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Abstract— Memory-Resident Database Management Systems
(MRDBMS) have to be optimized for two resources: CPU cycles
and memory bandwidth. To optimize for bandwidth in mixed
OLTP/OLAP scenarios, the hybrid or Partially Decomposed
Storage Model (PDSM) has been proposed. However, in current
implementations, bandwidth savings achieved by partial decom-
position come at increased CPU costs. To achieve the aspired
bandwidth savings without sacrificing CPU efficiency, we combine
partially decomposed storage with Just-in-Time (JiT) compilation
of queries, thus eliminating CPU inefficient function calls. Since
existing cost based optimization components are not designed for
JiT-compiled query execution, we also develop a novel approach
to cost modeling and subsequent storage layout optimization.
Our evaluation shows that the JiT-based processor maintains
the bandwidth savings of previously presented hybrid query
processors but outperforms them by two orders of magnitude
due to increased CPU efficiency.

I. INTRODUCTION

Increasing capacity at decreasing costs of RAM
make Memory-Resident Database Management Systems
(MRDBMSs) an interesting alternative to disk-based
solutions [30]. The superior latency and bandwidth of
RAM can boost many database applications such as Online
Analytical Processing (OLAP) and Online Transaction
Processing (OLTP). Unfortunately, the Volcano-style
processing model [14] that forms the basis of most disk-based
DBMSs was not designed to support such fast storage devices.
To process arbitrarily wide tuples with generic operators,
Volcano-style query processors “configure” the operators
using function pointers that are “chased” at execution time.
This pointer chasing is highly CPU inefficient [2], [6], but
acceptable for disk-based systems because disk I/O costs
hide the costs for function calls. Due to its CPU inefficiency,
a direct port of the Volcano model to a faster storage
device often fails to yield the expected performance gain.
MRDBMSs performance has a second critical dimension next
to I/O (cache) efficiency: CPU efficiency (see Figure 1).

To improve the CPU efficiency of MRDBMSs, the Bulk
Processing model has been proposed [23]. Using this model,
data is processed column-at-a-time which is CPU efficient
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Fig. 1: Dimensions of Memory-Resident DBMS Performance

but only cache efficient on data that is stored according to the
Decomposed Storage Model (DSM) [12]. The DSM is known
for its good OLAP performance but suffers from bad OLTP
performance due to poor cache efficiency when (partially)
reconstructing tuples. To achieve good performance for mixed
(OLTP & OLAP) workloads, the hybrid or, more accurately,
the Partially Decomposed Storage Model (PDSM) has been
proposed [15]. Even though they bulk-process data partition-
at-a-time, current implementations have to handle arbitrarily
wide tuples (within a partition). Just like Volcano, they do
this using function pointers [15]. Therefore, the current PDSM
processors yield better cache efficiency than the DSM but
lower CPU efficiency (Figure 1).

To resolve the conflict between CPU and cache efficient
query processing we propose to remove the need for func-
tion pointers by combining Just-in-Time (JiT) compilation of
queries with the PDSM. Specifically, we make the following
contributions:

• We present the design and implementation of a PDSM-
based storage component for HyPer, our JiT-based
Database Management System (DBMS).



• We introduce a novel approach to query cost estima-
tion and subsequent storage layout optimization for JiT-
compiled queries: treating a generic cost model like a
“programmable” machine that yields holistic query cost
estimations using an appropriate instruction set

• We conduct an extensive evaluation of our system using
existing benchmarks and compare our results to those of
previously published systems [15]

The remainder of this paper is organized as follows: In
Section II we present related work on CPU and cache efficient
processing of memory resident data. In Section III we asses the
impact of this conflict and describe how we resolve it using
JiT-compiled query execution in HyPer [21]. In Section IV
we describe the cost model and illustrate its usage for layout
optimization in Section V. In Section VI we present our
evaluation and conclude in Section VII.

II. RELATED WORK

Before illustrating our approach to CPU and cache efficient
memory-resident data management, we discuss previous ap-
proaches, the encountered problems and inherent tradeoffs.

A. CPU Efficient Processing

In Volcano, relational query plans are constructed from
flexible operators. When constructing the physical query plan,
the operators are “configured” and connected by injecting
function pointers (selection predicates, aggregation functions,
etc.). Although variants of this model exist, they face the
same fundamental problem: operators that can change their
behavior at runtime are, from a CPU’s point of view, un-
predictable. This is a problem, because many of the perfor-
mance optimizations of modern CPUs and compilers rely on
predictable behavior [19]. Unpredictable behavior circumvents
these optimizations and causes hazards like pipeline flushing,
poor instruction cache locality and limited instruction level
parallelism [2]. Therefore, flexible operators, as needed in
Volcano-style processing, are usually CPU inefficient.

To increase the CPU efficiency of MRDBMS, the database
research community has proposed a number of techniques [5],
[35], [20], [17]. The most prominent ones are bulk processing
and a-priory query compilation . The former is geared towards
OLAP applications, the later towards OLTP. Both have short-
comings for mixed workloads that we discuss in the following.

Bulk processing focuses on analytical applications and was
pioneered by the MonetDB project [23], [5]. Like in Volcano,
complex queries are decomposed into precompiled primitives.
However, Bulk processing primitives are static loops without
function calls that materialize all intermediate results [5]. For
analytical applications, the resulting materialization costs are
outweighed by the savings in CPU efficiency. Efforts to reduce
the materialization costs have led to the vectorized query
processing model [35] which constrains materialization to the
CPU cache. Due to the inflexibility of the primitives, however,
bulk processing is only efficient on fully decomposed relations,
which are known to yield poor cache locality for OLTP
applications. Using tuple clustering, compression and bank

packing [20], it is possible to efficiently evaluate selections on
multiple attributes in a bulk-manner. However the necessary
compression hurts update performance and decompression
adds to tuple reconstruction costs.

