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Abstract

Most relation extraction methods, espe-
cially in the domain of biology, rely on
machine learning methods to classify a co-
occurring pair of entities in a sentence to
be related or not. Such an approach re-
quires a training corpus, which involves
expert annotation and is tedious, time-
consuming, and expensive.

We overcome this problem by the use of
existing knowledge in structured databases
to automatically generate a training cor-
pus for protein-protein interactions. An
extensive evaluation of different instance
selection strategies is performed to maxi-
mize robustness on this presumably noisy
resource. Successful strategies to con-
sistently improve performance include a
majority voting ensemble of classifiers
trained on subsets of the training corpus
and the use of knowledge bases consist-
ing of proven non-interactions. Our best
configured model built without manually
annotated data shows very competitive re-
sults on several publicly available bench-
mark corpora.

1 Introduction

Protein function depends, to a large degree, on the
functional context of its interaction partners, e.g.
other proteins or metabolites. Accordingly, get-
ting a better understanding of protein-protein in-
teractions (PPIs) is vital to understand biological
processes within organisms. Several databases,
such as IntAct, DIP, or MINT, contain detailed

information about these interactions. To popu-
late such databases, curators extract experimen-
tally validated PPIs from peer reviewed publica-
tions (Ceol et al., 2010). Therefore, the automated
extraction of PPIs from publications for assisting
database curators has attracted considerable atten-
tion (Hakenberg et al., 2008; Airola et al., 2008;
Tikk et al., 2010; Bui et al., 2010).

PPI extraction is usually tackled by classifying
the

(
n
2

)
undirected protein mention pairs within a

sentence, where n is the number of protein men-
tions in the sentence. Classification of such pairs
is often approached by machine learning (Airola et
al., 2008; Tikk et al., 2010) or pattern-based meth-
ods (Fundel et al., 2007; Hakenberg et al., 2008)
both requiring manually annotated corpora, which
are costly to obtain and often biased to the an-
notation guidelines and corpus selection criteria.
To overcome this issue, recent work has concen-
trated on distant supervision and multiple instance
learning (Bunescu and Mooney, 2007; Mintz et
al., 2009). Instead of manually annotated corpora,
such approaches infer training instances from non-
annotated texts using knowledge bases, thus al-
lowing to increase the training set size by a few
orders of magnitude. Corpora derived by distant
supervision are inherently noisy, thus benefiting
from robust classification methods.

1.1 Previous work

Distant supervision for relation extraction has re-
cently gained considerable attention. Approaches
usually focus on non-biomedical relations, such as
“author wrote book” (Brin, 1999) or “person born
in city” (Bunescu and Mooney, 2007). This work
highlighted that it is feasible to train a classifier us-
ing distant supervision, which culminated in ideas



to learn literally thousands of classifiers from rela-
tional databases like Freebase (Mintz et al., 2009;
Yao et al., 2010), Yago (Nguyen and Moschitti,
2011), or Wikipedia infoboxes (Hoffmann et al.,
2010).

So far, approaches in the biomedical domain
on distant supervision focused on pattern learn-
ing (Hakenberg et al., 2008; Abacha and Zweigen-
baum, 2010; Thomas et al., 2011). This is sur-
prising as statistical machine learning methods are
most commonly used for relation extraction. For
example, only one of the five best performing sys-
tems in the BioNLP 2011 shared task relied on pat-
terns (Kim et al., 2011).

The approaches described by Hakenberg et al.
(2008) and Thomas et al. (2011) are those most
related to our work. Both approaches learn a set
of initial patterns by extracting sentences from
MEDLINE potentially describing protein-protein
interactions. Both methods use a knowledge base
(IntAct) as input and search sentences containing
protein pairs known to interact according to the
knowledge base. However, these approaches gen-
erate patterns only for positive training instances
and ignore the information contained in the re-
maining presumably negative instances.

