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Exon arrays enable the monitoring of expression on a more fine-grained
level than conventional 3" arrays. By targeting single exons alternative splic-
ing events can be detected. However, the increased amount of data resulting
from the denser coverage of the transcribed regions gives rise to new chal-
lenges in data analysis compared to 3' arrays. One must carefully decide
which probes are considered for the final analysis to avoid measurements
that are not reflecting biological reality. The most outstanding difference
between gene level and exon level analysis emerges in the detection of dif-
ferential expression. To decide whether an exon is differentially expressed
between two conditions it must be set in relation to its corresponding gene.
Therefore, completely new algorithms need to be applied. This work gives an
overview on the analysis of Affymetrix exon arrays. Technical Design, Pre-
processing and the detection of alternative splicing are dicussed and finally,
a complete workflow is proposed.
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1 Introduction

High-throughput analysis methods are nowaday established tools for biological research .
Especially gene expression microarrays have now been used for over a decade to measure
the gene-wise amount of RNA transcribed in a cell [34]. The standard type of chip in such
analysis are the so called 3" microarrays which try to measure the expression of genes.
In contrast, the recently introduced Exon Arrays are measuring the expression of single
exons. This higher resolution is only possible due to advances in spotting technology
allowing for an increased number of probes per array.

Exon arrays offer a double advantage to researchers. First, when used to measure
gene expression, they are more accurate than 3’ arrays due to a higher coverage and
more evenly distributed probes [4, 23]. Many changes in gene expression reported by 3’
arrays are actually caused by the presence of different isoforms of the gene [10]. Another
imprecision in the gene expression measurement with 3’ arrays is rooted in the fact that
some genes lack poly-A tails. For instance, some histones have never been detected in
3" based gene expression due to the fact that primers were isolating the mRNA target by
their poly-A tails which their primary transcripts do not have [7].

The second advantage of exon arrays is that exon expression can be measured for the
first time on only one chip. As over 90% of the human genes are alternatively spliced
[42], the importance of isoform detection is obvious. Exon arrays allow for the discovery
of alternative promoter usage, alternative splicing and alternative transcript termination
[10]. The relevance to health related studies is given by the fact that about 30% of all
alternatively spliced transcripts are disease related [43]. It is already known that isoforms
of the same gene may be specific to certain diseases or even disease stages. Even isoforms
with antagonistic function, such as the pro- and contraapoptotic isoform of BCL-X, have
been described [40].

The advantages of exon arrays come at the cost of more complex analysis. Due to
the higher number of probes, the different amount of background probes and different
subsets of probes reflecting different reliability. The most significant difference between
the analysis of gene expression and exon expression is the fact that the later always has
to be normalized to the expression of the corresponding gene. Otherwise differences
between gene expression instead of differential exon expression might be measured.

In this report we give an overview on the current state-of-the-art in preprocessing
and analysis of exon array. Chapter two compares the design of the Affymetrix Exon
Array to the Affymetrix HGU 133 Plus 2 chip, the probably most widely used 3" arrays.
Chapter three is concerned with preprocessing methods, especially for quality control,
normalization, and filtering. Section four summarizes common methods used to detect
differential gene expression as they can also be applied to exon arrays. Methods for
detecting alternative splicing are discussed in Chapter five. We discuss the issue of
multiple testing correction in Chapter six. In the last chapter, we summarize this report
by proposing a concrete analysis workflow derived from published experiences.

2 GeneChip Human Exon 1.0 ST Array

This chapter characterises the Affymetrix Exon Array technology. As many aspects are
similar to 3" microarrays, we concentrate on differences in comparison to the widely used
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Figure 1: Probe coverage and distribution in Exon vs. 3" Arrays

HG U133 plus 2 array from Affymetrix. Major dissimilarities in the target extraction
protocols, the array design and the probes on the chip are reviewed. Furthermore, the
design of exon arrays raised new questions about the usage of background probes and
control of the false positive rate, which also will be discussed.

2.1 Design Exon vs. 3’ Arrays

The GeneChip Human Exon 1.0 ST Array from Affymetrix differs in several aspects from
conventional arrays, like the Affymetrix HG U133 plus 2. One outstanding difference is
the method used to generate the targets for amplification. In contrast to most 3’ arrays,
which use primers targeting the poly-A tail of mRNAs, the GeneChip Whole Transcript
(WT) Sense Target Labelling Assay [6] applied for the exon array uses randomly attaching
primers. Thus bias towards the 3' end of transcripts is avoided.

Another consequence of the different target generation protocols is the usage of mMRNA
as a target on 3’ arrays, while DNA is hybridized to the exon arrays. Hence, the probes
on the exon chip are selected to hybridize to the sense-strand, which is different from the
3" array where probes hybridize to the anti-sense strand.

The random primer technique leads to evenly distributed probes (see Figure 1). Each
exon is covered by on average four probes (see Figure 2) which are later combined to one
signal per exon. The higher coverage of the exon arrays requires a much higher number
of probes. While, for example, the HGU 133 Plus 2 chip contains approximately 1,3
million probes, the exon array contains over 5,5 million probes (see Table 1) [4].



3’ arrays Exon arrays

GeneChip GeneChip

HG U133 Plus 2.0 | Human Exon 1.0 ST Array

Probes per gene ~11-20 ~ 40
Probes per array ~ 1,300,000 ~ 5,500,000
Probe sets per array 54,000 1,400, 000
Background probes per array 650, 000 40,000

Table 1: Comparison of probe number of HGU133Plus2 and exon arrays.