(A-priory) query compilation is advocated by, e.g., the
VoltDB [17] system as a means to support high performance
transaction processing on any storage model. It achieves CPU
efficiency, i.e., avoids function calls, by statically compiling
queries to machine code and inlining functions. The process-
ing model supports SQL for query formulation but needs
a reassembly and restart of the system whenever a query
is changed or added. It also complicates the optimization
of complex queries, because all plans have to be generated
without knowledge of the data or parameters of the query.
Both of these factors make it unsuited for OLAP applications
that involve complex or ad-hoc queries.

B. Cache Efficient Storage

Having eliminated the function call overhead through one of
these techniques, memory bandwidth is the next bottleneck [5].
One way to reduce bandwidth consumption is compression
in its various forms [33] (dictionary compression, run-length
encoding, etc.). However, this is beyond the focus of this
paper and orthogonal to the techniques presented here. In
this paper, we study (partial) decomposition of database tables
to reduce bandwidth waste through suboptimal co-location of
relation attributes. Full decomposition, i.e., storage using the
DSM [12] yields significant bandwidth savings for analytical
applications on disk-resident databases. Unfortunately, full
decomposition has a negative impact on intra-tuple cache
locality and therefore transaction processing performance [1].
Consequently, it is suboptimal for applications that generate
mixed OLTP/OLAP workloads. To improve cache efficiency
for such applications, the hybrid or, more accurately, the
Partially Decomposed Storage Model (PDSM) has been pro-
posed [15]. In this model, database schemas are decomposed
into partitions such that a given workload is supported op-
timally. Applications that can benefit from this technique in-
clude mixed OLTP/OLAP applications like real-time reporting
on transactional data, non-indexed search, or the management
of schemas with tables in which a tuple may describe one of
multiple real-life objects. Such schemas may result from, e.g.,
mapping complex class hierarchies to relations using Object
Relational Mapping (ORM).

III. CPU AND CACHE EFFICIENT DATA MANAGEMENT

By definition, partially decomposed data involves at least
one N-ary partition (otherwise we would refer to it as fully
decomposed). As already described, MRDBMS need flexible
operators to process arbitrarily wide tuples in a single scan.
To achieve such flexibility, current query processors [15] rely
on function pointers which causes CPU inefficiency. In this
section we demonstrate the impact of this problem using a
practical example. Following that, we describe our approach
that employs JiT compilation to overcome this problem.



(a) SQL

Query: select sum(B), sum(C), sum(D), sum(E) from R where A = $1
Schema: create table R(A int, C int, ..., P int)

(b) Relational Algebra
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(c) C-Implementation on Partially Decomposed Relation

1 void que ry ( c o n s t s t r u c t { i n t A[ SIZE ] ; v 4 s i B to E [ SIZE ] ;
2 i n t F t o P [ ] ; } ∗ R ,
3 v 4 s i ∗ sums , c o n s t i n t c ){
4
5 f o r ( i n t t i d = 0 ; t i d < SIZE ; ++ t i d )
6 i f (R−>A[ t i d ] == c )
7 ∗ sums += R−>B to E [ t i d ] ;
8 }

Fig. 2: Representations of the example query

Fig. 3: Costs of the Example Query on 25 M tuples (1.6GB)

A. The Impact of Storage and Processing Model

To evaluate the impact of storage and processing model, we
implemented a typical select-and-aggregate query (Figure 2a)
in C. We implemented the query to the best of our abilities
according to the different processing and storage strategies1

and measured the query evaluation time while varying the
selectivity of the selection predicate (Figure 3).

In our bulk processing implementation, the first operator
scans column A and materializes all matching positions. After
that, each of the columns B to E are scanned and all the match-
ing positions materialized. Finally, each of the materialized
buffers are aggregated. This is CPU efficient but cache ineffi-
cient for high selectivities. The Volcano-style implementation
consists or three functions (scan, selection, aggregation), each
calling the underlying repetitively to produce the next input
tuple. The resulting performance (independent of the storage
model) of the Volcano model indicates that it is, indeed,
inappropriate for such a query on memory-resident data. The
JiT-compiled query was implemented according to the HyPer
compilation model [27] and is displayed in Figure 2c in the
version that is executed on the PDSM data.

1The partially decomposed representation was hand-optimized

The selectivity-dependent advantage of bulk- and JiT-
compiled processing is consistent with recent work [32]. The
figure also shows that, across all selectivities, our implemen-
tation of the JiT-compiled query on partially decomposed data
outperforms the other approaches. This observation led us to
the following claim:

JiT compilation of queries is an essential technique
to support efficient query processing on memory-resident

databases in N-ary or partially decomposed representation.

In the remainder we study how to combine the advantages
of PDSM and JiT-compiled queries in a relational Database
Management System (DBMS).

B. Partially Decomposed Storage in HyPer

HyPer is our research prototype of a relational MRDBMS.
To compete with the bulk processing model in terms of CPU
efficiency, HyPer relies on JiT-compilation of queries [27].
Whilst DBMS compilers have a long history [3], [8], up to
recently [27], [24], [31], the focus has been flexibility and
extensibility rather than performance. The idea is to generate
code that is directly executable on the host system’s CPU. This
promises highly optimized code and high CPU efficiency due
to the elimination of function call overhead.

The code generation process is described in previous
work [27] and out of scope of this paper. To give an im-
pression of the generated code, however, Figure 2 illustrates
the translation of the relational algebra plan of the example
query (Figure 2a) to C99-code. The program evaluates the
given query on a partially decomposed relation R. The relation
R, the output buffer sums and the selection criteria c are
parameters of the function. In this example, every operator
corresponds to a single line of code (the four aggregations are
performed in one line using the vector intrinsic type v4si).
The scan yields a loop to enumerate all tuple ids (Line 5). The
selection is evaluated by accessing the appropriate value from
the first partition in an if statement (Line 6). If the condition
holds, the values of the aggregated attributes are added to the



global sum (Line 7). It is apparent that no overhead in storage
or executed code is generated. All operators are merged into
a single for-loop. Values enter the CPU registers once and do
not leave them until they are no longer needed. In practice,
the compiler does not generate C-code but equivalent LLVM-
assembler which is compiled into machine code by the LLVM-
compiler library [25].

