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Abstract

The extraction of protein-protein interactions
(PPIs) reported in scientific publications is one
of the most studied topics in Text Mining in
the Life Sciences, as such algorithms can sub-
stantially decrease the effort for databases cu-
rators. The currently best methods for this
task are based on analyzing the dependency
tree (DT) representation of sentences. Many
approaches exploit only topological features
and thus do not yet fully exploit the informa-
tion contained in DTs. We show that incor-
porating the grammatical information encoded
in the types of the dependencies in DTs no-
ticeably improves extraction performance by
using a pattern matching approach. We au-
tomatically infer a large set of linguistic pat-
terns using only information about interact-
ing proteins. Patterns are then refined based
on shallow linguistic features and the seman-
tics of dependency types. Together, these lead
to a total improvement of 17.2 percent points
in F1, as evaluated on five publicly available
PPI corpora. More than half of that improve-
ment is gained by properly handling depen-
dency types. Our method provides a general
framework for building task-specific relation-
ship extraction methods that do not require an-
notated training data. Furthermore, our obser-
vations offer methods to improve upon rela-
tion extraction approaches.

1 Introduction

Insights about protein-protein interactions (PPIs) are
vital to understand the biological processes within
organisms. Accordingly, several databases, such as

IntAct, DIP, or MINT, contain detailed information
about PPIs. This information is often manually har-
vested from peer reviewed publications (Ceol et al.,
2010). However, it is assumed that a high amount
of PPIs is still hidden in publications. Therefore, the
automated extraction of PPIs from text has attracted
considerable attention from biology research.

A number of different techniques have been pro-
posed to solve the problem of extracting PPIs from
natural language text. These can be roughly or-
ganized into one of three classes: co-occurrence,
machine learning, and pattern matching (for a re-
cent survey, see (Zhou and He, 2008)). The co-
occurrence based approaches use only information
on the co-existence of protein mentions in a given
scope. They are easy to implement and allow for
efficient processing of huge amounts of texts, but
they are also prone to generate many false positives
because they cannot distinguish positive from neg-
ative pairs. The second class is based on machine
learning. Here, a statistical model is learned from a
set of positive and negative examples and then ap-
plied to unseen texts. In general, machine learning-
based methods to relation extraction perform very
well for any task where sufficient, representative and
high quality training data is available (Kazama et
al., 2002). This need for training data is their ma-
jor drawback, as annotated texts are, especially in
the Life Sciences, rather costly to produce. Fur-
thermore, they are prone to over-fit to the training
corpus, which renders evaluation results less infer-
able to real applications. A third class of methods
is based on pattern matching. Such methods work
with patterns constructed from linguistically anno-



tated text, which are matched against unseen text
to detect relationships. Patterns can either be in-
ferred from examples (Hakenberg et al., 2010; Liu
et al., 2010) or can be defined manually (Fundel et
al., 2007). Systems based on manually defined pat-
terns typically use few patterns, leading to high pre-
cision but low recall (Blaschke et al., 2002). In con-
trast, systems that learn patterns automatically often
produce more patterns and exhibit a better recall, at
the cost of a decrease in precision. To circumvent
this penalty, several works have tried to improve
patterns. E.g., SPIES (Hao et al., 2005) filters pat-
terns using the minimum description length (MDL)
method which improves its F1 by 6.72%.

Another classification of PPI extraction methods
is based on the sentence representation that is ap-
plied. The simplest such representation is the bag of
words (BoW) that occur in the sentence; more com-
plex representations are constituent trees, capturing
the syntactic structure of the sentence, and depen-
dency trees (DTs), which represent the main gram-
matical entities and their relationships to each other.
PPI extraction methods use various sentence repre-
sentation, e.g., are based only on BoW (Bunescu
and Mooney, 2006; Giuliano et al., 2006), use only
DTs (Erkan et al., 2007), or combine representa-
tions (Airola et al., 2008; Miwa et al., 2008).