2.2 Probe types

Apart from confirmed exons, the exon array explicitely also contains uncertain and pre-
dicted exons to cover as many exons as possible. All probes on the array are divided into
three categories according to their reliability [4]:

1. The first category are the core probes. These probes are derived from RefSeq [31]
transcripts or full-length mRNAs.

2. The extended loci contain all core probes as well as all cDNA based loci. Among
these are ESTs, mRNAs from Genbank which are not annotated as being full-length,
as well as microRNA annotations [2].

3. The category full loci encompasses all probes from the extended loci plus loci
derived from ab-initio gene predictions.

To avoid cross hybridization, sequences of all probes have been compared to each other.
Sequence similarities to untranslated regions are ignored, i.e. not excluded from the set of
probes, to avoid unnecessary rejection of thermodynamically favorable probes. Affymetrix
classifies all probe sets into three categories according to their cross-hybridization poten-
tial:

e The about 1,25 million unique probe sets contain only probes that have no known
potential for crosshybridization with probes of other probe sets.

e Approximately 70,000 probe sets are categorized as similar. These sets contain
probes that are candidates for cross-hybridization, but all probes of the respective
probe set interrogate the same genomic region, i.e. the same gene.

e Approximately 200,000 mixed probe sets exhibit inconsistent hybridizations, i.e.,
they might hybridize to different locations in the genome.
2.3 Background Probes

To estimate a reliable background signal, Affymetrix 3’ arrays contain as many perfect
match probes as mismatch probes. The mismatch probes differ in one base from the
corresponding perfect match probe and are used to calculate the unspecific binding signal



strength. As the exon arrays need a much larger number of probes to cover all exons,
those arrays do not contain probe-specific background probes, but only a set of about
40.000 probes in total.

To account for the effects of GC-richness on hybridization strengths, background probes
are binned according to their GC-content. 26 bins of different GC contents are defined,
each containing approximately 1000 background probes. For each bin, a separate null
distribution for probes with this GC content is calculated and used to estimate robust con-
fidence values later. Furthermore, these 40k background probes are divided into genomic
and antigenomic background probes, and either can be used to estimate a background
signal. Binning differs according to wether a probe is of 'genomic’ or 'antigenomic’ origin:

e Genomic background probes match to regions that are not likely to be transcribed.
To produce reasonable background probes mismatches have been introduced. Each
bin of GC content from 0 to 0.25 is covered by about 1000 mismatch probes [4].

e Antigenomic background probes originate from sequences that are not found in
the human, mouse or rat genome [4]. They are therefore not expected to cross
hybridize with transcribed human DNA. The 26 bins range from a total absence of
G and C nucleotides to a GC content of 100%.

2.4 Problems and Challenges

The much higher and much more fine-grained coverage of the genome achived with exon
arrays does not only offer advantages, but also leads to a number of issues that need to
be clarified during experiment design and data anaysis.

First, it must be decided which probes should be used for analysis: Only the more
reliable (core) probes or also the more experimental full set of probes. This decision
must be taken depending on the aim of the study. If the researcher is interested in
reliable and well annotated data only, only core probes should be used for analysis. It has
been shown that the signal produced by the extended and full probes does not correlate
well with the core probe signals [44]. If, on the other hand, the study has more of an
exploratory or experimental character, it might be valuable to also use the extended and
full probes. In this scenario analysis results have to be interpreted with greater care.

Second, it must be decided how to compute background signals. As exon arrays do
not have a mismatch probe for every perfect match an alternative background calculation
model must be used (see above).

Third, as exon arrays contain a much higher number of features than conventional
microarrays, data analysis implies a much higher number of statistical tests that are
evaluated in parallel. This in turn may lead to a higher number of false positives. To
avoid this phenomenon different strategies like filtering or intersecting results of different
methods are used (see Chapter 4).

3 Preprocessing of Exon Arrays

As for all high-throughput techniques, preprocessing of the raw measurements of exon
arrays is essential to reduce the effects of non-biological variations across experiments
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Figure 2: Histogram of the number of probe sets per exon [28].

[21]. Such preprocessing usually consists of a number of steps. First, the quality of
the data is determined and potential outlier samples are removed. Second, values are
normalized to increase comparability of values across samples. Third, all probe values
within a probe set are summarized into a single value representing the expression of an
exon. Finally, probes sets that are not likely to be differentially expressed are removed
in a filtering step. Overall, precprocessing comes a long with a significant redution in
data dimensionality which also reduces the probability of generating false positives during
successive analysis.

3.1 Quality Control

Evaluation of the quality of the data being analyzed is crucial to the reliability of the
findings concluded from the analysis [13]. Samples of low quality should be excluded
from further analysis. As different methods for quality control focus on different aspects
of the data, the application of several of them is recommended.

e Hierarchical Clustering groups similar elements together. It can also be used for
quality control. Samples that are far away from the majority of the other samples
show a bias potentially introduced for technical rather than biological reasons. If
such bias is not removed by normalization these samples should be excluded from
further analysis.

e Array-Array Intensity Correlation displays the correlation of all pairwise samples
encoded as colors, scatterplots or numerical values. This method immediately
reveals outliers, i.e. samples whose probe signals do not correlate at a certain
threshold.



e Boxplots help to compare the intensity value distributions of the arrays by plotting
various measures from descriptive statistics, like the median or different quartiles.
Boxplots of samples that differ significantly in the median value or the hight of the
box indicate non-comparable intensity value distributions.

e Intensity distributions of different arrays can depict major variations in the ex-
pression values. If the density curves differ much after normalization, the values of
probes from different samples are not comparable.

e Principal Component Analysis (PCA) transforms the data from a high-dimensional
space into a two or three dimensional one preserving as much of the variance as pos-
sible. This dimensionality reduction allows the visual inspection of high-dimensional
data without losing too much of the variation in the original values. As in hier-
archical clustering, samples that are far away from most of the other sample are
considered outliers. In comparison to hierarchical clustering PCA preserves more
information, but is also computationally more demanding.