As demonstrated in previous work [27], the generated code
achieves the CPU efficiency of the bulk processing model
without the need for expensive intermediate materialization.
More importantly for our case, however, JiT-compilation
makes the N-ary storage model viable for memory-resident
databases. Since the generated code is static, it is very pre-
dictable and allows the respective optimizations by the CPU
and the compiler. Since HyPer already has an N-ary storage
backend, developing a backend for PDSM is straightforward.
We extended the catalog to support multiple vertical partitions
within a single relation and the compiler to generate accesses
to the respective partitions rather than the relation. As with
earlier systems, the main challenge is to determine the appro-
priate decomposition for a given schema and workload. We
will discuss our approach to this problem in the next sections.

IV. QUERY COST ESTIMATION

In addition to the processing model, the query performance
on partially decomposed data also depends on the choice of the
decomposition/layout. Like earlier approaches [15], we focus
on cost-based optimization to find an appropriate layout for a
given workload. Since in memory-resident data processing no
cost factor clearly dominates, a hardware-conscious cost model
is needed. Since memory-resident bulk processors face similar
challenges there is already a body of research in hardware-
conscious cost modeling for main memory databases [26],
[15]. For JiT-compiled queries, however, query evaluation
is more complicated: as described in Section III-B query
operators are interleaved, resulting in complex and irregular
memory access. Simply adding the costs of the operators [26]
or neglecting non-scan operators [15] would yield inaccurate
estimates. To achieve more accurate estimates, we developed
a “programmable” holistic cost model based on the existing
Generic Cost Model [26], using its atoms as instructions.

In the rest of this section we briefly motivate the need for a
complex model, introduce the Generic Cost Model [26] as well
as our extensions and the use for hardware and storage-layout
aware cost estimation of queries.

A. Cost Factors on modern CPUs

To achieve high memory access performance, modern CPUs
incorporate a complex memory hierarchy (see Figure 4). Mul-
tiple levels of caches and TLBs speed up repetitive accesses
to data items (or data items located on the same cache line or
TLB-Block). In addition, many CPUs have prefetching units
that speculatively load data items before they are accessed.

1) Prefetching: While transferring and processing a fetched
cache line in the CPU, the next accessed cache line is
anticipated by a Prefetching Unit. If the confidence is high

CPU
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L1 Cache TLB

Last Level (L3) Cache

Memory

Registers

Core 2

L1 Cache TLB

L2 Cache
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Fig. 4: Memory Structure of an Intel Nehalem System

Notation Description [26]
Parameters

R.n The number of tuples, values or tuple fragments stored
in a relation/partition R

R.w The data width of tuple, value or tuple fragment

u The number of data words of a data item that are
accessed when performing an access pattern (u < R.w)

Bi The access granularity (block size) of cache i

li The block access latency of cache i
Atoms

s trav
(R.n,R.w)

The sequential traversal of a memory region of width
R.w with unconditional access to every single of the
R.n data items

r trav
(R.n,R.w)

The traversal of a memory region of width R.w with
unconditional access to every single of the R.n data
items in random order

rr acc
(R.n,R.w,r)

The repetitive (r times) access of one of the R.n data
items of a memory region of width R.w

Algebraic Operators
P1 � P2 �
. . . � Pn

The concurrent execution of the Access Patterns P1 to
Pn

P1 ⊕ P2 ⊕
. . . ⊕ Pn

The sequential execution of the Access Patterns P1 to
Pn

Intermediate Metrics
Ms

i The number of sequential access cache misses induced
on cache i

Mr
i The number of random access cache misses induced on

cache i

(a) Atoms and Operators

access pattern of the example query
s trav(26214400,4) � rr acc(26214400,16,262144) � rr acc(1,16,262144)

(b)

TABLE I: Overview of the Generic cost model

enough, a fetch instruction is issued to the memory system
and the cache line loaded into a slot of the Last Level Cache
(LLC). A correctly prefetched cache line may hide memory
access latency behind the time spent processing the data
whilst incorrect prefetching a) causes unnecessary traffic on
the memory bus and b) may evict a cache line that should
have stayed cache-resident. Due to these potentially harmful
effects, prefetching units generally follow a cautious strategy



when issuing prefetch instructions.
Prefetching strategies: Prefetching strategies vary among

CPUs and are often complex and defensive up to not issuing
any prefetch instructions at all. In our model, we assume
an Adjacent Cache Line Prefetching with Stride Detection
strategy that is, e.g., implemented in the Intel Core Microar-
chitecture [18]. Using this strategy, a cache line is prefetched
whenever the prefetcher anticipates a constant stride. Although
this seems a naı̈ve strategy, its simplicity and determinism
make it attractive for implementation as well as modeling.
More complex strategies exist, but usually rely on the (par-
tial) data access history of the executed program. These are
generally geared towards more complex operations (e.g., high
dimensional data processing or interleaved access patterns)
yet behave similar to the Adjacent Cache Line Prefetcher in
simpler cases like relational query processing.

B. The Generic Cost Model
The Generic Cost Model is built around the concept of

Memory Access Patterns, formal yet abstract descriptions of
the memory access behavior that an algorithm exposes. The
model provides atomic access patterns, an algebra to construct
complex patterns and equations to estimate induced costs.
Although the model is too complex for an in-depth discussion
here, Table Ia provides a brief description. We refer the
interested reader to the original work [26] for a detailed
description.

To illustrate the model’s power, consider the example in
Table Ib which is the access pattern of the example query
(see Figure 2a) on partially decomposed data for a selectivity
of 1%. To evaluate the given query, the DBMS scans col-
umn A by performing a sequential traversal of the memory
region that holds the integer-values of a (s trav(A) =
s trav(26214400,4)2). Concurrently (�), whenever the
condition holds, the columns B, C, D, E are accessed. This
is modeled as a rr acc on the region with r reflecting
the number of accessed values (r can be derived from the
selectivity). For every matching tuple, the output region has
to be updated which yields the last atom: a rr acc of a
region which holds only one tuple but is accessed for every
matching tuple. This algebraic description of the executed
program has proven useful for the prediction of main memory
join performance [26].

