the first quartile, i.e.,
to 0.028 for CPU and 0.007 for I/O.

3.5 Stragglers and Failures
In massively parallel applications on distributed computa-
tional infrastructure, fault-tolerant design becomes increas-
ingly important [30]. For the purpose of simulating fault-
tolerant approaches to scheduling, DynamicCloudSim intro-
duces straggler VMs and failures (SaF) during task execu-
tion. Stragglers are virtual machines exhibiting constantly
poor performance [8]. In DynamicCloudSim, the probability
of a VM being a straggler can be specified by the user along
with the coefficient that determines how much the perfor-
mance of a straggler is diminished.

We propose default values of 0.015, respectively 0.5 for the
straggler likelihood and performance coefficient parameters.
These values are based on the findings of Zaharia et al. [8],
who encountered three stragglers with performance dimin-
ished by 50 % or more among 200 provisioned VMs in their
experiments. The effect of these parameters is exemplar-
ily shown in Figure 3, which illustrates all of the intro-
duced factors of instability (Het, DCR, SaF) in combina-
tion for the CPU performance of eight VMs, including one
straggler, in an experiment of 12 hours in DynamicCloud-
Sim.

Failures during task execution are another factor of instabil-
ity inherent to distributed computing. DynamicCloudSim is
currently confined to a basic method of failure generation:
Whenever a task is assigned to a VM and its execution
time is computed, DynamicCloudSim determines whether
the task is bound to succeed or fail. This decision is based
on the average rate of failures specified by the user. The
default value for the rate of failed task executions is set to
0.002, based on the observations of Jackson et al. [9], who
had to restart one out of ten experiments on 50 VMs due to
the occurrence of a failure on one VM.

There are various reasons for failed task execution, such as
temporary performance breakdowns within a VM or the in-
ability to access input data or write output data. Usually,
such perturbations are not immediately recognized, hence
resulting in severely increased runtimes. Consequently, in
DynamicCloudSim the runtime of a failed task execution is
determined by multiplying the task’s execution time with
a user-defined coefficient. The introduction of more so-
phisticated failure models on different levels (VM, storage,
task) of workflow execution is left for future work (see Sec-
tion 7).

1 2 3

mProject 1 mProject 2 mProject 3

1 2 3

mDiff 1 2 mDiff 2 3

D12 D23

mFitplane D12 mFitplane D23

mConcatFit

mBackground 1

mBackground 3

mBackground 2

mBgModel

mAdd

1 2 3

Final Mosaic

Figure 4: A schematic instance of the Montage
workflow, in which three input images are processed
to generate a mosaic [31].

4. EXPERIMENTAL VALIDATION
To showcase a possible application of DynamicCloudSim, we
simulate the execution of a computationally intensive work-
flow using different mechanisms of scheduling and different
levels of instability in the computational infrastructure. We
expect the schedulers to differ in their robustness to instabil-
ity, which should be reflected in diverging workflow execu-
tion times. In this section, we outline the evaluation work-
flow, the experimental settings, and the schedulers which we
used in our experiments.

4.1 The Montage Workflow
We constructed an evaluation workflow using the Montage
toolkit [31]. Montage is able to generate workflows for as-
sembling high-resolution mosaics of regions of the sky from
raw input data. It has been repeatedly utilized for evaluat-
ing scheduling mechanisms or computational infrastructures
for scientific workflow execution (e.g., [32–35]). See Figure 4
for a schematic visualization of the Montage workflow and
Figure 5 for an example of output generated by a Montage
workflow.

In our experiments, we used a Montage workflow which
builds a large-scale (twelve square degree) mosaic of the
m17 region of the sky. This workflow consists of 43,318
tasks reading and writing 534 GB of data in total, of which
10 GB are input and output files which have to be up-
loaded to and downloaded from the computational infras-
tructure.

4.2 Experimental Settings
The 43,318 task Montage workflow was executed on a sin-
gle core of a Dell PowerEdge R910 with four Intel Xeon
E7-4870 processors (2.4 GHz, 10 cores) and 1 TB mem-
ory, which served as the reference machine of our experi-
ments. Network file transfer, local disk I/O and the runtime
of each task in user-mode were captured and written to a
trace file.

Figure 5: A one square degree mosaic of the m17
region of the sky. The image has been generated by
executing the corresponding Montage workflow.

We parsed the Montage workflow and the trace it gener-
ated on the Xeon E7-4870 machine in DynamicCloudSim.
The 43,318 tasks were assigned performance requirements
according to the trace file, i.e., a CPU workload correspond-
ing to the execution time in milliseconds, an I/O workload
equal to the file sizes of the task’s input and output files, and
a network workload according to the external data transfer
caused by the task. When executing the workflow in Cloud-
Sim, all data dependencies were monitored. Thus, a task
could not commence until all of its predecessor tasks had
finished execution.