¢ Relative Log Expression (RLE) is a model-based technique to identify samples
with an unusual high amount of differential expression. As differential expression is
thought to be a rare event, such samples usually are excluded from further analysis.
RLE values are derived from a probe-level model. This is achieved by calculating
the log ratio of every probe set on every array and the median expression of the
same probe set from all other arrays. A boxplot visualizes the computed values for
each array, which should be centered around zero. As for other boxplots deviating
box height indicates potential outliers.

e The Normalized Unscaled Standard Error (NUSE) plot is calculated by using
standard error estimates derived from a PLM fit. Normalization of theses values
efectuates that the probe set medians of the error estimates equal one on every
array. If these values are visualized in a boxplot per array, deviations in centering
or unequalities in box height hint to outlier samples.

e RNA degradation plot: Natural RNA degradation starts from the 5’ end of the
RNA. By ordering the probes of each array according to their distance to the 5'
end and plotting their average intensity values for every array, the degree of RNA
degradation is visualized. Probes should display a lower average intensity the closer
they are located near the 5’ end of the RNA. The slope of the plot is proportional
to the degradation effect and should be roughly the same for all samples. Outlier
arrays can be detected by having a different slope than other arrays in the set.

3.2 Summarization and Normalization

In order to produce comparable values as a basis for further analysis normalization and
summarization steps are performed. Normalization aims at removing technical bias, while
summarization stabilizes the values through averageing.

The two most common methods for Affymetrix 3" GeneChips are RMA and PLIER. As
they do not (necessarily) make use of mismatch probes, they also can be applied directly



to exon arrays. Furthermore, we describe other methods that have been developed
specifically for exon arrays.

3.2.1 RMA

Robust Multiarray Average (RMA) [21] is one of the widest used normalization methods
when working with Affymetrix GeneChip data. RMA is popular with gene chips as well
as with exon arrays. As opposed to other methods like MAS5.0 [20, 8] it only uses
the Perfect Match (PM) probes on the chip. Basicallyy, RMA consists of four steps:
background correction, taking the logarithm, quantile normalization and summarization.

First, the values measured for every PM probe on every chip are background corrected
in a way that no value is negative. The background corrected values are log?2 transformed
and normalized by quantile normalization. Quantile normalization ranks the values on
every chip by their intensity. For every rank the average over all chips is computed. The
actual values of this rank on every chip are then replaced by this average. To summarize
the values of one probe set a linear model accounting for the probe affinity effect, the log
scale expression level for the array and an error term are fitted. Median polish ensures
robust parameter estimation.

3.2.2 PLIER

Probe Logarithmic Intensity Error (PLIER) [5] is another model-based signal estimator.
Two main points differentiate PLIER from other methods: the accession of probe quality
by measuring the feature response, and an error model accounting for different major
components of intensity in the low and high intensity range.

The so-called feature response is a scaling factor accounting for systematic differences
between features of a probe set. Once such a feature response factor is determined, non
systematic differences in feature response can be identified. According to the quality of
their response, features are up- or downweighted in their contribution to the final probe
set signal. If, for example, a feature shows always twice the response intensity as the
common features in the probe set while a second feature shows twice the intensity in the
high but the same intensity in the low intensity range, after scaling the former should
contribute more to the probe set signal than the latter. Scaling factors are computed by
using all arrays in the set.

The second improvement in signal summarization is a different error model. In general,
it is assumed that the error is proportional to the biggest component contributing to the
observed signal. However, this component can be different in the low intensity range
compared to the high intensity range, which should be accounted for in the error model.
In high intensity ranges, the error is proportional to the background corrected intensities
as the main signal is assumed to represent the actual target response. But in the low
intensity ranges, background is the main source of signal, and accordingly the error should
not be estimated on background corrected signals. The PLIER error model accounts for
this different error dependencies by transitioning between the two [5, 39].

PLIER is only a summarization method. Usually quantile normalization is applied
before summarization. Furthermore PLIER does not include variance stabilization and
produces values close to zero. For all values the addition of 16 is recommended before



[5] taking the logarithm of the summarized values.

3.2.3 iterPlier

This variant of PLIER differs from the original method by iteratively discarding probes
considered less representative for the main signal [3]. To achieve this, first PLIER is
applied to all probes of a probe set. Only the 22 probes best correlating with the
calculated PLIER signal are used to rerun PLIER. Next, the 11 probes correlating best
with the newly computed PLIER signal are used to compute the final signal by applying
the procedure a last time. If the probe set has only 11 or less probes, PLIER is run only
once. This corresponds to the original PLIER signal.

3.2.4 GC Dependent Based Bias

A simple method used to remove the bias induced by the GC content of the probes is
described by Numata et al. [24]. The basic idea is to categorize probes based on their
GC content and remove the bias of each probe according to the category assigned (recall
that this observation is also the basis for the selection of background probes in the exon
arrays, see Section 2.3). First, every probe is assigned to a GC category. For every GC
category the median value is computed. This median value is now subtracted from every
probe that contributed to its computation. A variant of this approach is to compute the
median for each GC category based on the antigenomic background probes also divided
in GC categories instead of using the actual probes (again, see Section 2.3).