In the last years, dependency trees have become
the most popular representation for relation extrac-
tion. DTs characterize, via their dependency links,
grammatical relationships among words. They are
particularly favored by kernel-based learning ap-
proaches, see e.g. (Culotta and Sorensen, 2004;
Erkan et al., 2007; Airola et al., 2008; Miwa et al.,
2008; Kim et al., 2010) but also graph matching ap-
proaches using DTs have been proposed (Liu et al.,
2010). However, these methods do not further utilize
the grammatical information encoded in the depen-
dency types (edge labels). Recently proposed meth-
ods like (Buyko et al., 2009; Rinaldi et al., 2010)
modify the DTs by e.g. trimming irrelevant depen-
dencies. In contrast to these approaches, our method
exploits the dependency types of DTs and performs
basic transformations on DTs; we use Stanford de-
pendencies, which are presumably the most often
used DT representation in PPI extraction.

The rest of this paper is organized as follows. We
describe our novel method for extracting PPIs from

text that is based on pattern matching in dependency
graphs. We evaluate our method against benchmark
PPI corpora, and discuss results with a focus on de-
pendency type information based methods.

2 Methods

Our approach consists of a series of steps: First, we
extract sentences from Medline and PMC open ac-
cess that contain pairs of genes/proteins known to
interact. Second, we convert each of those sentences
into DTs and derive putative tree patterns for each
pair. Having a set of such patterns, we apply a num-
ber of generalization methods to improve recall and
filtering methods to improve precision. We discern
between methods that are purely heuristic (termed
shallow) and steps that incorporate dependency type
information (termed grammatical). To predict PPIs
in unseen text, the resulting patterns are matched
against the corresponding DTs.

2.1 Extraction of PPI sentences
We apply the method described in (Hakenberg et al.,
2006) to extract a set of sentences from Medline and
PMC potentially describing protein interactions. Es-
sentially, this method takes a database of PPIs (here
IntAct; (Aranda et al., 2010)) and searches all sen-
tences in Medline and PMC containing any of those
pairs. Proteins were tagged and normalized using
GNAT (Hakenberg et al., 2008). To avoid a possible
bias, articles contained in any of the five evaluation
corpora are excluded. This resulted in 763,027 in-
teracting protein pairs.

2.2 Pattern generation and matching
For each protein pair we generate a new sentence
and apply entity blinding, meaning that named enti-
ties are replaced by placeholders to avoid systemic
bias. Specifically, the mentions of the two proteins
known to interact are replaced by the placeholder
ENTITY A and any additional proteins in the same
sentence are replaced by ENTITY B. Tokens are
tagged with their part-of-speech (POS) using Med-
Post (Smith et al., 2004), which is specifically op-
timized for biomedical articles. Constituent parse
trees are generated using the Bikel parser (Bikel,
2002) and converted to DTs by the Stanford con-
verter (De Marneffe et al., 2006). In a DT, the short-
est path between two tokens is often assumed to con-



tain the most valuable information about their mu-
tual relationship. Therefore, we generate a pattern
from each DT by extracting the shortest, undirected
path between the two occurrences of ENTITY A.
The set of initial patterns is denoted by SIP.

We employ several methods to improve the qual-
ity of this initial set of patterns. We systemati-
cally evaluated possible constellations and identified
those that help in improving performance of PPI ex-
traction. The modifications are of two kinds. Pattern
generalizers are intended to elevate recall, whereas
pattern filters should raise precision. We present
two types of methods: Shallow methods are simple
heuristics whereas grammatical methods are rules
that exploit the information in dependency types.

We use a strict graph matching approach for pat-
tern matching. We consider a pattern to match a sub-
graph of a DT iff all their nodes and edges match
exactly, including edge labels and edge directions.

2.3 Pattern generalization
It is a common practice in NLP to apply some pre-
processing on patterns to reduce corpus-specificity.
In particular, we perform stemming (GST), re-
moval of common protein name prefixes and suf-
fixes (GPN), and replacement of interaction phrases
by single words (GIW). We summarize these steps as
shallow generalization steps. We only describe the
latter two (GPN, GIW) in more detail.

Protein names are often modified by suffixes like
-kinase, -receptor or -HeLa or by prefixes like
phospho- or anti-. These affixes are usually not
covered by entity blinding as the entity recognition
method does not consider them as part of the pro-
tein name. As such affixes are not relevant for rela-
tion extraction but do interfere with our exact graph
matching approach, we apply the GPN heuristic to
remove them.