In our simulations, we attempt to mirror the computational
environment of Amazon EC2. Hence, we obtained SPECfpR©

2006 benchmark results for Intel Xeon E5430 2.66 GHz,
AMD Opteron 270 2.0 GHz, and AMD Opteron 2218 HE 2.6
GHz, which Jackson et al. [9] detected in their evaluation
of Amazon EC2 as underlying hardware. SPECfpR© 2006
is the floating point component of the SPECR© CPU2006
benchmark suite. It provides a measure of how fast a single-
threaded task with many floating point operations is com-
pleted on one CPU core. An overview of the benchmark
results is displayed in Table 1.

A CloudSim datacenter was initialized with 500 host ma-
chines: 100 Xeon E5430, 200 Opteron 2218, and 200 Opteron
270. Since the Xeon E5430 has twice as many cores as the
AMD machines, each type of machine contributes to the
datacenter with an equal amount of cores and thus compute
units. The CPU performance of each core of these machines
was set to the ratio of the machine’s SPECfpR© 2006 score to
the reference machine’s score. For instance, the CPU per-
formance of Xeon E5430 machines was set to 355, effectuat-
ing in a runtime of 28,169 milliseconds for a task that took
10,000 milliseconds on the Xeon E7-4870 reference machine.

We assume all of the data associated with the workflow – in-
put, intermediate, and output – to be saved on shared stor-
age such as Amazon S3. Different measurements of network
throughput within Amazon EC2 and S3 ranging from 10 to
60 MB/s have been reported (e.g., [9, 36, 37]). We there-
fore set the default I/O throughput of virtual machines to
20 MB/s. The external bandwidth of virtual machines was
set to 0.25 MB/s, based on the remote access performance
of S3 reported by Palankar et al. [11] and Pelletingeas [37].

In the course of the experiments, we incrementally raised the
level of instability in DynamicCloudSim. In total, we con-
ducted four experiments, in which we measured the effect of
heterogeneity (Het), dynamic performance changes at run-
time (DCR), and straggler VMs and faulty task executions
(SaF):

1. Het: We measure the effect of heterogeneous compu-
tational infrastructure on different approaches to work-
flow scheduling. To this end, the relative standard de-
viation (RSD) parameters responsible for inhomogene-
ity are incrementally set to 0, 0.125, 0.25, 0.375, and
0.5 (for CPU, I/O, and network performance). The
simulation of dynamic performance changes at runtime
(DCR) as well as straggler VMs and failed tasks (SaF)
is omitted.

2. DCR: We examine how dynamic changes in the com-
putational infrastructure affect workflow scheduling.
Therefore, the RSD parameters responsible for long-
term changes in the performance of a VM was varied
between 0, 0.125, 0.25, 0.375, and 0.5. At the same
time, the rate of performance changes is fixed at 0.5
and the RSD parameters for noise are set to 0.025
across all runs.

3. SaF: We determine the effect of straggler resources
and failures during task execution. For this reason,
the likelihoods of a VM being a straggler and of a task
to fail are set to 0, 0.00625, 0.0125, 0.01875, and 0.025.
The performance coefficient of straggler resources is set
to 0.1 and the factor by which the runtime of a task
increases in the case of a failure is set to 20.

4. Extreme parameters: In this setting, we utilize 1.5
times the maximum values for heterogeneity, dynamics
and stragglers / failures from experiments 2, 3, and 4
(i.e., RSD parameters of 0.75 for Het and DCR; strag-
gler and failure likelihoods of 0.0375 for SaF) to deter-
mine the effect of combining all introduced factors of
instability at a very high level.

4.3 Scientific Workflow Schedulers
Scheduling a scientific workflow denotes the process of map-
ping the workflow’s tasks onto the available computational
resources [24]. Most scheduling policies are developed with
the aim to minimize overall workflow execution time. How-
ever, certain scenarios call for different scheduling objec-
tives, e.g., the optimization of monetary cost or data se-
curity [21]. In general, we differentiate between static and
adaptive schedulers [14]. Here we consider (1) a static round
robin scheduler, (2) the HEFT scheduling heuristic [23], (3)
a greedy task queue, and (4) the LATE algorithm [8]. All
of the schedulers outlined in this section were implemented
in DynamicCloudSim.

