
RDFMatView: Indexing RDF Data using
Materialized SPARQL queries

Roger Castillo, Christian Rothe, and Ulf Leser

Humboldt University of Berlin
{castillo,rothe,leser}@informatik.hu-berlin.de

http://www.hu-berlin.de/

Abstract. The Semantic Web aims to create a universal medium for
the exchange of semantically tagged data. The idea of representing and
querying this information by means of directed labelled graphs, i.e., RDF
and SPARQL, has been widely accepted by the scientific community.
However, even when most current implementations of RDF/SPARQL
are based on ad-hoc storage systems, processing complex queries on
large data sets incurs a high number of joins, which may slow down
performance. In this article we propose materialized SPARQL queries as
indexes on RDF data sets to reduce the number of necessary joins and
thus query processing time. We provide a formal definition of material-
ized SPARQL queries, a cost model to evaluate their impact on query
performance, a storage scheme for the materialization, and an algorithm
to find the optimal set of indexes given a query. We also present and
evaluate different approaches to integrate materialized queries into an
existing SPARQL query engine. An evaluation shows that our approach
can drastically decrease the query processing time compared to a direct
evaluation.

Key words: SPARQL, Indexing, RDF, Materialized Queries, Semantic
Web, Query Processing

1 Introduction

The Semantic Web as an evolution of the World Wide Web aims to create
a universal medium for the exchange of data where data can be shared and
processed by automated tools as well as by people. The basis for this proposal is
a logical data model called Resource Description Framework (RDF) [1]. An RDF
data set is a collection of statements called triples, of the form (s,p,o) where s
is a subject, p is a predicate and o is an object. Each triple states the relation
between subject and object. A set of triples can be represented as a directed
graph where subjects and objects represent nodes and predicates represent edges
connecting these nodes. The SPARQL query language is the official standard for
searching over RDF repositories [2].

The increasing amount of RDF data has motivated the development of ap-
proaches for efficient RDF data management. Therein, SPARQL implementa-
tions have been built either over relational database technology or using an ad-
hoc storage system (e.g. Jena [3], 3Store [4, 5], Sesame [6]). Furthermore, very

2 Roger Castillo, Christian Rothe, and Ulf Leser

large scale systems have been proposed using the common paradigm of a triple
table normalized using two or more tables (4Store [7], YARS [8]). Consequently,
in these systems, joins are still used extensively to answer queries. Optimizing
these joins is one of the critical issues to obtain scalable SPARQL systems.

In relational databases, query processing using materialized views is a well
established method to achieve scalability [9]. Here, we propose the use of ma-
terialized SPARQL queries to speed-up queries. We target large data sets and
SPARQL queries consisting of many basic graph patterns producing a set of
results. Examples of huge data sets are for instance, UniProt containing more
than 600 million triples [10] or the W3C SWEO Linking Open Data Community
with more than 4 billion triples [11]. With such datasets, executing a query with
many graph patterns becomes a problem.

Listing 1. Example SPARQL query to gather information about Hexokinase
enzyme [12]

SELECT * WHERE {

?s1 ?p1 ?o1 .

?o1 ?p2 "hexokinase" .

?s1 rdf:type ?type1 .

?s1 rdfs:comment ?comment1 .

?s1 rdfs:label ?label1 .

?s1 rdfs:comment ?comment2 .

?s1 rdfs:label ?label2 .

}

Consider the query in Listing1. Executing this query on a conventional SPAR-
QL processor over a large triple table results in the computation of six self-joins.
However, one can safely assume that the types, labels, and comments of an object
are used together very often. Therefore, similar to [3], which create tables to
group properties that tend to be defined together we suggest to cluster frequently
used triple patterns by materializing and storing the results inside the system.
If this information were available, the query could be computed with only three
joins, as the materialized query would help to retrieve the information for s1.

Our indexing method aims to fully exploit the RDF graph-structure. We
do not index single attributes or triples, but fractions of queries that occur
frequently in an expected workload. Therefore, our approach is a native RD-
F/SPARQL indexing method whose concepts are viable for all possible imple-
mentations of RDF stores. Our method can be seen as an orthogonal indexing
solution, which may be used in conjunction with other indexing methods.