PPI extraction is one of the most exten-
sively studied relation extraction problems in the
biomedical domain and is perfectly suited for a
study on distant supervision as several corpora
have been published in a common format (Pyysalo
et al., 2008). Pyysalo et al. showed that the cor-
pora differ in many aspects, e.g. annotation guide-
lines, average sentence length, and most impor-
tantly in the ratio of positive to negative training
instances which accounts for about 50 % of all
performance differences. Related work by Airola
et al. (2008) and Tikk et al. (2010) revealed that
the relation extraction performance substantially
decreases when the evaluation corpus has differ-
ent properties than the training corpus. A basic
overview of the five most commonly used bench-
mark PPI corpora is given in Table 1.

So far, it is unclear how distant supervision per-
forms on the difficult tasks of PPI extraction. For
example Nguyen and Moschitti (2011) achieve a
F1 of 74.3 % on 52 different Yago relations us-
ing distant supervision. On the other hand, com-
pletely supervised state-of-the-art PPI extraction
using manually labeled corpora achieve F1 ranging
from 56.5 % (AIMed) to 76.8 % (LLL) depend-

Corpus
Pairs Class ratio

positive negative positive
negative

AIMed 1,000 4,834 0.21
BioInfer 2,534 7,132 0.35
HPRD50 163 270 0.60
IEPA 335 482 0.73
LLL 164 166 0.99

Table 1: Overview of the 5 corpora used for evalu-
ation. For state-of-the-art results on these corpora,
see Table 3.

ing on the complexity of the corpus (Airola et al.,
2008).

The contribution of the work described herein
is as follows: We present different variations of
strategies to utilize distant supervision for PPI ex-
traction in Section 2. The potential benefit for PPI
extraction is evaluated. Parameters taken into ac-
count are the number of training instances as well
as the ratio of positive to negative examples. Fi-
nally, we assess if an ensemble of classifiers can
further improve classification performance.

2 Methods

In this section, the workflow to extract interaction
pairs from the databases and to generate training
instances is described. Additionally, the config-
uration of the classifier applied to this corpus is
given followed by the outline of the experimental
setting.

2.1 Generation of training data

Training instances are generated as follows. All
MEDLINE abstracts published between 1985
and 2011 are split into sentences using the sen-
tence segmentation model by Buyko et al. (2006)
and scanned for gene and protein names using
GNAT (Hakenberg et al., 2011). In total, we
find 1,312,059 sentences with 8,324,763 protein
pairs. To avoid information leakage between train-
ing and test sets, articles contained in any of
the benchmark evaluation corpora have been re-
moved. This procedure excludes 7,476 (< 0.1%)
protein mention pairs from the training set. Pro-
tein pairs that are contained in the PPI knowledge
base IntAct1 (Aranda et al., 2010) are labeled as
positive instances. Following a closed world as-
sumption, protein pairs not contained in IntAct are
considered as negative instances.

1As of Mar 24, 2010.



It is very likely, that both negative and positive
instances contain a certain amount of mislabeled
examples (false positives, false negatives). There-
fore, we utilize different heuristics to minimize
the amount of mislabeled instances. Firstly, we
generate a list of words, which are frequently em-
ployed to indicate an interaction between two pro-
teins 2. This list is used to filter positive and nega-
tive instances such that positive instances contain
at least one interaction word (pos-iword) and neg-
ative contain no interaction word (neg-iword). Ap-
plication of both filters in combination is referred
to as pos/neg-iword. Secondly, we assume that
sentences with only two proteins are more likely
to describe a relationship between these two pro-
teins than sentences which contain many protein
names. This filter is called pos-pair. For the sake
of completeness, it is tested on negative instances
alone (neg-pair) and on positive and negative in-
stances in combination (pos/neg-pair). All seven
experiments are summarized in Table 2.

2.2 Classification and experimental settings

For classification, we use a support vector machine
with the shallow linguistic (SL) kernel (Giuliano
et al., 2006) which has been previously shown
to generate state-of-the-art results for PPI extrac-
tion (Tikk et al., 2010). This method uses syntactic
features, e.g. word, stem, part-of-speech tag and
morphologic properties of the surrounding words
to train a classifier, but no parse tree information.