4.3.1 Static Schedulers
In static scheduling, a schedule is assembled prior to ex-
ecution and then strictly abided at runtime. The round
robin scheduler is often used as a baseline implementation
of a static scheduler (e.g., [20]). It constructs a schedule by
traversing the workflow from the beginning to the end, as-
signing tasks to computational resources in turn. This way,
each resource will end up with roughly the same amount of
tasks, independent of its computational capabilities or the

Table 1: CFP2006 benchmark results

machine cores SPECfpR© 2006 percentage of URL
base score reference

Intel Xeon E7-4870 2.4 GHz 10 51.0 100 % http://tinyurl.com/d3oghak
Intel Xeon E5430 2.66 GHz 8 18.1 35.5 % http://tinyurl.com/bckaqow
AMD Opteron 2218 2.6 GHz 4 12.6 24.7 % http://tinyurl.com/ajqj3n3
AMD Opteron 270 2.0 GHz 4 8.89 17.4 % http://tinyurl.com/aug9xcq

tasks’ workload. We expect the static round robin sched-
uler to perform well in homogeneous and stable computa-
tional infrastructures. Adding heterogeneity (Het), dynamic
changes at runtime (DCR) or stragglers and failures (SaF)
to the experiment should heavily diminish its performance.

A number of more sophisticated mechanisms for static work-
flow scheduling on heterogeneous computational architec-
tures have been proposed (e.g., [16, 24, 25]). Among the
more influential scheduling algorithms is the Heterogeneous
Earliest Finishing Time (HEFT) heuristic, which has been
developed by Topcuoglu et al. [23]. Similar to most sophisti-
cated static schedulers, HEFT requires runtime estimates for
the execution of each task on each computational resource,
which are difficult to obtain.

The HEFT heuristic traverses the workflow from the end
to the beginning, computing the upward rank of each task
as the estimated time to overall workflow completion at the
onset of this task. The computation of a given task’s upward
rank incorporates estimates for both the runtimes and data
transfer times of the given task as well as the upward ranks
of all successor tasks. The static schedule is then assembled
by assigning each task in decreasing order of upward ranks a
time slot on a computational resource, such that the task’s
scheduled finish time is minimized.

In our experiment, HEFT is provided with accurate runtime
estimates based on the execution time of each task on each
CloudSim VM at the time of its allocation. Hence, we expect
the HEFT scheduler to perform well in both homogeneous
and heterogeneous infrastructure. However, we expect poor
performance if dynamic changes (DCR) or failures in the
computational infrastructure (SaF) are introduced and run-
time estimates become inaccurate.

Both the static round robin scheduler and the HEFT sched-
uler are available in the SWfMS Pegasus [20]. The SWfMS
Kepler [19] also supports static scheduling by means of its
SDF director.

4.3.2 Adaptive Schedulers
In adaptive scheduling, scheduling decisions are made on-
the-fly at the time of execution. The most intuitive approach
to adaptive scheduling is a greedy task queue. Here, tasks
are assigned to computational resources in first-come-first-
serve manner at runtime. Whenever a resource has an avail-
able task slot, it fetches a task from a queue of tasks ready for
execution. Task queues have been implemented in a variety
of SWfMS, including Taverna [18] and Kepler [19]. The de-
fault scheduler of Hadoop [38] also employs a greedy queue.
In our experiment, we expect a task queue scheduler to
outperform static schedulers when dynamic changes (DCR,
SaF) in the computational infrastructure are introduced.

The LATE (Longest Approximate Time to End) scheduler
developed by Zaharia et al. [8] constitutes a well-established
alteration of the default task queue. By speculatively repli-
cating tasks progressing slower than expected, LATE ex-
hibits increased robustness to the effects of straggler re-
sources and failed task execution (SaF). LATE keeps track
of the runtime and progress of all running tasks. By default,
10 % of the task slots on resources performing above average
are assigned speculative copies of tasks which are estimated
to finish farthest into the future and have progressed at a
rate below average. Intuitively, this approach maximizes the
likeliness for a speculative copy of a task to overtake its orig-
inal. LATE evidently follows a rationale similar to that of
HEFT, since both scheduling heuristics prioritize the assign-
ment of tasks with longest times to finish to well-performing
computational resources.

LATE was implemented as an extension of Hadoop’s de-
fault scheduling algorithm. For Hadoop’s Sort benchmark
executed on 800 virtual machines of an Amazon EC2 test
cluster, the LATE scheduler has been shown to outperform
the default scheduler of Hadoop by 27 % on average [8]. In
our experiments, we expect LATE to be robust even in set-
tings with straggler resources and high rates of failures dur-
ing task execution (SaF). However, due to 10 % of the com-
putational resources being reserved for speculative task ex-
ecution, LATE should perform slightly inferior to a greedy
queue on homogeneous and stable computational infrastruc-
ture.