One may notice, however, that the access pattern in Table Ib
is not an entirely accurate description of the actual operation:
the rr acc for the access of B, C, D, E is not fully
random since the tuple can be assumed to be accessed in order.
In the next section, we illustrate our extensions to the model
that allow modeling of such behavior.

C. Extensions to the Generic Cost Model
When modeling JiT-compiled queries on a modern CPU we

encountered several shortcomings of the original model. The

2Depending on the context we will use either numeric parameters or
relation identifiers when denoting atomic access patterns. While using relation
identifiers is not strictly speaking correct, the numeric parameters are generally
easily inferred from the relation identifiers.

1 2 ...

s 1− s s 1− s

R.n × R.w

R.w

u

Fig. 5: s trav cr
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Fig. 6: Prediction Accuracy of s trav cr vs. rr acc

first has been hinted at in the last section: the inadequacy
of the model for selective projections. We overcome this
problem by introducing a new access pattern, the Sequential
Traversal/Conditional Read. We also report two modifications
we applied to the model to improve the accuracy of random
access estimation and the impact of prefetching. While an
understanding of the new access pattern is crucial for the rest
of this paper, the other two are extensions that do not change
the nature of the model.

1) Sequential Traversal/Conditional Read: The example in
Table Ib already indicated a problem of the cost model: If
a memory region is scanned sequentially but not all tuples
are accessed, most DBMSs expose an access pattern that
cannot be accurately modeled using the atoms in Table Ia.
In the example, we resorted to modeling this operation using
a rr acc which is not appropriate because a) the region is
traversed from begin to end without ever going backwards and
b) no element in the region is accessed more than once. While
this is not an issue for the original purpose of the cost model,
i.e., join optimization, it severely limits its capabilities for the
holistic estimation of query costs and subsequent optimization
of the storage layout.

We developed an extension to accurately model this behav-
ior. A new atom, the Sequential Traversal with Conditional
Reads (s trav cr), captures the behavior of selective pro-
jections using the same parameters as s trav yet also in-
corporates the selectivity of the applied conditions s. Figure 5
gives a visual impression of this Access Pattern: The Region R
is traversed sequentially in R.n steps. In every step, u bytes



are read with probability s and the iterator unconditionally
advances R.w bytes. This extension provides the atomic access
pattern that is needed to accurately model the query evaluation
of the example in Table Ib: The rr acc([B, C, D, E])
becomes a s trav cr([B, C, D, E], s) with the se-
lectivity s = 0.01.

To estimate the number of cache misses from these param-
eters we have to estimate the probability Pi of accessing a
cache line when traversing it. Pi is equal to the probability
that any of the data items of the cache line is accessed. It is
independent of the capacity of the cache but depends on the
width of a cache line (i.e., the block size and thus denoted
with Bi). Assuming a uniform distribution of the values over
the region, Pi can be estimated using Equation 1. For non-
uniformly distributed data the model can be extended with a
different formula.

Pi = 1− (1− s)
Bi (1)

However, to estimate the induced costs, we have to distinguish
random and sequential misses. Even though not explicitly
stated, we believe that the distinction between random and
sequential cache misses in the original model [26] was in-
troduced largely to capture non-prefetched and prefetched
misses. Thus, we model them as such. Assuming an Adjacent
Cache Line Prefetcher, the probability of a cache line to be a
sequential, i.e., prefetched, cache miss is the probability of
a cache line being accessed with the preceding cache line
being accessed as well. Since these two events are statistically
independent, the probability of the two events can simply be
multiplied which yields Equation 2 for the probability of a
cache miss being a sequential miss (P s

i ).

P s
i =

(
1− (1− s)

Bi

)2
(2)

Since any cache miss that is not a sequential miss is a
random miss, the probability for a cache line to be a random
miss P r

i can be calculated using Equation 3.

P r
i = Pi − P s

i = 1− (1− s)
Bi −

(
1− (1− s)

Bi

)2
= (1− s)

Bi − (1− s)
2Bi (3)

Equipped with the probability of an access to a cache line
we can estimate the number of cache misses per type using
Equation 4.

Mx
i = P x

i ×
R.w ×R.n

Bi
for x ∈ {r, s} (4)

Prediction Accuracy: To get an impression of the proba-
bility for P r

i and P s
i with varying s consider Figure 6. The

percentage of random and sequential misses increases steeply
with the selectivity in the range from 0 < s < 0.05. After that
point, the number of random misses declines in favor of more
sequential misses.

To assess the quality of our prediction, we implemented
a selective projection in C and measured the induced cache

misses using the CPU’s Performance Counters. The Nehalem
CPU Performance Counters only count Demand/Requested
L3 cache misses as misses. Misses that are triggered by the
prefetcher are not reported, which allows us to distinguish
them when measuring. The sequential misses are simply the
number of reported L3 accesses minus the reported L3 misses.
The random misses are the reported L3 misses. In addition to
the predicted, Figure 6 also shows the measured cache misses.
The Figure shows that the prediction overestimates the number
of random misses for mid-range selectivities and underesti-
mates for very high selectivities. However, the general trend
of the prediction is reasonably close to the measured values.
To illustrate the improvement of the model as achieved by
this new pattern, the figure also shows the predicted number
of accessed cache lines when modeling the pattern using a
rr acc instead of s trav cr. It shows that a) the rr acc
highly underestimates the total number of misses and b) does
not distinguish random from sequential misses. Especially for
low selectivities, the model accuracy has improved greatly.

2) Prefetching aware Cost Function: In its original form
the Generic cost model [26] distinguishes random and se-
quential misses (Mr

i and Ms
i respectively) and associates

them with different but constant weights (relative costs) to
determine the final costs. These weights are determined using
empirical calibration rather than detailed inspection and appro-
priate modeling. This is sufficient for the original version of
the model because access patterns induce almost exclusively
random or exclusively sequential misses. Since our new atom,
s trav cr, induces both kinds of misses, however, we have
to distinguish the costs of the different misses more carefully.