Setting

Feature: Interaction word count Pairs in sentence

Condition: ≥ 1 = 0 = 1 = 1
Applied to: positive negative positive negative

baseline

pos-iword •
neg-iword •
pos/neg-iword • •

pos-pair •
neg-pair •
pos/neg-pair • •

Table 2: Our experiment settings. Based on the
number of interaction words and protein mention
pairs in the containing sentence, we filter out au-
tomatically generated positive or negative example
pairs not meeting the indicated heuristic condition.
The dots indicate which filter is applied for which
setting. For instance no filtering takes place for the
baseline setting.

2http://www2.informatik.hu-berlin.de/
˜thomas/pub/iwords.txt

Classifiers are trained with a small subset from
all 8 Million pairs, using 50,000 instances in all
experiments except when stated differently. This
allows us to investigate systematic differences be-
tween settings instead of generating and compar-
ing only one prediction per setting.

Classifiers often tend to keep the same positive
to negative ratio seen during the training phase.
Class imbalance is therefore often acknowledged
as a serious problem (Chawla et al., 2004). In
our first experiments, we set the positive to neg-
ative ratio according to the overall ratio of positive
to negative instances of all five corpora excluding
the test corpus. This allows us to compare the
results with the performance of various state-of-
the-art kernel methods. As few publications pro-
vide results for the so-called cross-learning sce-
nario, where a classifier is trained on the ensem-
ble of four corpora and tested on the fifth corpus,
we take the results from the extensive benchmark
conducted by Tikk et al. (2010).

The influence of training class imbalance is
evaluated separately by varying training set pos-
itive to negative ratios from 0.001 to 1, 000 using
the best filtering strategy from the previous exper-
iment.

As a sentence may describe a true protein in-
teraction not present in the knowledge base, the
closed world assumption is likely to be violated.
Furthermore, not all mentions of a pair of proteins
known to interact will describe an interaction.
Thus both positively and negatively inferred train-
ing instances can be considered noisy. We there-
fore experimented with another filtering technique
by using the Negatome database3 (Smialowski et
al., 2010) as an additional source to infer nega-
tive examples. Negatome contains a reference set
of non-interacting protein pairs and is thus better
suited to infer negative examples than our current
method, which infers a negative example for all
protein pairs not contained in the knowledge base
according to the closed world assumption. How-
ever, reliable information about non-interaction is
substantially more difficult to obtain and therefore
the database contains far less entries than IntAct.
From our 8 million protein pairs only 6,005 pairs
could be labeled as negative. Additional negative
training instances required for the training phase
are therefore inferred using the closed world as-
sumption.

3As of April 30, 2011.



Further, we evaluate how much training data
is required to successfully train a classifier and if
the classifier reaches a steady state after a certain
number of training instances.

Finally, we evaluate whether a majority voting
ensemble of 11 classifiers trained on randomly
drawn training instances can further improve ex-
traction quality. This strategy loosely follows a
bagging strategy (Breiman, 1996), however, train-
ing instances are suspected to be less overlapping
than using the standard bagging strategy.

2.3 Evaluation

For evaluation, we use the five benchmark PPI cor-
pora listed in Table 1. Each training procedure, ex-
cept for the ensemble experiments, is repeated 10
times randomly, thus resulting in 10 independent
estimates for precision, recall, F1, and area under
the ROC curve (AUC). This allows for robust es-
timation of all evaluation metrics. Using single
sided MannWhitney U test (Mann and Whitney,
1947) p-values for F1 and AUC between two dif-
ferent models are calculated, with the null hypoth-
esis that median of two samples is equal. Sig-
nificance of Kendall correlation is determined us-
ing Best and Gipps (1974) with the null hypothesis
that correlation equals zero. For all tests we as-
sume a p-value of 0.01 to determine significance.

3 Results

Mean values for the seven different instance selec-
tion strategies (introduced in Table 2) are shown
in Table 3. All strategies, except neg-pair filter-
ing, lead to a higher AUC than 0.5. Thus six
of seven settings perform better than randomly
guessing. The advantage over random guessing
is generally significant, except for three experi-
ments in LLL. Many instance selection strategies
for AIMed, BioInfer and HPRD50 outperform co-
occurrence in terms of F1. Several experiments
outperform or at least perform on a par with the
results from Thomas et al. (2011).