Interactions between proteins can be expressed
very diversely in natural language. In almost all
cases there is at least one word that specifies the in-
teraction semantically, called the interaction word;
this is often a verb, such as “binds” or “phospho-
rylates”, but can as well be a noun, such as “[in-
duced] phosphorylation”, or an adjective, such as
“binding”. The GIW heuristic generalizes patterns
by substituting all contained interaction words with
generic placeholders. We assembled a list of 851 in-

teraction words (including inflection variants) based
on (Temkin and Gilder, 2003; Hakenberg et al.,
2006) that was further enriched manually. Based
on their POS-tags, interaction words are assigned to
one of the three placeholders IVERB, INOUN, IAD-
JECTIVE. We also experimented with a single inter-
action word placeholder, IWORD, handling the case
of incorrect POS-tags.

Unifying dependency types (GUD): The Stan-
ford typed dependency format contains 55 grammat-
ical relations organized in a generalization hierar-
chy. Therefore, it is a natural idea to treat simi-
lar (e.g., sibling) dependency types equally by re-
placing them with their common parent type. We
manually evaluated all dependency types to assess
whether such replacements are viable. The final list
of replacements is listed in Table 1. Note that we
used the so-called collapsed representation of de-
pendency types of the Stanford scheme. This means
that prepositional and conjunctive dependencies are
collapsed to form a single direct dependency be-
tween content words, and the type of this depen-
dency is suffixed with the removed word. In the GUD
generalizer, these dependency subtypes are substi-
tuted by their ancestors (e.g., prep, conj).

Dependency types Common type

subj, nsubj*, csubj* subj
obj, dobj, iobj, pobj obj
prep *, agent, prepc prep

nn, appos nn

Table 1: Unification of specific dependency types to
a single common type by the generalizer GUD. Note
that agent is merged with dependency type prep
as it is inferred for the preposition “by”.

Collapsing dependency links (GCD): In addi-
tion to the collapsing performed by Stanford con-
verter, we remove edges that likely are irrelevant
for PPIs. We focused on removing the dependen-
cies nn (noun compound modifier) and appos (ap-
positional modifier). These grammatical construc-
tions have the same syntactic role but they carry
somewhat different meaning. They function as noun
phrase modifiers and often specify the subtype of
an entity, which is irrelevant for our task. As these
two dependency types convey no information about



the interaction itself, the dependency itself and the
corresponding noun can be removed, as long as the
noun is not an entity itself. As an example, this
generalizer is applied on the dependency parse tree
of the sentence “ENTITY A protein recognized anti-
body (ENTITY A)” shown on Figure 1a. The modi-
fied parse tree is depicted on Figure 1b.

ENTITY-A

prote in

n n

recognized

nsubj

ant ibody

dobj

ENTITY-A

appos

(a) Original pattern

ENTITY_A

recognized

nsubj

ENTITY_A

dobj

(b) Generalized pattern

Figure 1: Dependency pattern before and after col-
lapsing nn and appos dependency links using the
generalizer GCD.

2.4 Pattern constraints

Due to the automatic construction method, our set
of patterns also contains samples derived from sen-
tences that do not actually describe an interaction
between proteins, although it does contain a pair of
interacting proteins. Such patterns lead to wrong
matches. As a countermeasure, we define con-
straints an extracted pattern has to fulfill. Patterns
not adhering to these constraints are removed from
the pattern set, thus increasing precision. Standard
(shallow) heuristics for doing so are the exclusion of
negation words (CNW) and the restriction to patterns
containing interaction-related words from a prede-
fined set (CIW). Patterns containing negations po-
tentially match two negative protein pairs. Such pat-
tern can be removed to prevent wrong extractions.
For negation words, the list described in (Fundel
et al., 2007) was used. Additionally, patterns con-
taining the dependency type conj no*, conj or, or
prep without are also removed. On top of those pre-
viously known approaches, we developed two new
filter to leverage the semantic richness of the DTs.