5. RESULTS AND DISCUSSION
For each configuration, the 43,318 task Montage workflow
described in Section 4.1 was executed 100 times on eight
virtual machines and the average runtime was determined.
The results of the four experiments outlined in Section 4.2
are displayed in Figures 6 and 7. Over the course of the
entire experiments, average runtimes of the Montage work-
flow between 296 and 13,195 minutes have been observed.
Clearly, the instability parameters provided by Dynamic-
CloudSim have a considerable impact on execution time.

In the experiment simulating the effect of heterogeneous re-
sources (Het), all schedulers except the static round robin
scheduler exhibit robustness to even the highest levels of
variance (see Figure 6a). The reasons for this observation
are that HEFT has been designed specifically with inhomo-
geneous computational resources in mind and queue-based
schedulers like the greedy scheduler and LATE are able to
adapt to the computational infrastructure. All three sched-
ulers effectively assign less tasks to slower resources. Con-
versely, the static round robin scheduler is oblivious to the
computational infrastructure and simply assigns an equal
amount of tasks to each resource, which results in faster
resources having to idly wait for slower resources to finish.

Figure 6: Effects of (a) heterogeneity (Het), (b) dynamic changes of performance at runtime (DCR), and (c)
straggler VMs and failed tasks (SaF) on execution time of the Montage workflow using different schedulers.

Since LATE always reserves 10 % of the available resources
for speculative scheduling, we would expect runtimes slightly
below a greedy queue, which we did not observe. The rea-
son for this might be that HEFT and LATE have a slight
edge over the greedy queue-based scheduler: If there is a
computationally intensive task which blocks the execution
of all successor tasks – of which there is one in the Montage
workflow called mBgModel –, HEFT and LATE are able to
assign it to a well-suited computational resource, instead of
simply assigning it to the first available resource. HEFT
does this by consulting the accurate runtime estimates of all
task-resource-assignments it has been provided with. LATE
simply starts a speculative copy of the task on a compute
node performing above average.

Finding only the static round robin scheduler to perform
subpar in this experimental setting confirmed our expecta-
tions outlined in Section 4.3. Evidently, DynamicCloudSim
is able to simulate the effect of inhomogeneous resources.
Since heterogeneity is commonly encountered in distributed
architectures like computational clouds, this is a very de-
sirable property which will continue to be important going
forward and has not been sufficiently supported by other
cloud simulation toolkits.

The second experiment measured how dynamic changes in
the performance of VMs (DCR) affect the runtime of the
Montage workflow achieved by the four scheduling mecha-
nisms (see Figure 6b). It confirms our expectations of static
schedulers like static round robin and HEFT not being able
to handle dynamic changes. The major shortcoming of static
schedulers lies in the fact that they assemble a schedule
prior to workflow execution, which is then strictly abided
to. Therefore, changes in the runtime environment make
even elaborate static schedules suboptimal.

HEFT provided with accurate runtime estimates constitutes
one of the most sophisticated static scheduling policies avail-
able, since it takes into account the suitability of a given task
for each resource. The only scenarios, in which HEFT should
perform substantially worse than a greedy task queue, should
be ones in which all tasks have equal performance require-
ments (which is not the case in Montage) or the runtime
estimates are inaccurate, e.g., due to alterations at runtime.
Hence, the findings of the second experiment are a strong
indicator of DynamicCloudSim being able to simulate dy-
namic changes in the performance of resources.

The third experiment examined how the appearance of strag-
gler VMs (i.e., virtual machines with only 10 % of a regu-
lar machine’s performance) and failed task executions (SaF)
influence the performance of the four examined workflow
schedulers. Figure 6c confirms the robustness of the LATE
scheduler even for high amounts of failures and stragglers. In
contrast, the performance of all other schedulers diminished
quickly in the face of failure. This is not surprising, since
if critical tasks are assigned to straggler VMs or encounter
a failure during execution, overall workflow execution time
can increases substantially. Speculative replication of tasks
with a low progress rate alleviates this problem.

In the fourth experiment, we examined how all three of the
introduced factors of instability combined and taken to ex-
tremely high levels (RSD parameters of 0.75 for Het and
DCR; likelihood parameters of 0.0375 for SaF) influenced

Figure 7: Execution time (in log scale) of the
Montage workflow in DynamicCloudSim in extreme
cases of instability.

the workflow execution time. The results of this experi-
ment are shown in Figure 7. Once again, LATE is the only
scheduler to exhibit robustness to even extreme parameter
configurations. Furthermore and in contrast to the findings
in the third experiment, the HEFT scheduler substantially
outperforms the greedy job queue.