3.2.5 Model based Analysis of Tiling arrays (MAT)

Recently, a number of probe selection algorithms have been developed which try to
identify and remove poorly performing probes [44]. This is especially important and
promising for exon arrays, given the extremely high number of probes on these arrays. In
MAT, probes are used as an estimate for gene expression which should highly correlate
between the samples [22]. To remove 'absent’ probes, the intensity of each probe is
compared to the one predicted by a MAT background model. Only probes significantly
different from background are kept.

3.2.6 Probe Selection by Correlation

Another method, called probe selection by correlation, for selecting representative and
trustworthy probes is described in [44]. This algorithm selects a subset of highly correlated
probes for each gene by applying hierarchical clustering to the probes in the probe set
over all samples. Only those probes are used for the signal calculation that are highly
similar in their expression across samples.

3.3 Other Probe Filtering methods

The previous two approaches try to identify probes that behave differently from the other
probes in the same probe set. However, probe selection can also be performed based on
different criteria.
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Figure 3: Intensity distribution after multiple filtering steps [37].

One technique is directly based on the sequence of probes. It consists of filtering all
probes that can potentially cross hybridize, i.e. those that have multiple matches in the
genome or contain one or more mismatching base [37], [17]. Recall that probes on the
exon array are preclassified according to this criterium (see Section 3.2).

Another selection strategy is to find probes whose intensity is not considered above
background. [37] suggestes to remove all probes ranging in the lowest intensity quartile of
all samples, as they can be considered as not distinguishable from background. Following
a similar idea, but using a more elaborate algorithm, the Detection Above Background
(DABG) method assigns a p-value to every probe indicating if the probe is likely to have
a expression level above background. The null distribution is calculated from a randomly
chosen set of probes with the same GC content. [17] suggests to keep only probes with
a p-value of less than 0.05.

Probes that display a great sample-to-sample variation may also be excluded from the
analysis as they will potentially not produce a coherent signal among the classes [37].
The hope is that the observed signal distribution of an exon array converges more and
more to the expected (real) signal distribution with every filtering step (see Figure 3).

3.4 Comparison of Different Preprocessing Procedures

The evaluation and comparison of normalization and summarization methods on real
data is non-trivial, as there nothing is known about the "true" values that should be
reproduced by those methods. Accordingly, only few works exist that compare different
methods on the same data set. Johnson et al. compared MAT to the GC-binning method
for background correction proposed by Affymetrix and report superior performance for
MAT [22]. [17] and [29] applied RMA and PLIER, but report only marginal differences.

A way to get around the missing gold standard is to compare normalization and summa-
rization by their effect on the detection of differential expression. [25] conducted such a
comparison, eventhough with a different purpose. The authors applied different methods

10



for detection of differential expression to datasets that were normalized with either RMA
or PLIER. By using a gold standard set of differentially expressed genes, ROC curves
were constructed for combinations of normalization and differential detection methods.
The study showed that combinations using RMA in most of the cases performed better
than the ones with PLIER.

A recent study [33] comparing the performance of RMA and PLIER on exon array
data lead to a favoritism of RMA. PLIER seems to misestimate the gene-level signal
and therefor in- and excludes exons not in consistency with the TISA (Tissue specific
alternative splicing) database [27].

4 Differential Expression

After preprocessing and quality filtering, the most important question studied with exon
arrays is which genes or exons are expressed differentially between two conditions. Given
the high resolution of exon arrays, it is especially interesting to find isoforms that are
expressed differently in the different conditions. It is important to precisely differentiate
between these tasks:

e At the gene level, any method for detecing differential expression developed for 3'
gene arrays can be applied. We will shortly review such techniques in Chapter 4.1.
The only additional step necessary is the aggregation of exon intensities to gene
intensities (see Chapter 4.1).

e On the exon level, the situation is more intricate and poses a challenge that does
not exist for 3' gene arrays. Here, the aim is to detect exons that are included in a
gene, i.e. a transcript of the gene in one condition whereas the exon is not included
in the transcript present in the other condition. Imagine, differential exon expression
would be computed analogously to differential gene expression, i.e. simply applying
a t-test to the expression values of an exon in different conditions. If the gene
containing the exon would be differentially expressed between the two conditions
all exons of this gene would be deemed differentially expressed which is not what
we are looking for. Consider the example given in Figure 4. Here, obviously exon2
is not contained in the transkript of tissue A and therefor differentially expressed
between tissue A and tissue B. Nevertheless, this exon would be the only one not
determined differentially expressed by the naive approach just sketched.

The essential step in exon level analysis is therefore to normalize the exon level
signal to the corresponding gene level signal to determine true differential exon
expression.

Identifying different isoforms of a gene in different conditions requires that exon specific
expression values are analyzed relative to the expression of the according gene (which
must be determined first). This question usually is studied under the term differential
exon expression; this means, that differential exon expression is defined as a different
amount of expression of an exon in one or more conditions where the expression value
has been set in relation to the expression value of the respective gene.

11
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Figure 4: Different isoforms in two conditions. The expression intensity of a gene can
be different between the conditions of interest. To this end, the expression
intensities of each exon must be seen in relation to the expression levels of its
corresponding gene. If exons are only analzyed in isolation, all but the second
exon would be deemed differentially expressed. However, the more interesting
fact is that only the second exon in tissue A is spliced out in comparison to

tissue B.
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A very simple approach to detect differential exon expression chooses only genes that
do not show a significant change on the gene expression level while indicating significant
changes on the exon expression level [10]. A drawback of this method is that it misses
cases as depicted in Figure 4 where genes are expressed at different levels and display
alternative splicing.