Such an approach requires to solve several problems. First, selected queries
must be materialized and the results stored such that efficient retrieval is pos-
sible. Second, a given query at runtime must be analyzed to identify the mate-
rialized query or the combination of materialized queries that offers the highest
speed-up for this query. This requires a query rewriting algorithm and a cost
model. Third, the query processing itself must be modified to be able to retrieve
materialized results and to combine them with those parts of the original query
that are not covered by the indexes.

RDFMatView: Indexing RDF Data using Materialized SPARQL queries 3

Here, we present solutions to these problems. We first discuss related work
in Section 2. Section 3 presents the fundamental principles of RDFMatViews.
We describe different ways to introduce materialized queries into an existing
SPARQL processor in 4. Section 5 gives an evaluation of our method. We con-
clude in Section 6.

2 Related work

In the following, we discuss those works that are most related to our main
contribution, i.e., using indexes to speed up SPARQL queries.

Some approaches have proved to be very efficient to query SPARQL queries
based either on relational database technology or following a native data scheme.
For instance, in [13] Abadi et al. propose a vertical partition approach for Se-
mantic Web data management. An enhancement of this approach is proposed by
Weiss et al. in [14]. Therein, RDF data is indexed in six possible ways, i.e., an
index for each possible ordering of the three RDF elements. Each instance of an
RDF element is associated with two vectors; each such vector gathers elements
of one of the other types, along with lists of the third-type resources attached to
each vector element. This scheme is capable of speeding up single joins tremen-
dously, but storage requirements are very high, which becomes a serious issue
when using huge data sets.

Neumann and Weikum developed RDF-3X, a SPARQL engine pursuing a
RISC-style architecture – a streamlined architecture – with specific-designed
data structures and operations [15]. The authors overcome the “giant-triples-
table” [13] bottleneck by creating a set of indexes and a fast way for processing
merge joins. Similar to [14], RDF-3X maintains six possible permutations of
subject, predicate and object in six separate indexes. The authors also present
a compression algorithm to decrease the space consumption.

All these approaches have in common that they focus on indexing the re-
lational representation of the RDF data. When faced with queries consisting
of multiple basic graph patterns, they still have to compute multiple joins (al-
though every single join is faster). In contrast, our work specifically targets the
speed-up of complex queries consisting of many basic graph patterns by indexing
complete query patterns which occur in other queries.

There is some other work along this line. In [16] the authors present GRIN,
a lightweight indexing mechanism for RDF data. The idea is to draw circles
around selected center vertices in the graph where the circle would comprise
those vertices in the graph that are within a given distance of the “center”
vertex. Basically, GRIN is a binary tree where the set of leaf nodes form a
partition of the set of triples in the RDF graph. An interior node represents
the set of all vertices in the RDF graph that are within a specific distance. To
evaluate a query, GRIN derives a set of inequality constraints from the query.
These constraints are evaluated against the nodes of the GRIN index.

A similar indexing approach is presented in [17]. This work proposes a set
of indexes of precomputed joins created from all possible join combinations be-

4 Roger Castillo, Christian Rothe, and Ulf Leser

tween triple patterns. As [16], this approach creates a general purpose set of
indexes based on joined triple patterns, but the number of indexes to manage is
impractical when the number of joined triples is >= 3.

The two systems just described index larger portions of the RDF data set
and not just single triples. However, they propose to apply their techniques to all
RDF triples, while we only build user-chosen indexes. Our work fundamentally
is based on the assumption that some patterns are combined more frequently
than others, and that only indexing those combinations promises to provide large
speed-ups at manageable space and maintenance cost.