The combination of all factors, i.e., dynamic changes at run-
time to inhomogeneous compute resources which can also
be stragglers or subject to faulty task execution, can lead
to cases, in which the execution of the Montage workflow
task mBgModel (as described above) can take extremely
long. This is more problematic for a greedy task queue,
which assigns a task to the first available computational re-
source, which might be a straggler. In contrast, HEFT is at
least able to handle heterogeneous and straggler resources
by means of its accurate runtime estimates.

The last two experiments illustrated the severe effect of
straggler VMs and failed tasks executions (SaF) on work-
flow runtime, confirming previous reports on the importance
of fault-tolerant design in computationally intensive appli-
cations (e.g., [30, 35]). While the simulation was able to
replicate the advertised strengths of LATE, we acknowledge
that more sophisticated failure models would be a desirable
enhancement over the current implementation of Dynamic-
CloudSim (see Section 7).

All in all, the experiments clearly confirmed the expectations
described in Section 4.3. While a validation on actual cloud
infrastructure is still pending, the results serve as an indica-
tor of DynamicCloudSim being well-suited to simulate the
dynamics and instability inherent to computational clouds.
Furthermore, the simulations underline the importance of
adaptive scheduling of scientific workflows in shared and dis-
tributed computational infrastructures like public clouds.

6. RELATED WORK
Merdan et al. [39] and Hirales-Carbajal et al. [40] devel-
oped simulation environments specifically for comparing dif-
ferent approaches to workflow scheduling on computational
grids. They also provide examples of possible experimental
setups, yet omit the execution of these experiments. Our
work differs from these publications in three ways: Firstly,
by extending a universal simulation framework like Cloud-

Table 2: Features of CloudSim, WorkflowSim, and DynamicCloudSim

Feature CloudSim WorkflowSim DynamicCloudSim

performance characteristics MIPS, bandwidth, memory X X X
performance characteristic file I/O X
runtime of a task depending on values other than MIPS X

modeling of data dependencies X X X
workflow parsing X X
implementation of workflow schedulers X X
modeling of delays at different layers of a SWfMS X
support for task clustering X

different VMs on different hosts X X X
random assignment of new VM to a host X
resource allocation based on compute units X
dynamic changes of VM performance at runtime X
modeling of failures during task execution X (X)
introduction of straggler VMs X

Sim, DynamicCloudSim is not limited to the field of sci-
entific workflows, but can be utilized for simulation of any
cloud application. Secondly, our work puts a strong em-
phasis on instabilities in the computational infrastructure,
which is important to achieve realistic results. Thirdly, we
conduct an experimental validation of the changes added to
the simulation toolkit.

Chen and Deelman [35] recently presented WorkflowSim as
another extension to CloudSim. WorkflowSim is tightly
bound to the SWfMS Pegasus [20] and adds to CloudSim (1)
the workflow engine underlying Pegasus and DagMan [41],
(2) an elaborate model of node failures, (3) a model of de-
lays occurring in the various levels of the Pegasus stack
(e.g., queue delays, pre/post-processing delays, data trans-
fer delays), and (4) the implementations of several workflow
schedulers implemented in Pegasus (e.g., greedy task queue,
HEFT [23], Min-Min, and Max-Min [24]). Parameters are
directly learned from traces of real executions. WorkflowSim
follows a quite different approach than DynamicCloudSim:
WorkflowSim models delays in the Pegasus workflow stack
and is thus tightly coupled to Pegasus. It has no notion of
heterogeneous hardware or variance in available resources.
In contrast, DynamicCloudSim directly models instability
and heterogeneity in the environment in which a workflow
(or any other collection of computationally intensive tasks)
is executed and is thus independent of a concrete system.
See Table 2 for a comparison of features available in Cloud-
Sim, WorkflowSim, and DynamicCloudSim.

Donassolo et al. [42] altered the SimGrid framework [43], an-
other popular grid simulator besides GridSim [26] to increase
the scalability of simulation runs. These improvements al-
low SimGrid to simulate the computation of workloads on
tens or hundreds of thousands of heterogeneous and possibly
volatile machines as encountered in volunteer computing.
For the same reasons of increasing scalability, Ostermann
et al. [44] also developed GroudSim, another toolkit for sim-
ulating the execution of scientific applications in a computa-
tional grid or cloud. Scalability has been previously reported
to be an issue of GridSim [45] – and thus also CloudSim –
for numbers of worker machines above 10,000. However,
due to cost limitations we expect the number of VMs pro-
visioned for executing computationally intensive tasks in a

computational cloud to usually be below 10,000. Hence, we
designed DynamicCloudSim as an extension of CloudSim,
which has the key advantage of it being usable in conjunc-
tion with many of the valuable extensions of CloudSim, such
as EMUSIM [28] or WorkflowSim [35].