Dependency combination (CDC): Interaction
words are organized into the following categories:
verb, adjective and noun. Based on linguistic con-
siderations we define “dependency patterns” for the
different word types. For example we assume that

interaction verbs describe an action that originates in
one protein and affects the other protein. Obviously,
the dependency combination subjwith obj fulfills
this consideration (for an example see Figure 1b).
We manually evaluated a few DTs containing PPI
for each interaction word category (verb, noun, ad-
jective) and determined all combinations of depen-
dency types that are valid for the given category. The
resulting combinations are listed in Table 2.

Part of speech Dependency type combination

Noun

prep prep
prep nn
prep amod
nn nn
nn amod

Verb

prep subj
prep infmod
prep partmod
obj subj
obj infmod
obj partmod

Adjective amod

Table 2: Allowed dependency type combinations
based on classes of POS classes (constraint CDC).
subj = {nsubj, nsubjpass, xsubj, csubj,
csubjpass}, obj = {dobj, pobj, iobj} and
prep = {prep *, agent}

Syntax Filter (CSF): A particular case in PPI ex-
traction are sentences with enumerations, as shown
in Figure 2. Such (possibly quite long; the longest
enumeration we found contains not less than 9 pro-
teins) enumerations greatly increase the number of
protein pairs.

We observed that sentences in which the common
dependency type is prep between or nn often do
describe an association between the connected pro-
teins. Accordingly, such patterns are retained.

The remaining pairs inside enumerations often
do not describe an interaction between each other.
Therefore, we developed a special handling of enu-
merations, based on dependency types. If two pro-
teins have a common ancestor node connected by the
same dependency type, we assume that those pro-
teins do not interact with each other. Accordingly,
we remove all such patterns.



ENTITY_B
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Figure 2: Dependency tree (DT) for the entity
blinded sentence “ENTITY B activates ENTITY B,
ENTITY A, ENTITY A.” with the initial pattern
highlighted in bold red. Application of CSF removes
this pattern.

3 Results

For evaluation we use five manually annotated
benchmark corpora: AIMed, BioInfer, HPRD50,
IEPA, and LLL. Those have been unified to the
“greatest common factors” by Pyysalo et al. (2008).
This means that protein names in the corpora are
tagged and that interactions are undirected and bi-
nary. A basic overview of the corpora can be found
in Table 1 of (Airola et al., 2008).

A sentence with n entities contains
(
n
2

)
different

undirected entity pairs. For each entity pair in a
sentence, we generate a separate evaluation exam-
ple, apply entity blinding and generate the DT in
the same manner as previously described for gen-
erating the pattern set. All patterns are then matched
against the DTs of the sentences from the evalua-
tion corpora. If at least one pattern matches, the pair
is counted as positive otherwise as negative. From
this information we calculate precision, recall, and
F1 scores.

Table 3 shows results using the initial pattern set
and the different configurations of generalized / fil-
tered pattern sets. We evaluate the impact of shallow
and grammar-based methods separately. Recall that
Sshallow encompasses stemming (GST), substitution
of interaction words (GIW), suffix/prefix removal at
entity names (GPN), and interaction (CIW) and nega-
tion word filtering (CNW), while Sgrammar-based en-
compasses unification of dependency types (GUD),
collapsing dependency links (GCD), the dependency
combination constraint (CDC) and the syntax fil-
ter (CSF). In addition, results after application of
all generalizers Sgeneralizers, all constraints Sconstraints
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Figure 3: Results for the five corpora using the set-
ting achieving highest overall F1 (Sall).

and the combination of both Sall are also included.
Corpus-specific results for the best setting in terms
of F1 (Sall) are shown in Figure 3.

Setting P R F1 #

Baseline Sinitial 23.2 34.8 27.8 478 k

Generalizers

GPN 23.4 37.0 28.7 423 k
GIW 26.2 45.3 33.2 453 k
GST 24.1 37.4 29.3 471 k

GUD 24.0 38.3 29.5 467 k
GCD 26.3 48.9 34.2 418 k

Constraints

CNW 23.4 34.8 28.0 455 k
CIW 42.5 17.2 24.5 322 k

CDC 39.5 15.9 22.7 318 k
CSF 28.2 32.6 30.3 419 k

Combinations

Sgeneralizers 28.2 69.0 39.9 290 k
Sconstraints 68.3 12.7 21.4 224 k

Sshallow 40.9 31.4 35.5 253 k
Sgrammar-based 33.2 42.1 37.2 264 k

Sall 38.2 54.8 45.0 152 k

Table 3: Performance of pattern sets on the ensem-
ble of all five corpora. # denotes the pattern set size.