For this purpose, we propose an alternative cost function.
Where Manegold et al. [26] simply add the weighted costs
induced at the various layers of memory, we use a more sophis-
ticated cost function to account for the effects of prefetching.
Since the most important (and aggressive) prefetching usually
happens at the LLC, we change the cost function to model it
differently.

Prefetching is essentially only hiding memory access la-
tency behind the activity of higher storage and processing
layers. Therefore, its benefit highly depends on the time it
takes to process a cache line in the faster memory layers.
Following the rationale that execution time is determined by
memory accesses the costs induced at the LLC are reduced
by the costs indexed at the faster caches and the processor
registers (which we consider just another layer of memory).
If processing the values takes longer than the LLC-fetching,
the overall costs are solely determined by the processing costs
and the costs induced at the LLC are 0 — the application
is CPU-bound. The overall costs for sequential misses in the
LLC (in our Nehalem system the Level 3 Cache, hence T s

3 )
can, thus, be calculated using Equation 5.

T s
3 =max

(
0,Ms

3 · l3 −
2∑

i=0

Mi · li+1

)
(5)

Following [26], the costs (in CPU cycles) for an access to



level i (i.e., a miss on level i − 1) will be denoted with li.
Since we regard the CPU’s registers as just another level of
memory, l1 denotes the time it takes to load and process one
value and M0 the number of register values that have to be
processed.

The overall costs TMem are calculated by summing the
weighted misses of all cache layers except the LLC. The costs
for prefetched LLC misses are calculated using Equation 5 and
added to the overall costs in Equation 6.

TMem =

2∑
i=0

Mi · li+1 + T s
3 +Mr

3 · l4 +
N∑
i=4

Mi · li+1 (6)

3) Random Accesses Estimation: To estimate the number of
cache misses that are induced by a Repetitive Random Access
(rr acc), the work of Manegold et al. includes an equation to
estimate the number of unique accessed cache lines (I) from
the number of access operations (r) and the number of tuples
in a region (R.n). While mathematically correct, this equation
is hard to compute due to heavy usage of binomial coefficients
of very large numbers. This makes the model impractical for
the estimation of operations on large tables. For completeness,
we report a different formula that we used here.

This problem, the problem of distinct record selection,
has been studied extensively (and surprisingly controversial).
Cardenas [7], e.g., gives Equation 7 for to estimate the distinct
accessed records when accessing one of R.n records r times.
Whilst challenged repeatedly for special cases [13], [34], [9],
we found the equation yields virtually identical results to
the equation from the original cost model while being much
cheaper to compute.

I (r,R.n) = R.n ·
(
1−

(
1− 1

R.n

)r)
(7)

Equipped with a model to infer costs from memory access
patterns, we can estimate the costs of a relational query by
translating it into the memory access pattern algebra. In the
rest of this section we will describe this process.

D. Modeling JiT Query Execution

Due to the instruction-like character of the access pattern
algebra, we can treat it like a programmable machine with each
atomic access pattern forming an instruction. Thus, generating
the access pattern for a given physical query plan is similar
to generating the actual code to perform the query (see [27]
for a description). To generate the access pattern, the relational
query plan is traversed in pre-order from its root (see Figure 7)
and the appropriate patterns emitted according to Table II. Just
like statements in a program, the emitted patterns are appended
to the overall pattern.

Note that no operator produces a pattern when entering an
operator node for the first time. All operations are performed
when data flows into the operator, i.e., when leaving the
operator in the traversal process. Joins (hash) behave slightly
differently since data flows into them twice, once for each
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Fig. 7: Plan Traversal

Operation Emitted Pattern
Select s trav cr(s, [attributes]) �
Join (Push)
Hash-Build

r trav([ht attributes]) ⊕

Join (Push)
Hash-Probe

rr acc([ht attributes]) �

Join (Pull)
Hash-Build

s trav cr(s, [ht attributes]) �
r trav([ht attributes]) ⊕

Join (Pull)
Hash-Probe

s trav cr(s, [ht attributes]) �
rr acc([ht attributes]) �

GroupBy (Pull) s trav cr(s, [group attributes]
+ [aggr attributes]) �
rr acc([group attributes] +
[aggr attributes])

GroupBy (Push) s trav cr(s, [group attributes]
+ [aggr attributes] -
[pushed attributes]) �
rr acc([group attributes] +
[aggr attributes])

Project (Push) s trav cr(s, [attributes]
- [pushed attributes]) �
s trav([attributes])

Project (Pull) s trav cr(s, [attributes]) �
s trav([attributes])

Sort (Push) s trav cr(s, [attributes]
- [pushed attributes]) �
s trav([attributes]) ⊕
rr acc([attributes]) ⊕

Sort (Push) s trav cr(s, [attributes])
� s trav([attributes]) ⊕
rr acc([attributes]) ⊕

TABLE II: Operators and their Access Pattern

of its two children3. Thus, they emit patterns twice: once for
building the internal hashtable and once for probing it. When
emitting patterns, we distinguish pulling and non-pulling op-
erators. Operators that are within a pipeline fragment that has
a join on its lower end are non-pulling, others are pulling.
The rationale behind this is that operators placed above a join
(e.g., the outer join in Figure 7) do not have to explicitly fetch
their input because join operators essentially push tuples into a
pipeline fragment as a result of the hash-probing (this effect is
explained in detail in [27]). Operators in pull-mode (e.g., the

3n-way joins are represented by n nodes



selection in Figure 7) have to pull/read their input explicitly.
As an example, consider the inner join operator in Figure 7:

when entering a subtree rooted at the node, no pattern is
emitted and the traversal continues with its left child. When
leaving the left subtree (Mark 1), a pattern is generated that
reflects the hash-building phase of the hashjoin. Since its left
child is a base table it has to pull tuples into the hashtable, thus,
it emits a s trav(R1) and a concurrent (�) r trav(ht)
of the hashtable. Since the hash-build causes materialization,
it breaks the pipeline and marks that by appending a sequence
operator ⊕ to the pattern. After that, the processing continues
with its right child. When leaving the subtree (Mark 2), the
hashtable is probed (again in pull-mode) and the tuples pushed
to the next hashtable (Mark 3). The emitted pattern at Mark
2 is s trav(R2) � rr acc(ht).