7. CONCLUSION AND FUTURE WORK
We presented DynamicCloudSim as an extension to Cloud-
Sim, a popular simulator for evaluating resource allocation
and scheduling strategies on distributed computational ar-
chitectures. We enhanced CloudSim’s model of cloud com-
puting infrastructure by introducing models for (1) inhomo-
geneity in the performance of computational resources, (2)
uncertainty in and dynamic changes to the performance of
VMs, and (3) straggler VMs and failures during task exe-
cution. We showed that applying these models to scientific
workflow execution using four established scheduling algo-
rithms replicated the known strengths and shortcomings of
these schedulers, which underlined the importance of adap-
tivity in scheduling of scientific workflows on shared and
distributed computational infrastructure.

In the experiments described in this paper, each virtual ma-
chine only processed one task at a time. Furthermore, issues
of data locality were not incorporated yet, since we assumed
all files (input, intermediate, and output) to be read from
and written to shared network storage, such as Amazon S3.
In future work, we would like to revisit the experiments,
adding additional task slots per virtual machine and inves-
tigating the influence of storing files locally on each VM.

Another area of future research involves the integration of
DynamicCloudSim with WorkflowSim [35] to harness the
combined functionality of both CloudSim extensions. For
instance, the elaborate and multi-layered failure models of
WorkflowSim could further enhance the model of instability
introduced by DynamicCloudSim.

Most importantly, we intend to showcase that Dynamic-
CloudSim is able to adequately model the behavior of com-
putational clouds by comparing our findings against traces
of workflow execution on actual hardware. Furthermore, we
plan to incorporate workflows other than Montage into this
extended analysis.

Funding
Marc Bux is funded by the Deutsche Forschungsgemein-
schaft through graduate school SOAMED (GRK 1651). We
further acknowledge support from the European Commis-
sion through the BiobankCloud project.

References
[1] P. Mell, T. Grance, The NIST Definition of Cloud Com-

puting, National Institute of Standards and Technology
(2009).

[2] I. Foster, Y. Zhao, I. Raicu, S. Lu (2008), Cloud Com-
puting and Grid Computing 360-Degree Compared, in:
Proceedings of the 1st Workshop on Grid Computing
Environments, Austin, Texas, pp. 1–10.

[3] A. Beloglazov, R. Buyya (2012), Optimal Online De-
terministic Algorithms and Adaptive Heuristics for En-
ergy and Performance Efficient Dynamic Consolidation
of Virtual Machines in Cloud Data Centers, Con-
currency and Computation: Practice and Experience
24(13):1397–1420.

[4] L. Wu, S. K. Garg, R. Buyya (2011), SLA-Based Re-
source Allocation for Software as a Service Provider
in Cloud Computing Environments, in: Proceedings
of the 2011 11th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing, Ieee, Newport
Beach, California, USA (2011), pp. 195–204.

[5] S. Sadhasivam, N. Nagaveni, R. Jayarani, R. V. Ram
(2009), Design and Implementation of an Efficient
Two-level Scheduler for Cloud Computing Environ-
ment, in: Proceedings of the 2009 International Confer-
ence on Advances in Recent Technologies in Communi-
cation and Computing, Kottayam, India, pp. 884–886.

[6] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F.
De Rose, R. Buyya (2011), CloudSim: a toolkit for
modeling and simulation of cloud computing environ-
ments and evaluation of resource provisioning algo-
rithms, Software - Practice and Experience 41(1):23–50.

[7] J. Dejun, G. Pierre, C.-H. Chi (2009), EC2 Perfor-
mance Analysis for Resource Provisioning of Service-
Oriented Applications, in: Proceedings of the 7th In-
ternational Conference on Service Oriented Computing,
Stockholm, Sweden, pp. 197–207.

[8] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz,
I. Stoica (2008), Improving MapReduce Performance in
Heterogeneous Environments, in: Proceedings of the
8th USENIX Symposium on Operating Systems Design
and Implementation, San Diego, USA, pp. 29–42.

[9] K. R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon,
S. Cholia, J. Shalf, H. J. Wasserman, N. J. Wright
(2010), Performance Analysis of High Performance
Computing Applications on the Amazon Web Services
Cloud, in: Proceedings of the 2nd International Con-
ference on Cloud Computing Technology and Science,
Indianapolis, USA, pp. 159–168.

[10] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan,
T. Fahringer, D. Epema, An Early Performance Anal-
ysis of Cloud Computing Services for Scientific Com-
puting, TU Delft (2008).

[11] M. Palankar, A. Iamnitchi, M. Ripeanu, S. Garfinkel
(2008), Amazon S3 for Science Grids: a Viable Solu-
tion?, in: Proceedings of the 1st Workshop on Data-
aware Distributed Computing, Boston, USA, pp. 55–64.