The differences between our ideas and that of other RDF indexing schemes
can be described by drawing a parallel to B*-indexes in relational databases
[18]. Nobody would suggest to speed up queries by indexing every attribute;
instead, systems assume that developers have a rough idea about the types of
queries that need to be answered and therefore index only the relevant attributes.
Furthermore, optimal speed-up can only be achieved when also combinations of
attributes can be indexed, and not only single attributes. In this sense, the
former approaches index every single attribute, the latter indexes every possible
combination of attributes, and we suggest to index only selected combinations
of attributes.

Note that we do not claim that our current implementation of RDFMatView
offers a particular fast SPARQL-processor, compared to systems such as [13–15].
Instead, we present a new technique to speed up query execution with SPARQL
that is applicable to any SPARQL query processor. We showcase its potential and
compare different ways to integrate it into query processing using one particular
system (namely ARQ [19]), which was been chosen because of its widespread
use. An extended version of this paper can be found in [20].

3 The RDFMatView Approach

3.1 Indexes and Covers

A SPARQL query Q is represented by a simple graph pattern P and is de-
noted by P (Q). A mapping is a function that maps the symbols of one pattern
into the symbols of another pattern. Our notion of mappings is based on the
SPARQL-Standard [2] and its definition of pattern solutions. However, while in
the SPARQL standard such solutions are only searched in the data graph, we
also permit that variables are mapped to other variables. This generalization
allows us to search occurrences of patterns in other patterns, in particular, oc-
currences of indexes in a query. We say that a pattern P1 occurs in a pattern P2

if there is a mapping function S such that S(P1) ⊆ P2. Extending occurrences
and mappings also to RDF triples, we define an index over an RDF data graph
as follows.

Definition 1 (Index). An index I over a data graph G is a pair I = (P,O),
where P represents a pattern and O represents the set of all occurrences of P in
G.

RDFMatView: Indexing RDF Data using Materialized SPARQL queries 5

Indexes are precomputed queries suitable to speed up other queries when the
index pattern is “contained” in the query pattern. An index I is eligible for a
query Q when the patterns set of I occurs in the pattern set of Q. However, it
would be more advantageous when query processing uses more than one index.
For those cases, we require that indexes “overlap”. Overlapping indexes are good
candidates for reducing query processing because the query engine can combine
occurrences of these indexes and generate solutions without matching against
the RDF dataset.

We define two ways in which indexes overlap. Two indexes overlap intension-
ally iff there could exist a triple pattern in which their materialization would
overlap. Two indexes overlap extensionally if their materializations overlap on a
concrete data graph. Thus, intensional overlap relies only on the index patterns
and is independent of a concrete data graph, while extensional overlap needs to
consider the actual data graph.

Definition 2 (Overlapping Indexes). Let I1 = (P1, O1) and I2 = (P2, O2)
be two indexes over a data graph G.

– I1 and I2 intensionally overlap iff there exists mapping functions S1, S2 such
that

S1(P1) ∩ S2(P2) 6= ∅
– I1 and I2 extensionally overlap in G iff

∃o1 ∈ O1, o2 ∈ O2 : o1 = o2

where oi is a concrete occurrence in Oi.

Here, we only consider intensional overlapping since it is independent from
the data graph and can be efficiently implemented. Using intensionally overlap-
ping indexes, we define a cover. Think of set E which contains all the eligible
indexes as graph nodes, connected by an edge when they overlap. For a given
query Q, we call every subset of E a cover of Q, for which the induced subgraph
has a single component. Furthermore, we are only interested in maximal covers,
i.e., those covers which cannot be extended further by adding new indexes.

3.2 Example

Finding covers requires to analyze the set of indexes and the given query. The
idea is to find mappings between index and query patterns. This process is per-
formed using a query containment algorithm [21] adapted for SPARQL queries.
Details of the algorithm can be found in [20]. Essentially, we find all mappings
between any index pattern and the query pattern by enumerating all possible
cases. If a mapping exists, the index is eligible for that query and we store
the mapping. Note that, for a given index, there are potentially many different
ways to be eligible, i.e., different mappings between index and query patterns.
Consider a SPARQL query and two indexes described in Table 1.

6 Roger Castillo, Christian Rothe, and Ulf Leser

Table 1. SPARQL query returning universities and their departments, Index1 com-
putes places and their names and Index2 computes universities with their departments.