Using this procedure, we effectively program the generic
cost model using the access patterns as instructions. While
being a simple and elegant way to holistically estimate JiT-
compiled query costs, it also allows us to estimate the impact
of a change in the storage layout. In the next section, we will
use this to optimize the storage layout for a given workload.

V. SCHEMA DECOMPOSITION

Finding the optimal schema decomposition is an optimiza-
tion problem in the space of all vertical partitionings with
the estimated costs as objective function. Since the number
of vertical partitionings of a schema grows exponentially with
the size of the tables, attribute-based partitioning algorithms
like the one used in the Data Morphing Approach [16] are
impractical due to the high optimization effort (linear with
the number of partitionings, thus exponential with the number
of attributes). Instead we apply an algorithm that takes the
queries of the workload as hints on potential partitionings of
the schema. Chu et al. [10] proposed two such algorithms. The
first, OBP, yields optimal solutions but has exponential effort
with regard to the number of considered queries. The second,
BPi only approaches the optimal solution but has reduced costs
(depending on a selectable threshold down to linear). We will
apply the BPi algorithm to approach the optimal solution.

A. Binary Partitioning

OBP and BPi generate potential solutions by iteratively par-
titioning a table according to what is called a reasonable cut.
In the original work, every query yields one reasonable cut for
every accessed table. The cut is a set of two distinct attribute
sets: the ones that are accessed in the query and the ones
that are not. The query in our initial example (see Figure 2a),
e.g., would yield the cut {{A,B,C,D,E}, {F, .., P}}. For
workloads with multiple queries, the set of a reasonable cuts
also contains all cuts that result from cutting the relation
multiple times. Thus, the solution spaces grows exponential
with the number of queries.

However, this definition of a reasonable cut is oblivious
to the actual access pattern of the query. It does not re-
flect the fact that different attributes within a query may be
accessed in a different manner. E.g., in the initial example

{{A}, {B,C,D,E}, ...} is not considered a reasonable cut
and therefore never considered for decomposition because
the attributes are accessed in the same query. If, however,
the selectivity of the condition was 0, {B,C,D,E} would
never be accessed and storing them in one partition with A
would hurt scan performance. It is therefore reasonable to
also consider a partitioning that divides attributes that are
accessed within one query but in different access patterns.
Thus, we consider what we call Extended Reasonable Cuts
as potential solutions. These are generated from the access
patterns rather than the queries. An extended reasonable cut is
made up from all attributes that are accessed together within an
atomic pattern or in concurrently (�) executed atomic access
patterns of the same kind. E.g., s trav(a) � s trav(b)
would lead to one cut while s trav(a) � r trav(b)
would lead to two. For concurrent s trav cr the case is
slightly more complicated. Depending on the selectivity s1
and s2 in s trav cr(a,s1) � s trav cr(b,s2) , the
values of a and b may or may not be accessed together. If,
e.g., s1 = s2 = 1, the traversed attributes are always accessed
together and do not have to be considered for decomposition.
If the selectivity is less than 1, we have to consider all possible
cuts: {{{A}, ...}, {{B}, ...}, {{A,B}, ...}}.

Based on the solution space of all reasonable cuts, BPi
employs a Branch and Bound strategy to reduce the search
space. The schema is iteratively cut according to a (randomly)
selected cut. This cut is considered for inclusion in the solution
by estimating its cost improvement. If the improvement is
above a user defined threshold, the cut is considered for
inclusion and the algorithm branches into two cases: including
or excluding the cut in the solution. If the cost improvement is
below that threshold the cut is not considered for inclusion and
the subtree pruned. While sacrificing optimality this reduces
the search space and thus the optimization costs.

VI. EVALUATION

The benefits of cache-conscious storage do not only depend
on the query processing model but also on characteristics of
the workload, schema and the data itself. It is, therefore, not
enough to evaluate the approach only on a single application.
We expect wider tables and more diverse queries to benefit
more from partial decomposition than specialized queries on
narrow tables. To support this claim we evaluated using three
very different benchmarks.

1) The SAP Sales and Distribution Benchmark that was used
to benchmark the HYRISE system [15]. We consider the
schema relatively generic in the sense that it support
multiple use cases and covers business operations for
enterprises in many different countries with different
regulatory requirements.

2) The CH-benchmark [11], a merge between the TPC-C
and TPC-H benchmarks, modeling a very specific use
case: the selling and shipping of products from ware-
houses in one country.

3) A custom set of queries on the CNET product catalog
dataset [4] designed to reflect the workload of such
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Fig. 8: The configuring experiment

Level Capacity Blocksize Access Time
L1 Cache 32 kB 8 B 1 Cyc
L2 Cache 256 kB 64 B 3 Cyc
TLB 32 kB 4 kB 1 Cyc
L3 Cache 8 MB 64 B 8 Cyc
Memory 48 GB 64 B 12 Cyc

TABLE III: Parameters used for the model

a product catalog web application. Due to the variety
of attributes of the different products, we consider the
schema very generic.

Since the non-hybrid HyPer system has been shown to
be competitive to established DBMSs (VoltDB and Mon-
etDB) [22] we will focus our evaluation on the partial de-
composition aspect of the system.

A. Setup

We evaluated our approach on a system based on the Intel
Nehalem Microarchitecture as depicted in Figure 4 with 48 GB
of RAM. The 4 CPUs were identified as “Intel(R) Xeon(R)
CPU X5650 @ 2.67 GHz” running a “Fedora 14 (Laughlin)
Linux” (Kernel Version: 2.6.35.14-95.fc14.x86 64). Since the
model relies on more detailed parameters to predict costs we
will discuss how to obtain these in more detail.