4 Discussion

We presented a pattern-based approach to extract
protein-protein interactions from text. Our main
contribution in this paper was a systematic study on
the usage of dependency types within this approach.
We showed that using such knowledge, F1 on aver-
age improves by 9.4 percentage points (pp) (27.8 %
to 37.2 %) as measured on the five benchmark PPI
corpora.

Apart from this result, we note that our method



also has a number advantageous features: First, pat-
terns are learned from co-mentions of pairs of pro-
teins known to interact, and hence no annotated cor-
pus is necessary. This does not only make an ap-
plication of the method for new tasks easier and
cheaper, but also prevents over-fitting to a training
corpus. Note, that as shown recently by (Airola et
al., 2008; Tikk et al., 2010), essentially all state-of-
the-art machine learning methods show large per-
formance differences depending on whether or not
the evaluation and training examples are drawn from
the same corpus. In particular, cross-validation re-
sults of those are consistently more optimistic than
the more realistic cross-learning results. In contrast,
a pattern-based approach like ours is not prone to
over-fitting. Furthermore, debugging our method is
rather simple. Unlike when using a black-box ma-
chine learning method, whenever a false positive
match is found, one can pinpoint the specific pattern
producing it and take action.

The work most closely related to ours is
RelEx (Fundel et al., 2007). RelEx uses a small
set of fixed rules to extract directed PPIs from de-
pendency trees. Some of these rules also take ad-
vantage of dependency types, for instance, to prop-
erly treat enumerations. A reimplementation of
RelEx (Pyysalo et al., 2008) was recently evalu-
ated on the same corpora we used (see Table 7) and
was found to be on par with other systems, though
some of its measures were considerably worse than
those reported in the original publication. Com-
pared to our approach, RelEx is similar in that it
performs pattern matching on DTs using informa-
tion encoded in dependency types, however, there
are some notable differences: First, RelEx rules
were defined manually and are highly specific to
protein-protein interactions. It is not clear how these
could be adapted to other applications; in contrast,
we described a general method that performs pat-
tern learning from automatically generated exam-
ples. Second, it is not clear how RelEx results
could be further improved except by trial-and-error
with more rules. In contrast, our pattern learning
method offers a natural way of improvement by sim-
ply increasing the number of examples and hence the
number of patterns. We compared the results of our
approach using an increasingly larger pattern set and
observed a continuous increase in F1, due to a con-

tinuous improvement in recall. Consequently, using
more PPI databases would likely produce better re-
sults. Third, our generalization methods can be seen
as graph rewriting rules. The result of applying them
to a DT is, again, a DT; thus, they can easily be used
as pre-processing coupled with other PPI extraction
methods (a direction we are currently exploring). In
contrast, RelEx matches patterns against DTs, but
cannot be used to transform DTs.

In the following, we discuss the impact of the re-
finement methods individually and provide a brief
error analysis based on a random sample of false
negative pairs and a random sample of low preci-
sion patterns. We also compare our best results with
those of several state-of-the-art methods.

4.1 Generalizers and constraints

As can be seen in Table 3, all of the generalizers in-
creased recall and even provide minor improvement
in precision. For the combination of all five general-
izers (Sgeneralizers), an overall increase of 34.2 pp in
recall and 5 pp in precision was observed. From the
shallow generalizers, merging interaction phrases
(GIW) was proven to be the most effective, account-
ing for an increase of 10.5 pp in recall and 3 pp in
precision. As shown in Table 4, the general variant,
which merges all interaction phrases to a common
word, is slightly superior to the variant in which in-
teraction words are merged class-wise.

GIW variant P R F1

Specific 26.1 44.7 33.0
General 26.2 45.4 33.2

Table 4: Results for collapsing interaction word
variants (GIW).

For the grammar-based generalizer unifying de-
pendency types (GUD), each of the different variants
was evaluated separately (see Table 5). The com-
bination of the all different variants leads to an in-
crease of 3.5 pp in recall. As shown in Table 6, col-
lapsing the dependency types nn and appos (GCD)
also provides the highest improvement when applied
in combination.