Co-occurrence outperforms significantly all
seven settings for the two remaining corpora IEPA
and LLL in F1. This might have several reasons:
First, these two corpora have the highest fraction
of positive instances, therefore co-occurrence is
a very strong baseline. Second, IEPA describes
chemical relations instead of PPIs, thus our train-
ing instances might not properly reflect the syntac-
tic property of such relations.
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Figure 1: Average rank in F1 for each experiment
setting on the five corpora.

It is encouraging that on two corpora (BioInfer
and HPRD50) the best setting performs about on
par with the best cross-learning results from Tikk
et al., which have been generated using manually
annotated data and are therefore suspected to pro-
duce superior results.

For each corpus, we calculate and visualize the
average rank in F1 for the seven different strategies
(see Figure 1). This figure indicates that pos/neg-
iword and neg-iword filtering perform very well.

Repeating the previously described instance se-
lection strategies (see Table 2) using Negatome to
infer negative training instances lead to a small in-
crease of 0.5 percentage points (pp) in F1, due to
an average increase of 1.1 pp in precision over all
five corpora and seven settings (Results shown at
bottom of Table 3). We also observe a tendency for
increased AUC (0.9 pp). The largest gain in preci-
sion (3.5 pp) is observed between the two baseline
results where no instance filtering is applied. Re-
sults for varied positive to negative ratios and for
various amounts of training instances are also con-
tained in the same table and visualized in Figure 2a
and 2b respectively.

4 Discussion

The various settings introduced to filter out likely
noisy training instances either improved preci-
sion or recall or both over the baseline using all
automatically labeled instances for training (data
shown in Table 3). In the following, we analyze
and compare these settings.
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Figure 2: Distribution of mean precision, recall, F1, and AUC depending for the evaluation of class
imbalance and sample size.

Method
AIMed BioInfer HPRD50 IEPA LLL

AUC P R F1 AUC P R F1 AUC P R F1 AUC P R F1 AUC P R F1

co-occurrence 17.8 (100) 30.1 26.6 (100) 41.7 38.9 (100) 55.4 40.8 (100) 57.6 55.9 (100) 70.3

supervised (Tikk et al.) 77.5 28.3 86.6 42.6 74.9 62.8 36.5 46.2 78.0 56.9 68.7 62.2 75.6 71.0 52.5 60.4 79.5 79.0 57.3 66.4
semi-supervised (Thomas et al.) 25.8 62.9 36.6 43.4 50.3 46.6 48.3 51.5 49.9 67.5 58.2 62.5 70.3 70.7 70.5

Setting

baseline 65.1 21.0 82.8 33.5 63.2 33.3 64.2 43.8 64.4 42.8 75.4 54.6 52.2 40.9 11.6 18.0 51.8 51.3 39.2 44.4
pos-iword 66.6 21.8 82.6 34.5 67.5 38.4 60.8 47.1 67.5 45.5 76.5 57.1 53.8 48.6 12.3 19.6 51.6 50.0 37.0 42.2
neg-iword 65.3 21.1 91.1 34.2 68.1 37.3 70.9 48.9 73.4 43.9 93.6 59.8 54.7 43.9 49.9 46.7 53.9 49.9 77.4 60.7
pos/neg-iword 65.1 21.4 89.8 34.6 68.6 38.6 67.0 49.0 73.3 44.8 93.2 60.5 54.6 43.8 53.2 48.0 53.5 50.7 75.8 60.8
pos-pairs 64.2 29.3 33.4 31.2 69.8 57.8 18.0 27.5 62.7 47.9 35.6 40.8 66.6 54.9 26.3 35.5 63.2 68.2 27.8 39.5
neg-pairs 46.9 17.2 85.5 28.6 37.3 24.4 85.6 37.9 50.8 39.0 80.9 52.6 36.5 22.4 18.6 20.3 38.2 44.7 66.2 53.3
pos/neg-pairs 69.7 23.6 82.3 36.6 62.0 32.8 60.6 42.5 69.2 46.5 75.2 57.5 56.0 43.4 13.3 20.3 54.3 54.5 37.9 44.6