Query: SELECT * WHERE {

?university rdf:type ub:University;

ub:name ?university_name.

?ub_department rdf:type ub:Department;

ub:name ?ub_name_department;

ub:subOrganizationOf ?university . }

Index1: SELECT * WHERE {

?place rdf:type ?place_type;

ub:name ?place_name. }

Index2: SELECT * WHERE {

?ub_department rdf:type ub:Department;

ub:name ?ub_name_department;

ub:subOrganizationOf ?university;

?university rdf:type ub:University .}

Index1 and Index2 are eligible for the query, using the mappings in Table 2.
Note that Index1 has two mappings. Each mapping represents an occurrence of
the patterns of Index1 in the query pattern. Index occurrences generated from
the previous mapping functions overlap in the triple pattern ?university rdf:type
ub:University, using the first mapping function of Index1. Hence, partial results
can be joined to completely cover the query.

Table 2. Mappings of Index1 and Index2

Index1: Mapping 1 Mapping 2

?place ⇒ ?university ?place ⇒ ?ub department
?place type ⇒ ub:University ?place type ⇒ ub:Department
?place name ⇒ ?university name ?place name ⇒ ?ub name department

Index2: Mapping 1

?ub department ⇒ ?ub department
?ub name department ⇒ ?ub name department

?university ⇒ ?university

Assume an RDF data stored in a RDBMS within a triple table (without in-
dexes), for instance, Triple(subj, prop, obj) [3, 15]. Hence, query in Table 1 could
be answered by the SQL query in Listing 2 requiring four self joins. However,
using pre-computed tables, Index1 and Index2, requires only one join as shown
in Listing 3.

RDFMatView: Indexing RDF Data using Materialized SPARQL queries 7

Listing 2. SQL representation of SPARQL query in Table 1

SELECT t1.subj AS a0, t2.obj AS a1 , t3.subj AS a2,t4.obj AS a3

FROM Triple AS t1 , Triple AS t2, Triple AS t3,

Triple AS t4 , Triple AS t5

WHERE t1.prop= ’type ’ AND t1.obj= ’University ’ AND

t2.prop= ’name ’ AND t3.prop= ’type ’ AND

t3.obj= ’Department ’ AND t4.prop= ’name ’ AND

t5.prop= ’subOrganizationOf ’ AND

t1.subj = t2.subj AND t3.subj = t4.subj AND

t3.subj = t5.subj AND t1.subj = t5.obj;

Listing 3. SQL representation of SPARQL query in Table 1 using RDFMatView
indexes

SELECT index2.university , index1.place_name AS university_name ,

index2.ub_department , index2.ub_name_department

FROM index1 , index2

WHERE index1.place = index2.university;

This example illustrates advantages to use materialized queries as indexes to
process SPARQL queries. Note that this case does not require to query against
the data graph, because all query patterns are covered and the partial results
are materialized. Other cases would require to extend the results of the covered
patterns with the results of query patterns which are not covered using indexes.

3.3 Cost Model

Previous sections define which indexes and which sets of indexes are eligible for
a given query. In the following, we define a model to estimate which cover brings
more savings in time to query execution. Our model is based on the definition
of selectivity of an index. Selectivity defines the relation of the number of index
occurrences in a given graph to the possible total number of index occurrences
in the graph. To this end, we need the size and frequency of the index pattern
(number of triples in the index pattern and number of tuples for the index
pattern in the data graph) and the size of the data graph (total number of
triples) represented by |I|, #(I) and |G| respectively. Hence, we define selectivity
as follows.

Definition 3 (Selectivity of an index). Let I be an index over a data graph
G. The selectivity s(I) of an index I is defined as:

s(I) =
#(I)

|G||I|
.

We can estimate selectivity of two indexes based on the overlapping of their
index patterns, i.e., they can completely, partially or not overlap at all. This
leads to estimate the selectivity of a cover.