In contrast to generalizers that alter patterns, con-
straints remove patterns from the pattern set. As
shown in Table 3, application of all constraints



GUD variant P R F1

subj 23.4 35.1 28.1
obj 23.3 34.9 27.9
prep 24.0 37.0 29.1
nn 23.1 35.6 28.1
sopn 24.0 38.3 29.5

Table 5: Dependency type aggregations used in gen-
eralizer GUD. sopn combines the dependency ag-
gregations for subj, obj, prep, and nn.

GCD variant P R F1

appos 23.6 38.1 29.2
nn 25.8 45.3 32.9
appos+nn 26.3 48.9 34.2

Table 6: Impact of collapsing the dependency types
appos and nn using generalizer GCD.

(Sconstraints) leads to an increase in precision of
45.1 pp at the cost of 22.1 pp reduced recall.

The shallow constraint that disallows patterns
with negation words (CNW) has comparably little
impact and removes only 5 % of the patterns. In con-
trast, the interaction word constraint (CIW) is less
conservative and removes more than 32.6 % of the
patterns, trading off an increase of 19.3 pp in preci-
sion to a decrease of 17.6 pp in recall.

Among the grammar-based constraints, the de-
pendency combination constraint CDC is superseded
by the syntax filter constraint (CSF) that removes
12 % of the patterns and increases precision about
5 pp while recall drops by only 2.2 pp. Note that CSF
is the only constraint substantially increasing F1.

As seen in Table 3, combinations of generalizers
and constraints yield almost fully additive improve-
ments. The combination of all shallow refinements
only (Sshallow) leads to an increase of 7.7 pp in F1,
whereas with the addition of our grammar-based re-
finements (Sall) a total increase of 17.2 pp in F1 is
achieved. We justify that the inclusion of depen-
dency type information adds a source of knowledge
that further improves on conventional methods such
as stemming or negation filtering.

4.2 Comparison with other methods
We compare the results of our best setting (Sall) with
the results of the recently published analysis of nine

state-of-the-art machine learning methods for PPI
extraction (Tikk et al., 2010). For these methods, a
cross-learning evaluation by training each kernel on
the ensemble of four corpora and evaluating it on the
fifth has been performed. Detailed results are given
in Table 7. In terms of F1 we achieve on BioInfer,
the corpus with most protein pairs, the second-best
result. On IEPA and LLL we achieve mid-range re-
sults and on AIMed and HPRD50 we yield results
below average. Overfitting remains a severe prob-
lem in ML based methods as these results are infe-
rior to those measured in cross-validation (Tikk et
al., 2010), though there are suggestions to overcome
this issue even in a ML setting (Miwa et al., 2009).

4.3 Error analysis

We randomly picked 30 gold standard sentences (all
corpora) containing false negatives pairs and investi-
gated all 72 false negative pairs included therein. For
29 positive pairs, possibly matching pattern were re-
moved by CDC, as the corresponding dependency
combination was not covered in our rule set. Fur-
ther 16 graphs passed the filtering, but our set of
sentences contained no adequate pattern. The third
largest fraction of errors (13 cases) are pairs which,
by our understanding, hardly describe an interaction.
In 11 cases, the dependency parse trees are incorrect
and therefore they do not provide the correct syntac-
tic information. For 7 pairs, the shortest path covers
insufficient syntactic information to decide whether
two proteins interact. For instance Figure 4 pro-
vides not enough information on the shortest path,
whereas the second shortest path would provide suf-
ficient information. Finally, three pairs were filtered
by the CIW filter, as their interaction words were
missing from our list.

We conclude that some constraints (especially
CDC and CIW) are too aggressive. Relaxation of
these syntactic rules should lead to higher recall.