4.1 Gene level Analysis

To perform gene level analysis on exon array data a signal intensity for every gene/transcript
has to be computed. A common approach is to aggregate the gene signal over all exon
signals associated to it. Different aggregation functions, like mean or median, can be
applied.

Once the gene level expression signal is determined, the analysis for differential gene
expression on exon arrays is reduced to the analysis of differential gene expression of
3" arrays measuring the amount of mRNA per gene. The t-test is probably one of the
most frequently used statistical tests for the determination of differences between two
conditions. For more than two classes, ANOVA can be applied [36]. Further, non-
parametric tests like Significance analysis of microarrays (SAM) [41] and Rank Produkt
[14] are also used frequently because they do not make certain assumptions suchas a
normal distribution or equality of variance. For more details, see [38, 36].

4.2 Exon level Analysis

Many different approaches have been developed for the analysis of differential exon ex-
pression. We present a selection of them in the following. Some methods like the Splicing
Index, FIRMA, PAC and the correlation based approach compute scores indicating the
probability of alternative splicing while MIDAS, ANOSVA and MADS use statistical tests.
ARH implements an information theoretical approach. All these methods are described
in the following subsections. As the number of false positives is a common problem in
this field and the methods in use have different strengths and weaknesses, many papers
suggested intersecting or combining different methods. Della Beffa et al. [17] suggest
intersecting the results from MIDAS and Rank Product, while Shah et al. [37] propose
to use a statistical test and a correlation measure.

4.2.1 Splicing Index (SI)

The splicing index [1] can be regarded as the exon level analog of the fold change. It is
a measure for the difference of exon specific expression between samples. Let e be an
exon part of a gene g in an experiment with m samples.

As a first step, the expression level of each exon e in sample k is normalized to its
corresponding gene expression g.

. expr(ex)
%= () =

Based on these normalized measures, the Splicing Index S1(e) measures the relative
change between two conditions:

13



SI(e) = k= (2)
ekl
In the case of sets of samples multiple procedures are applicable. On the one hand
the ratio of the medians of each set can be calculated. One can also compute the ST
for all paired samples from two groups and take the median as an indicator of alternative
splicing. The ST can only be applied in a two-condition scenario.

4.2.2 Pattern Based Correlation (PAC)

The basic idea of PAC [1] is that the expression level of an exon is proportional to the
expression level of the gene it belongs to over all samples as long as no alternative splicing
event is taking place. PAC therefore first computes an expected expression level per exon.
Again, let exon e be part of gene g. Let (3 be the average of all exon expression / gene
expression ratios over all samples and all exons of g. Then, the expected expression level
e’ of e in sample k is computed as:

e, = B - expr(gr) (3)

Next, the correlation between the expression estimates and the actually measured
expressions of all exons of a gene are computed. A low correlation indicates alternative
splicing.

A drawback of this method is that it is not applicable to the comparison of two groups
of samples, as the exon expression levels of the two classes may either correlate positively
in direction (+1) or negatively (-1).

4.2.3 Microarray Detection of Alternative Splicing (MIDAS)

The idea of MIDAS [1] is similar to the idea of SI, but follows a more sophisticated
approach. Like in other approaches, it assumes that if the ratio of an the expression level
of an exon to the expression level of the corresponding gene is constant over all samples,
then no differential exon expression has taken place. This assumption is formulated as
null hypothesis. Next, for each exon the exon / gene expression ratios for all samples

are computed and their variance is tested for statistical significance using, for instance,
ANOVA.

4.2.4 MIDAS and Rank Product intersect

One of the main problems with statistical tests in application to exon array data (as
used by MIDAS) is the high number of false positives. To reduce the false positive rate
usually multiple testing correction procedures are applied (see also Section 5. Della Beffa
et al. [17] argue that Bonferroni correction for multiple testing is too strict while FDR
controlling methods like Benjamini-Hochberg can not be applied because of the non-
uniformity of the raw p-value distributing produced by MIDAS. Also the independence
of the tests, a common requirement for multiple testing correction methods, is not given
when testing multiple exons of one gene.

14



Instead of using multiple testing correction, Della Beffa et al. propose to decrease
the number of false positives by applying two methods, Rank Product [14] and MIDAS
[1], and intersect their results. Rank Product is a simple, biologically motivated non-
parametrical test. In this approach the genes in a sample are sorted decreasingly by
expression values. The 'score for a gene is calculated by determining the geometric mean
of its ranks, while significance is assessed by a permutation of the gene names.

4.2.5 Microarray analysis of differential splicing (MADS)

The MADS method [45] consists of three steps: background correction, summarization
and detection of differential splicing events. For background correction, a sequence-
specific linear model with 80 parameters is fit to predict the background intensity for
each probe. The predicted background intensity is then subtracted from the observed
signal. Genomic as well as antigenomic background probes are used to train the model.
The specialty of this background model is a nucleotide and position specific model for
the 25mer probes.

In the second step the probes with the highest correlation over all samples are selected
for each gene by application of hierarchical clustering. The Li-Wong [26] model is fitted
to these probes to compute an estimate of gene expression. Only probes are kept that
show high correlation between the background corrected values and the corresponding
gene signal estimates over all samples. Similar to iterPLIER, this procedure is repeated
until the number of probes stabilizes.