8 Roger Castillo, Christian Rothe, and Ulf Leser

Definition 4 (Selectivity of a cover). Let C be a cover for a query Q con-
sisting of indexes I1, I2, . . . In. The selectivity s(C) of the cover C is defined
as:

sel(C) = sel(I1 ∪ I2 ∪ . . . ∪ In) ≤ min|O1|, ..., |On|
|G|max{|P1|,...,|Pn|}

Having the selectivity of all maximal covers, the query optimizer determines
which cover is the best for query processing.

4 Implementation

We describe the implementation of our approach into a SPARQL query proces-
sor by using the ARQ system [19]. However, we want to stress that the general
process would be the same for any other SPARQL query processors. We differ-
entiate two main phases in our approach. At offline-time, indexes are created
and materialized. At query-time, queries are answered using indexes (or covers).
We describe our implementation regarding these phases.

4.1 RDFMatView Index processing

Each index is preprocessed as a table in the underlying database. We create its
schema by materializing all variables of the index and not only those mentioned
in the SELECT clause. This strategy enables the materialized data to be eligible
also for those queries requesting variables that were not selected in the original
index. Occurrences of the index in the dataset are stored as values for these fields.
Each attribute of a tuple represents a binding for the respective variable. To avoid
large requirements of storage space, we use an RDF Data Dictionary, which maps
each resource to a unique identifier. Thus, instead of storing large literal values,
we store only numeric identifiers in the index structure. Table 3 summarizes the
space required to store 10 indexes for each RDF dataset. During the processing
of an index we also calculate and store index properties, for instance size and
frequency, which are later used to evaluate the query execution plans. These
tasks are executed only once per index and can be used to process any SPARQL
query.

Table 3. Storage required for a set of 10 RDFMatView indexes over 4 different
databases (BSBM) [22] (K = 1000, M = 1 Million triples).

250K 500K 1M 10M

index storage 12Mb 18Mb 34Mb 363Mb
total storage 379Mb 616Mb 1.2Gb 12Gb
storage ratio 0.03 0.02 0.02 0.03

RDFMatView: Indexing RDF Data using Materialized SPARQL queries 9

4.2 Executing a query using RDFMatView indexes

Query processing using RDFMatViews indexes usually combines results of mul-
tiple indexes. However, it is not always possible to cover all query patterns. The
set of uncovered patterns is referred to as residual part of a query. This breaks
down into the following steps: i) Analysis of the query to find all maximal covers
ii) Selection of the most suitable cover to answer the query given our cost model
iii) Rewriting of the query using the chosen cover iv) Extension of the results of
the cover to results of the query. Steps one and two were already discussed in
Sections 3.1 and 3.3 respectively. Here, we concentrate on the two last steps, the
query rewriting. We developed three strategies to fulfill this task:

– Our first strategy uses ARQ to process the residual part of the query. RDF-
MatView extends the results of the chosen cover by joining the partial solu-
tions with the solutions of the residual patterns.

– The second strategy is based on a SPARQL-to-SQL algorithm to translate
SPARQL queries into SQL queries. The idea is to directly access the native
Jena storage tables and to combine those results with the index tables to
generate the final solution.

– The last strategy is built from a combination of the previous two strategies,
i.e. ARQ and database execution engine.

These strategies are explained in detail in the next sections.

Method 1: MatView-and-ARQ Engine

Rewriting engine built on top of the Jena Framework. Given a query and a cover,
it computes the set of uncovered residual patterns of the query and uses ARQ
to execute this (sub-)query. Furthermore, it computes the result of the cover by
joining the respective index tables according to the variable mappings between
the query and the indexes forming the cover. Results are also joined with the
data dictionary to obtain RDF values, and joined to the result of the ARQ query
to produce the complete answer for the original query. This engine encapsulates
the logic for the execution of the cover and provides total independence from
the underlying database.

Method 2: MatView-to-SQL Engine

Rewriting engine which, unlike our first method, translates the residual part of
the query into a SQL query using an algorithm proposed by Chebotko in [23].
The SQL query is executed by the RDBMS which evaluates the query using
the Jena tables. The result set is processed using our dictionary and combined
with the results of the cover. The complete query processing is performed by the
database execution engine using a stored procedure.