[12] J. Schad, J. Dittrich, J.-A. Quiané-Ruiz (2010), Run-
time Measurements in the Cloud: Observing, Analyz-
ing, and Reducing Variance, Proceedings of the VLDB
Endowment 3(1):460–471.

[13] A. Iosup, N. Yigitbasi, D. Epema (2011), On the Per-
formance Variability of Production Cloud Services, in:
Proceedings of the 2011 11th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing,
Newport Beach, California, USA, pp. 104–113.

[14] M. Bux, U. Leser (2013), Parallelization in Scientific
Workflow Management Systems, Computing Research
Repository (CoRR).

[15] T. D. Braun, H. J. Siegel, N. Beck, L. L. Boloni, M. Ma-
heswarans, A. I. Reuther, J. P. Robertson, M. D. Theys,
B. Yao, D. Hensgen, R. F. Freund (2001), A Compar-
ison Study of Eleven Static Heuristics for Mapping a
Class of Independent Tasks onto Heterogeneous Dis-
tributed Computing Systems, Journal of Parallel and
Distributed Computing 61:810–837.

[16] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Man-
dal, K. Kennedy (2005), Task Scheduling Strategies for
Workflow-based Applications in Grids, in: Proceedings
of the 5th IEEE International Symposium on Cluster
Computing and the Grid, volume 2, Cardiff, UK, pp.
759–767.

[17] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox,
D. Gannon, C. Goble, M. Livny, L. Moreau, J. Myers
(2007), Examining the Challenges of Scientific Work-
flows, IEEE Computer 40(12):24–32.

[18] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger,
M. Greenwood, T. Carver, K. Glover, M. R. Pocock,
A. Wipat, P. Li (2004), Taverna: a tool for the composi-
tion and enactment of bioinformatics workflows, Bioin-
formatics 20(17):3045–3054.

[19] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins,
E. Jaeger, M. Jones, E. A. Lee, J. Tao, Y. Zhao (2006),
Scientific Workflow Management and the Kepler Sys-
tem, Concurrency and Computation: Practice and Ex-
perience 18(10):1039–1065.

[20] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil,
C. Kesselman, G. Mehta, K. Vahi, G. B. Berriman,
J. Good, A. Laity, J. C. Jacob, D. S. Katz (2005), Pega-
sus: A framework for mapping complex scientific work-
flows onto distributed systems, Scientific Programming
13(3):219–237.

[21] J. Yu, R. Buyya (2005), A Taxonomy of Workflow Man-
agement Systems for Grid Computing, Journal of Grid
Computing 3:171–200.

[22] C. Goble, D. de Roure (2007), myExperiment: Social
Networking for Workflow-using e-Scientists, in: Pro-
ceedings of the 2nd Workshop on Workflows in Support
of Large-Scale Science, Monterey, USA, pp. 1–2.

[23] H. Topcuoglu, S. Hariri, M. Wu (2002), Performance-
Effective and Low-Complexity Task Scheduling for Het-
erogeneous Computing, IEEE Transactions on Parallel
and Distributed Systems 13(3):260–274.

[24] A. Mandal, K. Kennedy, C. Koelbel, G. Marin,
J. Mellor-Crummey, B. Liu, L. Johnsson (2005),
Scheduling Strategies for Mapping Application Work-
flows onto the Grid, in: Proceedings on the 14th
IEEE International Symposium on High Performance
Distributed Computing, Durham, USA, pp. 125–134.

[25] J. Yu, R. Buyya (2006), A Budget Constrained Schedul-
ing of Workflow Applications on Utility Grids using Ge-
netic Algorithms, in: Proceedings of the 1st Workshop
on Workflows in Support of Large-Scale Science, Paris,
France.

[26] R. Buyya, M. Murshed (2002), GridSim: A Toolkit for
the Modeling and Simulation of Distributed Resource
Management and Scheduling for Grid Computing, Con-
currency and Computation: Practice and Experience
14(13-15):1175–1220.

[27] S. K. Garg, R. Buyya (2011), NetworkCloudSim: Mod-
elling Parallel Applications in Cloud Simulations, in:
Proceedings of the 4th IEEE International Conference
on Utility and Cloud Computing, Ieee, Melbourne, Aus-
tralia (2011), pp. 105–113.

[28] R. N. Calheiros, M. A. S. Netto, C. A. F. De Rose,
R. Buyya (2013), EMUSIM: an integrated emulation
and simulation environment for modeling, evaluation,
and validation of performance of Cloud computing ap-
plications, Software - Practice and Experience 43:595–
612.

[29] S. Frey, W. Hasselbring (2011), The CloudMIG Ap-
proach: Model-Based Migration of Software Systems to
Cloud-Optimized Applications, International Journal on
Advances in Software 4(3 and 4):342–353.