Train pos/neg ratio

1,000 60.6 19.0 89.8 31.3 64.2 31.3 84.6 45.7 62.5 41.1 92.9 57.0 57.9 42.6 88.3 57.3 61.2 53.7 93.3 68.1
100 63.9 20.0 88.7 32.7 69.0 35.5 77.8 48.7 71.5 44.2 91.9 59.6 58.9 45.6 65.6 53.7 61.5 53.1 85.8 65.6
10 65.5 20.9 91.0 33.9 71.2 38.7 76.0 51.2 74.1 44.2 95.8 60.5 57.9 45.7 55.5 50.1 57.9 51.8 80.7 63.1
1 65.6 21.4 91.1 34.7 70.0 38.6 71.3 50.1 74.5 44.3 95.5 60.6 56.1 45.0 55.5 49.7 55.7 51.6 79.3 62.5
0.1 65.4 22.3 81.3 35.0 67.9 40.9 57.9 48.0 72.1 46.9 84.7 60.4 53.5 43.1 37.9 40.3 51.0 50.0 58.7 53.9
0.01 66.0 26.9 46.7 34.1 66.5 46.9 24.7 32.4 70.4 59.7 48.5 53.4 52.8 48.2 8.3 14.2 52.2 54.3 12.3 19.7
0.001 61.5 41.4 0.9 1.8 63.2 63.0 0.3 0.6 67.8 72.5 1.3 2.6 53.0 30.0 0.1 0.2 54.1 10.0 0.1 0.1

Train set size

500 63.4 21.8 71.5 33.4 65.9 39.8 44.6 41.9 67.6 48.4 67.4 56.2 55.5 45.4 31.5 36.7 54.0 52.6 53.4 52.7
5,000 65.3 21.4 84.3 34.2 69.0 39.9 63.5 48.9 72.6 45.7 89.0 60.4 56.8 46.1 41.9 43.8 54.5 51.3 66.3 57.8

15,000 65.5 21.6 87.9 34.6 69.1 39.7 65.1 49.3 74.2 45.6 92.9 61.2 55.8 44.5 47.4 45.9 55.7 51.9 75.1 61.3
30,000 65.3 21.5 89.4 34.6 68.8 39.2 66.5 49.3 73.0 44.6 93.1 60.3 55.0 44.0 50.7 47.1 53.8 50.9 75.2 60.7
70,000 65.1 21.3 90.7 34.6 68.6 38.1 67.4 48.7 73.2 44.2 92.1 59.8 54.2 43.7 55.0 48.7 53.9 50.9 78.6 61.8

150,000 64.7 21.3 91.3 34.5 68.2 37.5 68.1 48.4 73.1 44.1 92.8 59.8 53.0 43.0 57.1 49.1 52.7 51.1 81.3 62.7

Setting (+Negatome)

baseline 65.9 22.2 79.6 34.7 65.7 36.8 58.6 45.2 67.6 46.7 74.0 57.3 54.9 47.5 12.7 20.0 54.8 53.6 36.3 43.2
pos-iword 67.4 22.9 81.4 35.8 69.1 41.1 56.3 47.5 69.2 47.9 75.4 58.5 57.4 52.6 12.9 20.6 52.3 51.2 37.5 43.1
neg-iword 65.3 21.1 90.7 34.3 68.8 38.1 69.6 49.2 73.6 44.6 92.1 60.1 55.6 44.4 51.7 47.8 55.2 51.3 78.9 62.2
pos/neg-iword 65.1 21.4 89.4 34.6 68.8 38.8 66.9 49.1 73.2 44.8 92.2 60.3 55.3 44.2 53.8 48.5 54.9 52.2 77.9 62.5
pos-pairs 64.6 29.6 33.7 31.5 69.7 58.2 18.3 27.8 62.2 48.5 35.5 41.0 66.9 56.6 30.7 39.7 63.4 68.8 28.1 39.9
neg-pairs 47.0 17.2 84.9 28.6 37.0 24.3 85.0 37.8 50.9 38.4 79.8 51.9 36.0 22.4 18.5 20.3 38.5 45.1 66.0 53.5
pos/neg-pairs 69.8 23.8 81.1 36.8 63.9 34.6 58.6 43.5 69.5 47.5 74.2 57.9 57.0 44.3 13.9 21.1 54.7 53.2 34.5 41.7

Table 3: Results of different instance selection strategies, different positive to negative ratios in the
training set, sample size and employing Negatome as negative knowledge base.