10 Roger Castillo, Christian Rothe, and Ulf Leser

Method 3: Hybrid Engine

A mixture of MatView-and-ARQ and MatView-to-SQL. As in Method 1, after
rewriting the query, this engine transfers the residual patterns to the query
execution engine of ARQ. The second part of the process combines the results
of the residual patterns with the resulting set of the covered part of the query
patterns. Contrary to Method 1, this engine is database-dependent since this
task is performed inside the database execution engine, as in Method 2.

5 Evaluation

We evaluate our approach using two well known SPARQL benchmarks: the
Berlin SPARQL Benchmark (BSBM) [22] and the SPARQL Performance Bench-
mark (SP2B) [24]. We use the ARQ/Jena RDF Storage System (version 2.5.7)
on Postgres 8.2 as framework in which we integrated our solution. We generated
eight RDF datasets with sizes ranging from 250K to 10M triples and tested the
impact of the indexes on six different queries (three queries for each benchmark).
For each query, we manually defined a set of indexes, leading to covers composed
of one to three indexes. Our intention here is not to find the best set of indexes
given a workload (generally called index selection, see, e.g., [25–27]); instead, we
study to which degree indexes that use different processing schemes speed up
the execution of queries.

5.1 Dataset and queries

For each benchmark, we create four datasets containing 250K, 500K, 1M and
10M triples, respectively. As these datasets have identical value distributions
but different sizes, our evaluation concentrates on the scalability of our methods
in different domains. Based on the number of triple patterns we chose three
queries for each benchmark. We transformed the query patterns into simple
graph patterns and removed most bindings to variables. Bounded variables incur
high selectivity resulting in the retrieval of only a handful of triples. Such queries
are well supported by existing index structures and do not require the type of
join-optimization that is achieved with our optimization technique. Therefore,
performance gains would be only marginal. Our test queries are described in
Listings 4 and 5.

Listing 4. Test queries derived from BSBM

Query1: Finds products for a given set of generic features.

Query2: Retrieve basic information about products.

Query3: Retrieve in-depth information about products including

offers and reviews.

RDFMatView: Indexing RDF Data using Materialized SPARQL queries 11

Listing 5. Test queries derived from SP2B

Query4: Extract all information about inproceedings documents.

Query5: Select all pairs of articles of an author that have been

published in the same journal.

Query6: Return for each year , the set of all publications including

the name of the authors.

From the queries described in Listings 4 and 5, we derive two sets of indexes
containing 10 and 8 indexes respectively. Each index covers two to six patterns
from at least one query. However, none of them completely covers a query. We
focus to evaluate covers containing either a combination of indexes and possible
a residual part of the query since most real-life SPARQL queries would comply
with this case.

5.2 Results

For each benchmark we evaluated three queries over four data sets using our
three RDFMatView methods and plain ARQ (without indexes), which amounts
36 different configurations. We refer to the approaches to query execution as M1
for MatView-and-ARQ, M2 for MatView-to-SQL, M3 for the hybrid approach,
and ARQ for plain ARQ. The experiments use the optimal cover and evaluate the
real and estimated costs of different covers for the same query. All queries were
executed 5 times and average execution times are reported1. Furthermore, we
evaluated all different covers generated for Query1 and Query2 (BSBM) to show
the performance of our cost model in the selection of the query execution plan.
Figure 1 illustrates the average processing time for each query. Clearly, process-
ing time significantly improves in both domains when using MatView-and-ARQ
(M1) and Hybrid (M3). However, processing time does not significantly improve
when using MatView-to-SQL (M2) (see Fig. 1). The reason for this is the Jena
native storage schema. Since the values are encoded following the Jena layout,
our process needs to parse the stored values and extract the required information,
which increases the processing time.