[30] B. Schroeder, G. A. Gibson (2006), A large-scale study
of failures in high-performance-computing systems, in:
Proceedings of the 36th International Conference on
Dependable Systems and Networks, Philadelphia, USA,
pp. 249–258.

[31] G. B. Berriman, E. Deelman, J. Good, J. Jacob, D. S.
Katz, C. Kesselman, A. Laity, T. A. Prince, G. Singh,
M.-h. Su (2004), Montage: a grid-enabled engine for de-
livering custom science-grade mosaics on demand, in:
Proceedings of the SPIE Conference on Astronomical
Telescopes and Instrumentation, volume 5493, Glas-
gow, Scotland, pp. 221–232.

[32] E. Deelman, G. Singh, M. Livny, B. Berriman, J. Good
(2008), The Cost of Doing Science on the Cloud: The
Montage Example, in: Proceedings of the 2008 Confer-
ence on Supercomputing, Ieee, Austin, Texas (2008).

[33] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Kea-
hey, B. Berriman, J. Good (2008), On the Use of Cloud
Computing for Scientific Workflows, in: Proceedings
of the 4th IEEE International Conference on eScience,
Indianapolis, USA, pp. 640–645.

[34] K. Lee, N. W. Paton, R. Sakellariou, E. Deelman,
A. A. A. Fernandes, G. Mehta (2009), Adaptive Work-
flow Processing and Execution in Pegasus, Concur-
rency and Computation: Practice and Experience
21(16):1965–1981.

[35] W. Chen, E. Deelman (2012), WorkflowSim: A Toolkit
for Simulating Scientific Workflows in Distributed En-
vironments, in: Proceedings of the 8th IEEE Interna-
tional Conference on eScience, Chicago, USA, pp. 1–8.

[36] S. L. Garfinkel, An Evaluation of Amazon’s Grid Com-
puting Services: EC2, S3 and SQS, Technical Report
TR-08-07, School for Engineering and Applied Sciences,
Harvard University, MA (2007).

[37] C. Pelletingeas, Performance Evaluation of Virtualiza-
tion with Cloud Computing, Master of engineering the-
sis, Edinburgh Napier University (2010).

[38] T. White (2012), Hadoop: The Definitive Guide,
O’Reilly Media, Inc., Sebastopol, USA, 3rd edition.

[39] M. Merdan, T. Moser, D. Wahyudin, S. Biffl, P. Vrba
(2008), Simulation of workflow scheduling strategies us-
ing the MAST test management system, in: Proceed-
ings of the 10th International Conference on Control,
Automation, Robotics and Vision, Hanoi, Vietnam, pp.
1172–1177.

[40] A. Hirales-Carbajal, A. Tchernykh, T. Röblitz,
R. Yahyapour (2010), A Grid Simulation Framework
to Study Advance Scheduling Strategies for Complex
Workflow Applications, in: Proceedings of the 24th
IEEE International Symposium on Parallel & Dis-
tributed Processing, Workshops and Phd Forum, At-
lanta, USA.

[41] P. Couvares, T. Kosar, A. Roy, J. Weber, K. Wenger
(2007), Workflow Management in Condor, in: I. J. Tay-
lor, E. Deelman, D. Gannon, M. Shields (Eds.), Work-
flows for e-Science, Springer, New York, USA, 1st edi-
tion, pp. 357–375.

[42] B. Donassolo, H. Casanova, A. Legrand, P. Velho
(2010), Fast and Scalable Simulation of Volunteer Com-
puting Systems Using SimGrid, in: Proceedings of the
19th ACM International Symposium on High Perfor-
mance Distributed Computing, Chicago, USA, pp. 605–
612.

[43] H. Casanova, A. Legrand, M. Quinson (2008), Sim-
Grid: A Generic Framework for Large-Scale Distributed
Experiments, in: Proceedings of the Tenth Interna-
tional Conference on Computer Modeling and Simula-
tion, Cambridge, UK, pp. 126–131.

[44] S. Ostermann, K. Plankensteiner, R. Prodan,
T. Fahringer (2010), GroudSim: An Event-Based
Simulation Framework for Computational Grids and
Clouds, in: CoreGRID/ERCIM Workshop on Grids,
Clouds and P2P Computing in conjunction with
EuroPAR 2010, Ischia, Italy.

[45] W. Depoorter, N. D. Moor, K. Vanmechelen, J. Broeck-
hove (2008), Scalability of Grid Simulators: An Evalua-
tion, in: Proceedings of the 14th international Euro-Par
conference on Parallel Processing, Las Palmas de Gran
Canaria, Spain, pp. 544–553.