Method
AIMed BioInfer HPRD50 IEPA LLL

AUC P R F1 AUC P R F1 AUC P R F1 AUC P R F1 AUC P R F1

co-occurrence 17.8 (100) 30.1 26.6 (100) 41.7 38.9 (100) 55.4 40.8 (100) 57.6 55.9 (100) 70.3

supervised (Tikk et. al) 77.5 28.3 86.6 42.6 74.9 62.8 36.5 46.2 78.0 56.9 68.7 62.2 75.6 71.0 52.5 60.4 79.5 79.0 57.3 66.4
semi-supervised (Thomas et. al) 25.8 62.9 36.6 43.4 50.3 46.6 48.3 51.5 49.9 67.5 58.2 62.5 70.3 70.7 70.5

mean of 11 runs 65.5 21.4 90.9 34.6 69.9 70.7 38.9 50.2 74.0 44.4 94.7 60.4 55.5 44.7 54.6 49.1 55.2 50.6 78.0 61.4
bagging over 11 runs 21.4 91.3 34.7 70.9 39.3 50.6 44.3 95.1 60.4 44.4 53.1 48.3 49.8 77.4 60.6

Table 4: Result of bagging over 11 classifier trained on different subsets. For comparison we show the
average results for these 11 runs.

4.1 Pair count based settings

From our analysis it becomes apparent that no cor-
relation between AUC and F1 exists (Kendall’s tau
= 0.23, p-value = 0.55). For example pos-pair fil-
tering significantly outperforms on three corpora
all remaining six settings in terms of AUC, but the
same setting supersedes almost no other setting
in terms of F1. A closer look reveals that on all
five corpora the highest average precision can be
achieved with this setting, at the cost of a decrease
in recall. The pos-pair selection strategy results
in fairly good training instances, but the decision
hyperplane is not appropriately set.

The opposing filtering strategy (neg-pair) out-
performs no other method in terms of AUC with
an average score often below or at least close to
a random classifier. However, this is expected, as
the classifier tends to assign negative class labels
to all sentences with exactly two protein mentions.
This filter is in direct conflict to the original moti-
vation and demonstrates that filtering must be per-
formed carefully.

Even though positive and negative training in-
stance filtering alone lead to almost no increase in
F1, the filtering of both negative and positive pairs
leads to an overall improvement of 1.44 pp.

4.2 Interaction word based settings

All different combinations of instance filtering us-
ing a list of interaction words lead to an over-
all increase in F1 and AUC. Filtering of positive
and negative instances (pos/neg-iword) leads to
the highest increase in AUC and with 11.8 pp in
F1, followed with 11.3 pp by exclusively filtering
negative instances (neg-iword). Finally we ob-
serve only a marginal improvement of 1.3 pp when
filtering positive instances (pos-iword).

4.3 Experiments with Negatome

A clear drawback of Negatome is the comparable
small sample size of protein pairs. The number
of confidently negative training instances could be
increased by generalizing proteins across species
using, for instance, Homologene. On our data
set we could infer approximately 4,200 additional
training instances. However, it is unclear if these
derived instances are of the same quality than the
Negatome data set. Another possibility is the us-
age of additional text repositories.

4.4 Effect of the pos/neg ratio

Table 3 clearly indicates that positive to negative
ratio on training data affects performance of a clas-
sifier. Precision and recall strongly correlate with
the pos/neg ratio seen in the training set. The ob-
served correlation between recall and pos/neg ra-
tio (Kendall’s tau ranging from 0.524 to 1 for all
five corpora) is expected, as the classifier tends to
assign more test instances to the majority (posi-
tive) class. This procedure works best for corpora
with many positive examples. A strong correla-
tion (Kendall’s tau ranging from −0.9 to −1.0)
between precision and class ratio can be observed
for AIMed, BioInfer, and HPRD50. Correlation
for IEPA is close to zero and for LLL the correla-
tion is even positive but not significant (p-value of
0.13). Overall, the observed influence is less pro-
nounced than expected. For instance F1 remains
comparably robust with an average standard devi-
ation of 2.6 pp for ratios between 0.1 and 10 . With
more pronounced differences in the training ratio,
a strong impact on F1 can be observed.