To determine differential splicing, first the Splicing Index is calculated for every probe.
A t-test is applied to determine the significance of the calculated Splicing Indices. The
probe level p-values are transformed by x = —2log(p) and are added up to a probe set
p-value. The probe set p-values are then used to rank the probe sets, i.e. exons. The
final results are filtered for potentially cross hybridizing probes.

4.2.6 Correlation and SI/LIMMA

In this approach the authors combine two methods for optimal detection of differentially
expressed exons. On the one hand they compute the Sl followed by an application of the
moderated t-test implemented in the R/Bioconductor [18] package LIMMA (reffered to
as LIMMA by the authors). On the other hand, they simply compute the correlation of
the expression values of for exons of a gene/transcript in different conditions.

As shown by Shah and Pallas [37] the application of ST/LIM M A yields good results
if only one or few exons were alternatively spliced in a gene, but it produced a very low
rank in alternative splicing to genes where many exons were alternatively spliced. Besides,
this approach produces a high number of false positives. Hence extensive pre-filtering of
the data (up to 25 %) is required.

The two following observations lead to using correlations between expression patterns of
the exons of one gene between different samples or groups of samples [37] for the detection
of alternative splicing. The first one is that the expression levels of exons in one gene
vary but are similar in all samples as long as no alternative splicing took place (see Figure
5). The second observation is that approaches based on gene expression level estimates,
like ST/LIMM A, tend to lead to false negatives if many exons are differentially spliced
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in one group but not in the other. The reason for this misclassification becomes clear
from an example. Suppose experiments with two tissue types were performed. If many
exons of one gene are differentially expressed, i.e. their expression level is higher in
the one tissue than in the other, the expression estimate for the corresponding gene
will be misestimated. Therefore the normalized exon expression signal calculated will be
misleading or even false.

On the other hand, the correlation approach favors genes containing many alternative
splicing events. Therefor the two methods are complementary and may be used both for
optimal results.

To determine correlation all genes containing only one or two core probes are removed
as their is no way to compute correlation for one probe and the correlation of two probes
always results in 1 or -1. Genes are deemed likely to undergo differential splicing if they
showed a correlation less than 0.8 and a multiple testing corrected p-value less than 0.05.
The cutoff of 0.8 for correlation was chosen based on the observation, that 94% of the
genes determined not tu untergo differential splicing by ST/LIM M A had a correlation
coefficient greater than 0.8.

4.2.7 Finding Isoforms using Robust Multichip Analysis (FIRMA)

FIRMA [32], another method for detecting differential splicing, has the major advantage
that it also can be used if there are no predefined groups or if alternative splicing events
are not consistent in the given conditions. The basic idea is to use a fitted linear model
for expression estimation and deduce a score for alternative splicing for each exon from
the model parameters. As the name suggests, Robust Multichip Analysis (RMA) is used
to determine these parameters. The fitting of the linear model for expression estimates
leads to the possibility to compute the difference between estimated and measured ex-
pression. This difference is taken as basis for the computation of a score for differential
exon expression. By doing so the problem of alternative splicing detection essentially is
converted to one of outlier detection. FIRMA is implemented in the aroma.affymetrix
package of Bioconductor.

The model fitted by RMA for every gene g contains a chip effect term ¢, for the kth
chip, a probe effect term p; for the ith probe and an error term €;;. An estimate for the
background corrected and normalized expression level of a gene is computed as follows:

loga(expr(gr,i)) = cr + pi + €k (4)

For exon arrays the model can be adjusted by introducing expr(e;), the exon expression
for exon j, the interaction dj; between chip and exon as well as a new error term ey j; ;).

loga((expr(ek ;i) = cr + expr(e;) + dij + pi + €xji (5)

As the parameter dy; represents the difference between an exon in sample %k and the
expected expression for this exon, the parameter can be seen as a measure of differential
splicing. Instead of fitting the exon level model, the gene level model is fitted with the
exon array data to improve robustness. dy; is then estimated by using the residuals ry;;
of the fitted gene level model.

Tkii = Ykji — Ck — Pi (6)
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Figure 5: Correlation of exon expression patterns of one gene between two samples [37].
The expression profiles shown for the same gene in 'muscle, non-muscle’ (upper
Subfigure) and 'thyrois, non-thyroid" (lower Subfigure) show alternative splicing
(AS). The AS events are marked by arrows. Both muscle and thyroid include
the second exon oposed to their non-muscle and non-thyroid counterparts.
The second arrow in the upper Subfigure marks the skipping of this exon in the
muscle related transkript.

The actual value is computed by averaging over all four residuals in an exon.
The final score for alternative splicing is now calculated as Fj;;,
Tkji

Fi; = medianieezon;

()

where s, an estimate of the standard error, is derived from the median absolute de-
viation (MAD) of the residuals. By introducing this parameter the score is made more
comparable between different genes.

4.2.8 Alternative Splicing robust prediction method based on entropy (ARH)

ARH [35] is one of the most recent methods in this field. Unlike other approaches it is
not based on correlation or statistical tests, but applies an information theoretic approach
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based on Shannon's entropy. An advantage of this method is that it overcomes problems
like the dependency of a score on the number of exons or the inherent variability in exon
expression intensities. A drawback of the method is that it can be applied only in the
case of two different conditions.

ARH proceeds in two steps. In the first step, spliced genes are identified, while in the
second step the exons of a gene are ranked by their likelihood of having undergone differ-
ential expression. As usual, let gene g have m exons, let k1 and ko denote condition one
and condition two, respectively, and let expr(e;1) and expr(ex2) denote the expression
signal of exon ¢ in the two conditions.