We also analyzed the 30 patterns producing the
most false positives matches. 20 of them contained
an interaction verb, the remaining 10 an interaction
noun. The 10 noun patterns produced more than
twice as many false positives as the 20 verb patterns
while matching about 50 % less true positives. The
single noun pattern producing the most false posi-
tives (356) can be seen on Figure 5a. Among the 10,
four additional patterns can be seen as an extension



Method AIMed BioInfer HPRD50 IEPA LLL

P R F1 P R F1 P R F1 P R F1 P R F1

Shallow linguistic (Giuliano et al., 2006) 28.3 86.6 42.6 62.8 36.5 46.2 56.9 68.7 62.2 71.0 52.5 60.4 79.0 57.3 66.4
Spectrum tree (Kuboyama et al., 2007) 20.3 48.4 28.6 38.9 48.0 43.0 44.7 77.3 56.6 41.6 9.6 15.5 48.2 83.5 61.2
k-band shortest path (Tikk et al., 2010) 28.6 68.0 40.3 62.2 38.5 47.6 61.7 74.2 67.4 72.8 68.7 70.7 83.7 75.0 79.1
Cosine distance (Erkan et al., 2007) 27.5 59.1 37.6 42.1 32.2 36.5 63.0 56.4 59.6 46.3 31.6 37.6 80.3 37.2 50.8
Edit distance (Erkan et al., 2007) 26.8 59.7 37.0 53.0 22.7 31.7 58.1 55.2 56.6 58.1 45.1 50.8 68.1 48.2 56.4
All-paths graph (Airola et al., 2008) 30.5 77.5 43.8 58.1 29.4 39.1 64.2 76.1 69.7 78.5 48.1 59.6 86.4 62.2 72.3

RelEx reimpl. (Pyysalo et al., 2008) 40.0 50.0 44.0 39.0 45.0 41.0 76.0 64.0 69.0 74.0 61.0 67.0 82.0 72.0 77.0

Our method (Sall) 25.8 62.9 36.6 43.4 50.3 46.6 48.3 51.5 49.9 67.5 58.2 62.5 70.3 70.7 70.5

Table 7: Cross-learning results. Classifiers are trained on the ensemble of four corpora and tested on the
fifth one (except for the rule-based RelEx). Best results are typeset in bold.

of this pattern leading to a total amount of 732 false
positives while only 172 true positives. This phe-
nomenon is caused by the way in which generaliz-
ers and constraints are currently applied. The unifi-
cation of different prep * dependency types to the
general prep (GUD) makes some dependency type
combinations indistinguishable, e.g. (prep to,
prep to) and (prep to, prep of). The depen-
dency type combination constraint (CDC) would dis-
allow a pattern containing the first combination, but
as it is not applied in the matching phase, its benefits
cannot be realized. A lesson learned from this exam-
ple is that constraints should also be applied in the
matching step as follows. After a successful match,
the constraints should be applied to the original un-
generalized counterparts of the matching subgraphs.
Similar conclusions can be drawn from examining
the verb pattern producing the most false positives
shown in Figure 5b.

5 Conclusion

We presented a pattern-based approach to extract
PPIs from literature. Its unique features are the ca-
pability of learning patterns from ”cheap” training
data, i.e., co-mentions of proteins known to inter-
act, and the use of linguistically motivated refine-
ments on the dependency structures of the DT it op-
erates on. We utilized the fact that not all depen-
dency types are of equal importance for relation ex-
traction; for instance, collapsing dependency links
(GCD) or unifying dependencies (GUD) considerably
improved extraction performance. However, as our
error analysis shows, especially our filtering meth-
ods deserve further study. Even without manually
annotated training data, our approach performs on

ENTITY_A ENTITY_A
conj_and

interac t

nsubj nsubj

Figure 4: Example dependency parse where the in-
formation extracted by the shortest path (highlighted
in bold red) is insufficient.

ENTITY_A

inoun

prep

ENTITY_A

prep

(a) Noun pattern

ENTITY_A

iverb

subj

ENTITY_A

prep

(b) Verb pattern

Figure 5: Patterns producing the most false posi-
tives. Depicted dependency types are generalized
according to GUD and GIW.

par with state-of-the-art machine learning methods
when evaluated in a cross-learning setting. In par-
ticular, it reaches the second best performance (in
terms of F-measure) of all approaches on the largest
PPI corpus.

Apart from presenting a volatile and elegant new
method for relationship extraction, we believe that
our study on using dependency type information
also will be helpful for advancing the performance
of other methods. For instance, we are currently
experimenting with using our DT-rewrite rules as a
preprocessor for a kernel-based extraction method.
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