In contrast to previous work on distant super-
vision, more noise on positive and negative in-
stances is expected as database knowledge is sus-
pected to be less complete and besides incomplete-
ness knowledge evolves faster than for example
for “president of country” relations. Other ap-



proaches often deal only with a strong noise on
positive data, but little noise on negative instances.
To avoid the double sided noise, we experimented
with one class variations of SVM (Schölkopf et
al., 2001) exploring the identical feature space.
In one class classification only instances for the
target set are available and the classifier searches
a separating boundary between instances and yet
unseen outliers. It has been previously demon-
strated that one class classifiers are less sensitive to
highly imbalanced data (Raskutti and Kowalczyk,
2004; Dreiseitl et al., 2010). However, in our ex-
periments one class classifiers constantly achieved
results close to random classification regardless of
whether we used solely positive or negative in-
stances for training.

4.5 Effect of training set size

For all corpora except for HPRD50 a monotonic
increase in recall (Kendall’s Tau of 1; p-value <
0.01) can be observed while increasing the train-
ing set. The negative correlation between preci-
sion and sample size is less pronounced but still
observable for all Corpora (Kendall’s Tau ranges
between −0.552 and −1). Subsequently F1 in-
creases for corpora with many positive instances.
Presumably, the problem of class imbalance gets
more pronounced with additional instances.

4.6 Bagging

On the settings previously identified of being su-
perior, we trained 11 classifiers using randomly
sampled training sets. That is, a filtering of pos-
itive and negative instances for interaction words,
a positive to negative ratio of 1, and a training size
of 15,000 instances. The average results of the
trained classifiers and the result of majority voting
are given in Table 4. The ensemble classifier per-
forms about on par with the mean of the individual
classifiers and we observe no significant difference
between the two approaches. However, a single
classifier sometimes performs better or worse than
the ensemble, whereas bagging always performs
close to the mean result. Thus, bagging can be
successfully applied for improving robustness of
a classifier. Note that in our setting, all votes are
of equal importance, thus neglecting the fact that
some classifier perform generally better than oth-
ers.

5 Conclusion

We investigated the use of distant supervision and
demonstrated that it can be successfully adopted
for domains where named entity recognition and
normalization is still an unsolved issue and the
closed world assumption might be an unsupported
stretch. This is important, as named entity recog-
nition and normalization is a key requirement for
distant supervision. Distant supervision is there-
fore an extremely valuable method and allows
training classifiers for virtually all kinds of rela-
tionships for which a database exists. We have
proven here that results obtained without a manu-
ally annotated corpus are competitive with purely
supervised methods, thus the tedious task of anno-
tating a training corpus can be avoided.

Using five benchmark evaluation corpora – hav-
ing diverse properties, annotated by different re-
searchers adhering to differing annotation guide-
lines – offers a perfect opportunity to evaluate
the robustness and usability of distant supervision.
Our analysis reveals that background knowledge
such as interaction words or “negative” knowledge
bases such as Negatome consistently improves re-
sults across all five corpora. Also bagging had a
positive impact on classifier robustness.

Surprisingly, class imbalance seams to be a less
pronounced problem in distant supervision as of-
ten observed for supervised settings. One pos-
sible explanation might be that due to the noisy
data, a classifier is less prone to over-fitting. So
far, our experiments with one-class classification
algorithms trained on positive or negative exam-
ples solely lead to disappointing results with AUC
scores close to that of a random classifier. In future
work, we plan to investigate if other one-class al-
gorithms can be successfully adapted for relation
extraction in a distant supervised setting.

Instance selection seems to have the largest im-
pact for this approach. Instead of simple heuris-
tics, we plan to investigate the usability of syn-
tactic patterns to further discriminate positive and
negative instances (Bui et al., 2010).
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