Training the Model: The cost estimation relies on parame-
ters that describe the memory hierarchy of a given system.
To a large extent, these parameters can be extracted from
the specification or read directly from the CPU using, e.g.,
cpuinfo x864. The reported information includes the capaci-
ties and blocksizes of the available memory layers but not
their respective latency. To determine these experimentally,
we, inspired by the Calibrator5 of the Generic Cost Model,
implemented the following experiment in C to determine
the latencies: calculate the sum of a constant number of
values varying the size of the memory region that they are
read from (and thus the number of unique accessed values).
Figure 8 shows the execution time in cycles per summed value
as a function of the size of the accessed memory region.
The latencies of the different memory layers become visible
whenever the size of the accessed region exceeds the capacity

4http://osxbook.com/book/bonus/misc/cpuinfo_x86/
cpuinfo_x86.c

5 http://www.cwi.nl/˜manegold/Calibrator

of a memory layer. The latencies can be determined from this
graph manually or automatically by fitting the curve to the
data points. Table III lists the parameters of the cost model
and their values for our system.

Besides providing the needed parameters, this experiment
illustrates the significance of a hardware-conscious cost model.
If we only counted misses on a single layer (e.g., only
processed values or only L2-misses) we would underestimate
the actual costs. This observation is what triggered the de-
velopment of the Generic Cost Model in the first place [26].
Due to space limitations we focus our evaluation on the high
level impact of partial decomposition rather than the accuracy
of the cost model. In addition to the original validation [26],
we performed an extensive study of the extended generic cost
model and demonstrated it’s validity on current hardware [28].
We determined an appropriate layout for each of our three
benchmarks using our extended BPi.

B. The SAP-SD Benchmark

The SAP Sales and Distribution (SD) Benchmark was used
to evaluate the HYRISE system [15] and illustrates a perfor-
mance gain of partial decomposition in a moderately generic
case. We consider this benchmark to cover the middle ground
between the highly specialized CH-benchmark and the very
generic CNET Products case. We implemented the benchmark
using the reported queries [15] on publicly available schema
information6. We filled the database with randomly generated
data, observing uniqueness constraints where applicable.

Decomposition: Due to space limitations, we cannot cover
the optimization process in detail here7. To give an impression
of the optimization process we briefly discuss the decomposi-
tion of the ADRC table of the SD benchmark (see Table IV).
Query 1 and 3 of the benchmark (see Table IVa) operate
on that table. Query 1 scans NAME1 and (conditionally)
NAME2 to evaluate the selection conditions and Query 3 scans
KUNNR. The extended reasonable cuts that originate from their
plans are listed in Table IVb. The optimization yields the
decomposition as listed in Table IVc: The first three partitions
support the scans of the queries efficiently. Since NAME2 is
only accessed if NAME1 does not match the condition, these
are decomposed. KUNNR is stored in the third partition to
support Query 3. The fourth partition supports the projection
of Query 1 and the last partition the projection of Query 3.

Results: For reference, we compare the performance of the
JiT-compiled queries to the processing model of the HYRISE
system. HYRISE uses a bulk-oriented model but still relies
on function calls to process multiple attributes within one
partition. It therefore suffers from the same CPU inefficiency
as the Volcano model. Figure 9 shows the results for queries
one to twelve of the benchmark. We observed that, in general,
JiT-compiled queries have similar relative costs on different
layouts as volcano processed ones. However, the processing
costs of the HYRISE processor are much higher (note the

6http://www.se80.co.uk, http://msdn.microsoft.com/
en-us/library/cc185537(v=bts.10).aspx

7We are currently working to make the optimizer publicly available.

http://osxbook.com/book/bonus/misc/cpuinfo_x86/cpuinfo_x86.c
http://osxbook.com/book/bonus/misc/cpuinfo_x86/cpuinfo_x86.c
http://www.cwi.nl/~manegold/Calibrator
http://www.se80.co.uk
http://msdn.microsoft.com/en-us/library/cc185537(v=bts.10).aspx
http://msdn.microsoft.com/en-us/library/cc185537(v=bts.10).aspx
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Fig. 9: Hybrid Storage Performance with and without JiT compilation

Q1 select ADDRNUMBER, NAME CO, NAME1, NAME2,
KUNNR from ADRC where NAME1 like $1 and NAME2
like $2;

Q3 select * from ADRC where KUNNR = $1

(a) Queries

{{NAME1},{NAME2},{NAME1,NAME2},
{KUNNR},{NAME_CO,ADDRNUMBER},
{ADDRNUMBER,NAME_CO,NAME1,NAME2,KUNNR},
{ADDRNUMBER,NAME_CO,KUNNR},{*}}

(b) Extended Reasonable Cuts

{{NAME1},{NAME2},{KUNNR},{ADDRNUMBER,NAME_CO},{*}}

(c) Solution

TABLE IV: Decomposition of the ADRC-table

log-scale) than the costs of the JiT-compiled queries. For scan-
heavy queries like, e.g., Query 1, this can go beyond an order
of magnitude. This confirms our expectations, since it reflects
the performance advantage of bulk- over Volcano-processors
that has been reported for memory-resident databases [5].

Two queries, 9 and 10, show significantly worse perfor-
mance in the HyPer system than in the competitor. In both
cases, the HYRISE system uses metadata information about
the data (Implicit ordering) for query plan optimization that are
not exploited by HyPer. Another notable fact is that the only
modifying query of the benchmark, Query 6, is much cheaper
in HyPer. Being designed with update/insert performance in
mind, insert queries in HyPer are processed in an almost bulk-
insert like manner. For bulk inserts/appends, the performance
penalty of decomposed over N-ary storage is less severe (in our
case, ca. 60 %). This leads to the observed good transactional
insert performance.