First, the exon splicing deviation ¢’ between the two conditions is computed by sub-
tracting the median logy ratio of the exon expressions from all median logy ratio exon
expressions of the associated gene.

;L expr(eg,) expr(eg,)
©= (ea:pr(ekQ)) expr(eg,) (8)

The absolute value of the splicing deviation is turned into the probability p(e) of exon
e being differentially spliced.

— mediani=1,.. mloga(

gle’|
e/
> i, m 2

Next, an entropy is computed for each gene, indicating whether the splicing probabili-
ties are equally distributed.

(9)

ple) =

H(p(e1),...,plem)) = — Zp(ei) ~loga(p(es)) (10)
i=1

The theoretical maximum maz(H) of the entropy is loga(m). To make the entropy
independent of the number of exons, it is subtracted from the theoretical maximum.

max(H) — H = loga(m) — H(p(e1),...,p(em)) (11)

Now the final score ARH for gene g can be computed to indicate whether g is alter-
natively spliced.

Qs

25

ARH = -(max(H) — H) (12)
The weighting factor 80 5 accounts for the strength of deviation within g. Here, Q.
denotes the interquartile range of expression range of the zxth quartile.
By the computation of a background distribution for ARH values from various datasets,
values larger than 0.03 are considered to be an indication for alternative splicing by the
authors.

4.2.9 Two way ANOVA (ANOSVA)

The two way analysis of variance (ANOSVA) [15] can be used also for the detection of
alternative splicing [24]. However, according to Affymetrix the method does not perform
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well on exon array data [1]. Let é denote the background corrected probe intensities for
exon e of gene g in probe k. & is modelled as follows:

63# + e + 6]' + Yej + €ejk (13)

The index j denotes the different sample conditions, i.e. 7 = 0 denotes normal while
j = 1 denotes diseased tissue. The parameter «. accounts for the basic expression
intensity of exon e. This is necessary as the same splice variation can occur in both
conditions. Bacause the two conditions can have different average expression values per
gene, the parameter §; is included in the model to account for this. The term capturing
differential splicing is 7¢;j. It denotes interaction effects of the different exons (e) with
the different conditions (j) . The basic signal is modelled by y, the overall mean of the
probe intensities. Finally, €., denotes a general error term with mean zero and standard
deviation o.

By applying statistical tests to different parameters of the model, significant differences
in gene expression (/3;) and exon expression (7.;) can be detected. By testing c., general
splicing variants that are present in all conditions can be found.

4.2.10 Probe Level Expression Change Averaging-Splicing Index (PECA-SI)

The PECA-SI [25] does not summarize the values of a probe set before calculating the
splicing index. This approach determines the Sl for every probe and computes a final
exon-level S| by averaging over the probe-level Sl's.

As shown by the authors this method performs well on synthetic data, but no results
on real data have been published yet. When comparing the method to other common
methods for the detection of differential splicing in combinations with summarization
methods like RMA and PLIER, two interesting findings can be observed. First, PECA-SI
performs best in most of the tested scenarios. Second, the combination of RMA with a
method for detection of differential splicing outperforms in most scenarios combinations
of PLIER with the respective method. The different scenarios were created by simulat-
ing data with different noise levels and different numbers of alternative spliced exons.
Verification is performed by measuring the area under the ROC curve.

4.3 lIsoforms

We presented various methods that detect differnetially expressed isoforms between dif-
ferent conditions. However, determining the actual isoforms present in the conditions is
non-trivial. The problem can be devided into three subtasks. (1) To predict the set of
different transcripts (known and unknown) present in the samples. (2) To predict the
structure of these transcripts. (3) To quantify the relative concentrations of the predicted
isoforms in the different samples.

SPACE is an algorithm solving these three problems [9]. Essentially, it performs non-
negative matrix factorization and thereby produces two matrices. One of them can be
interpreted as representing the relative concentration of each transcript, while the other
one contains the transcript structure. The number of the isoforms of a gene is estimated
by the internal factorization dimension.
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SPACE has some characteristics that should be considered when applying the algo-
rithm. First, SPACE assumes the probe signals to be proportional to the number of
transcripts. If this is not the case, incorrect predictions of structure and quantity of
a transcript can result. Second, although the algorithm was developed for exon junc-
tion array and exon array data, it seems to work better for exon junction array data.
A third limitation is that SPACE is not able to predict different transcripts if only one
experimental condition is used.

5 Correction for Multiple Testing

The more statistical tests are applied, the higher is the total expected number of false
positives [16]. For instance, measuring differential expression in expon arrays on a probe
level implies the execution of 1,4 million tests in parallel. With the (typical) significance
level of 0.05, the expected number of false positives accordingly is 70 000, as 5% of the
features are expected to be determined differentially expressed by pure chance. Clearly,
this number is unacceptable, calling for a adaptation or correction of the significance
thresholds of individual tests depending on the number of statistical tests performed in
parallel. Such a correction should reduce the expected number of false positives without
increasing the expected number of false negatives too much.

Methods for performing multiple testing cirrectoin can be devided into two classes:
(1) Methods controlling the false discovery rate (FDR), and (2) methods controlling the
family wise error rate (FWER). In general, methods controlling the FDR tend to lead to
more false positives while methods controlling the FWER lead to more false negatives as
they are much stricter in correction. All approached first perform individual tests, but
then post-process the resulting p-values.