Indexes: It has been claimed that column-stores do not
benefit from indexes due to cheap column-scans that can be
used for tuple retrieval [29]. While Column-Scans are hard
to avoid for search-like queries like Query 1, queries that
are mere identity-selects may benefit more from indexes in
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Fig. 10: Hybrid Storage With and Without Indexes

addition to decomposition. In the SD benchmark, e.g., Queries
7 and 8 are instances of such queries. To investigate the
benefit of indexed selects on various storage layouts we created
supporting indexes (hash indexes for primary keys and one
RB-Tree on VBAP(VBELN)) for these queries using the same
storage strategy. We also looked at the impact the maintenance
of these indexes has on the modifying Query 6. Figure 10
shows the results of these experiments. We found that the
performance penalty for index maintenance at inserts (Query
6) was negligible. Queries 7 and 8, that had to rely on scans to
locate matching tuples in the absence of indexes, experience
a performance boost of more than 1,000x in a column- and
more than 10,000x in a row-store. Since the query costs are
now largely determined by the tuple reconstruction the row-
store is out-performing the column-store by about an order
of magnitude. This indicates that whilst partial decomposition
improves scan performance for, e.g., aggregations or full-text-
search, indexes are better suited for tuple retrieval.

C. The CH-Benchmark

Our second benchmark, the CH-Benchmark was designed
to simulate a use case that involves analytical as well as trans-
actional operations, thus creating a conflicting benchmark.
We, therefore, started out expecting a significant improvement
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in the overall workload performance. However, as depicted
in Figure 11, the benefit of partial decomposition is not as
high as we initially expected. We also noticed that even a
full decomposition (DSM) does only yield an improvement of
about 30 percent in comparison to N-ary storage for the ana-
lytical queries. This seemingly stands in contrast to previously
published results that report orders of magnitude difference be-
tween row- and column-stores for analytical queries [5]. This
divergence indicates that other factors than the storage strategy
contribute to the superior analytical performance of column-
stores: the CPU efficiency of the simple, tight loops of a bulk
query processor. Since JiT-compilation always generates tight
loops, there is little to be gained from decomposed storage.
It is not that the evaluated column-store implementation is
deficient but the row-store implementation leaves little room
for improvement in this benchmark.

D. The CNET-Products Benchmark

The CNET Products Data Set [4] is a description of the
properties of the product catalog of the CNET review site.
Since it contains data on many different products, the catalog
relation is very wide (almost 3000 attributes) but sparsely
populated (the average tuple contains 11 non-null values).
However some attributes like manufacturer, name and category
are set for all tuples and can be used for analytics. Schemas
like this occur frequently when mapping object oriented class
hierarchies to relational tables due to the lack of inheritance
in the relational model. In this case, all classes in a hierarchy
and their attributes are mapped to the same table. Such
schemas make good candidates for partial decomposition. To
fill the CNET schema, we implemented a generator to create
relational data according to the reported properties8.

Unfortunately, the CNET Products Data Set Description
only reports on the properties of the data. It does not provide
an application or queries on top of that data. Inspired by the
functionality of the CNET products website, we created a
set of four queries (see Table V) to simulate the load of a
web application. The first three queries correspond to a user
navigating the catalog to get an overview of the available data.

8 http://www.cwi.nl/˜holger/generators/cnet
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Fig. 12: CNET Results

Even though they focus on end-users, they are, by character,
analytical queries. The results of the first two queries may be
cached in, e.g., a materialized view and, consequently, have a
low frequency in our benchmark. The third query relies on user
input and is, thus, harder to cache. Since it is a browsing query
we assign it medium frequency. The fourth query shows the
details of a particular product given its primary key. This query
simulates a direct link to a product page (potentially from an
external site) and is an OLTP-style lookup. For websites this is
a very common operation, hence its frequency is much higher
than that of the other queryies.

Figure 12 shows the results of the CNET-benchmark. For
the analytical queries decomposed storage outperforms N-ary
storage as expected. Query 3 shows a slight performance ben-
efit from collocating id and name over full decomposition.
The fourth query performs best on an N-ary relation but only
shows slight degradation on a partially decomposed relation.
Overall, the partial decomposition model performs more than
an order of magnitude better than the N-ary mode and almost
4x better than the fully decomposed storage.

VII. CONCLUSION

Partial decomposition is a promising means to reduce the
data access costs in a MRDBMS. To fully exploit its potential,
however, it is crucial to avoid sacrificing CPU efficiency for
savings in bandwidth. JiT-Compiled queries naturally avoid
any CPU-overhead and are, therefore, a natural match to the
Partially Decomposed Storage Model. By combining these
techniques we achieved the promised bandwidth savings with-
out the CPU overhead at query evaluation time. We found
orders of magnitude gain when replacing a hybrid DBMS
based on flexible, Volcano-like operators by a system that JiT-
compiles queries.

Whilst partial decomposition does not degrade performance,
the benefit depends largely on the schema and workload of the
database. As a rule of thumb we found that, the more gener-
ic/wide a schema and scan- and projection-heavy a workload
is, the higher the benefit of a partial decomposition. For a very
generic database schema like the CNET-dataset or the SAP SD
benchmark, the improvement can be significant (factor 3 and

http://www.cwi.nl/~holger/generators/cnet


Query Frequency Description
select category, count(*) from products group by category 1 Give overview of all categories with product

counts

select (price from/10)*10 as price, count(*) from products
where category = $1 group by price order by price;

1 Drill down to a category and show price
ranges

select id, name from products where category=$1 and
(price from/10)*10 = $2

100 Show a Listing of all products in a category
for the selected price range

select * from products where id=$1 10,000 Show available Details of a selected Product

TABLE V: The Queries on the CNET Product Catalog

more). We therefore believe that workload-conscious storage
optimization is an interesting field for further research.

Beyond schema decomposition there are a number of other
workload-conscious storage optimizations. Especially with the
focus on sparse data the storage as dense key-value lists is
an option that may save storage space and processing effort.
We also expect such a key-value storage to be easier to
integrate into existing column-stores than a new processing
model like JiT. Partial compression may work well when data
is not sparse but has a small domain and might be a good
application for our hardware-conscious cost model. Another
area is online/adaptive reorganization of the decomposition
strategy and Query-Layout-Co-Optimization.
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