Benjamini-Hochberg [11] is a method for controlling the FDR. The FDR is the
expected proportion of true null hypotheses rejected in the total number of rejections.
Thus, FDR measures the expected proportion of incorrectly rejected null hypotheses, i.e.
type | errors. Let V denote the number of null hypotheses that are rejected in multiple
testing procedure and W the number of true null hypotheses rejected. The FDR is defined
as:

FDR = E(T) (14)

with

(15)

[ WiV fie Vo
o 0 fir V=0

To achieve a predefined false discovery rate FDR = «, first the original p-values are
sorted in ascending order, giving p1...p,. Next, the first position ¢ € 1...n ist determined
which fullfilles the equation:

<! (16)
< —«
Pi = n

Only p-values p;1...p; are considered as significant, i.e. the nullhypothesis for the tests
1 to i is rejected.
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Bonferroni [12] is amethod for controlling the FWER. The FWER is the probability
of having at least one false positive in the set of results considered as significant. With
Bonferroni, every original p-value is multiplied by the number of statistical tests performed
in parallel, i.e. the number of genes tested for differential expression. With N the number
of genes tested and p the p-value of a given probe, one computes an adjusted p-value
using:

Padjusted = pN (17)

Only if the adjusted p-value is smaller than the pre-chosen significance value, the probe
is considered as differentially expressed.

6 Proposed Final Workflow

This work is part of the DFG-funded Transregio TRR541. The general aim of the TRR54
is the exploration of various forms of lymphoma. Within the project, a large number of
exon arrays will be measured for a series of different lymphoma subtypes. In the following,
we suggest a workflow for the analysis of these arrays (see Fig.6). The purpose of the
analysis workflow is twofold: First, we aim at detecting differentially expressed genes with
subsequent functional analysis. Second, we will search for subtype-specific isoforms by
studying differentially spliced exons.

Our analysis will concentrate on the core probes, as full and extended probes tend
to reduce the quality of the data as the amount of random signal is potentially higher.
Furthermore, it has been shown that the signal produced by the extended and full probes
does not correlate well with the core probe signals [44].

6.1 Gene level analysis

To assess the perfomance of the data different quality control plots, in particular array-
array correlation plot, boxplots of the raw intensities, and NUSE and RLE boxplots, are
produced [19]. Note that quality control will be performed using only the core probes.
Now, the data is normalized and summarized using RMA. Again quality control plots are
generated, samples behaving peculiar after normalization are excluded from the data set.
To detect differentially expressed genes the moderated t-test is applied to the gene sum-
mary data. The correction for multiple testing is performed with Benjamini-Hochberg.
Clustering of the resulting genes is applied to detect patterns inherent to tha data. On
the gene level analysis genes should be excluded that are also present in the candidate
set for differential splicing of the exon level analysis. These changes in gene expression
could be due to different isoforms [10]. Finally, functional analysis is applied, i.e. the
differentially expressed genes are tested for enriched pathways and GO terms.

6.2 Exon level analysis

The data is normalized and summarized using RMA, producing a signal for every exon.
Again the quality control plots are applied to detect outlier samples. As the gene signal

1See http://www.trr54.de/
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Figure 6: Workflow. To determine the quality of the data and to detect outlier sam-
ples quality control plots are applied. Before normalization NUSE and PLIER
while after normalization Array-Array correlation plots, boxplots and PCA are
performed. Samples showing poor quality are filtered out in both data sets
(gene and exon level). Another filtering step is done on the exon (probeset)
and gene (transcript) level to avoid non-expressed as well as cross-hybridizing
probe sets. Differential expression is determined with SI/MIDAS on the exon
level and a moderated t-test on the gene level. Benjamini-Hochberg multiple
testing correction is applied in both cases. Clustering and visualization of the
results is subsequently performed. On the gene level funktional analysis detects
GO term and pathway enrichment.
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estimate is needed for the calculation of differential exon expression the same sample
should be included in the gene level as in the exon level data set. Note that the quality
control plots before normalization are the same as in the gene level data set.

On the probe set level filtering is applied as well. Following suggestions in [30, 40] a
DAGB (see 3.3) p-value less than 0.05 in at least half of the samples is required to keep
the probe sets for further analysis. The exon level data set should contain only exons
of genes that are expressed above a certain threshold. Otherwise differential splicing
detection methods tend to lead to more false positives. Differential splicing can only take
place if the gene is expressed in both conditions. As alternative splicing can only occur
in genes containing at least two exons all genes containing only one exon are filtered out.
This additionaly reduces the number of statistical tests as about 7% of the genes are
removed [46]. Probe sets with the potential of cross-hybridization are removed as well.

Subsequently, the detection of differentially expressed exons is performed. Therefore
a Sl for every exon is computed. Also MIDAS is performed to obtain a p-value for every
exon. In a next step multiple testing correction is applied using the Benjamini Hochberg
method. We consider exons to be differentially spliced if they have a p-value less than
0.05 and a gene-normalized fold change (log-ratio) between the different conditions of at
least 0.5 [40]. The reason for this relatively small fold change is that alternative splicing
events often occur in only a part of the samples of one condition. Hence, fold changes
are expected to be less high than in differential gene expression.

To detect potential subclasses clustering of the differentially spliced exons is applied.

The isoforms significantly associated with the different conditions are then determined
by applying the SPACE algorithm ( see Section 4.3) to all genes/transcripts showing dif-
ferential exon expression. An important step to reduce false positives is the vizualization
of the candidate set for alternative splicing [37].
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