Figure 2(a) and Figure 3(a) show the evaluation of real and estimated cost
for different covers for Query1 and Query2 (BSBM). Additionally, Figure 2(b)
and Figure 3(b) show the relation between the estimated costs of a cover, its
indexes and number of covered and uncovered patterns from the given query.
Note that our system selects as optimal Cover 6 in Figure 2(a) (for Query1) and
Cover 3 in Figure 3(a) (for Query2).

Figure 2(a) and Figure 3(a) show the costs estimated by our model together
with the real processing time. In all cases our model manages to prevent the
selection of exceptionally bad plans, and all plans improve the total execution
times when compared to those without using indexes. However, the figures also
show that our model can be improved further, as total real and estimated costs
do not correlate well. Especially, our model does not yet reflect the fact that, in

1 Except for Query5 without indexes over a 10 Million triples dataset, which did not
finish after 24 hours

12 Roger Castillo, Christian Rothe, and Ulf Leser

(a) Query1 (BSBM) (b) Query4 (SP2B)

(c) Query2 (BSBM) (d) Query5 (SP2B)

(e) Query3 (BSBM) (f) Query6 (SP2B)

Fig. 1. Processing time for test queries using BSBM and SP2B. Each query was pro-
cessed on four data sets using three rewriting methods. M1: MatView-and-ARQ; M2:
MatView-to-SQL; M3: Hybrid; ARQ: plain ARQ (time in milliseconds).

RDFMatView: Indexing RDF Data using Materialized SPARQL queries 13

(a) Estimated cost vs. real processing time

(b) Estimated cost vs elements processing time

Fig. 2. Figure 2(a) shows estimated cost, total real processing time, cover processing
time, and residual processing time of Query1. Values are plotted on log-scale. Note
that total real processing time virtually equals real processing time for the covers for
larger covers. Figure 2(b) shows estimated costs for each cover based on intensional
dependency between indexes for the same query. Costs are based on the model intro-
duced in Section 3.3 and are presented in relation to the size for each cover, number of
participating indexes and the size of the residual part of the query. This analysis shows
the influence of these elements in the selection of an optimal cover.

a setting with two covers both covering the same number of patterns, but with
a different number of indexes, it is usually advantageous to chose the cover with
less indexes as this requires less joins at runtime. Figure 2(b) illustrates that
plans with fewer indexes have a superior performance than plans with the same
number of covered patterns, but consisting of more indexes. Thus, the number
of necessary joins between indexes is a natural next factor to consider in future
work. In Figure 2(b), Covers 5 and 6 have the best estimated costs according
to our model. However, the residual part of the query (2 triple patterns) incurs
an undesirable overhead, which is not yet properly reflected in our model. An
interesting fact can be observed for those covers covering larger patterns using
two indexes (see covers 1, 2 and 3). These cases show the reduction of processing
time when joining two indexes. At the end, more patterns are covered and the
number of patterns to match against the data set decreases. Though their cost

14 Roger Castillo, Christian Rothe, and Ulf Leser

(a) Estimated cost vs. real processing time

(b) Estimated cost vs elements processing time

Fig. 3. Figure 3(a) shows estimated versus real cost for Query2. Estimated costs corre-
late with cover real processing time however, residual processing time consumes most
of the real processing time. Figure 3(b) shows for Query2 estimated cost versus number
of covered patterns and number of indexes; for explanation, see Figure 2(b).

estimation is not the best, their processing times are significantly better than
those of covers with a better estimated cost. We attribute this behavior to the
join (between indexes) and the processing of the residual part of the query which
decreases the fewer are the patterns.

As for Query1, Figure 3(a) shows that the estimated costs and the real pro-
cessing time for Query2 approximately correlate. Additionally, the graphic shows
that the residual part of the query should be considered as an important factor
when selecting an optimal cover, since residual processing time nearly spans the
complete total processing time. Figure 3(b) supports this conclusion showing the
details for the generated covers, i.e., covering a larger number of query patterns
using as few indexes as possible decreases the real processing time.

6 Conclusions and future work

In this article we proposed a logical framework and a prototype implementation
for answering SPARQL queries using materialized queries as indexes. At runtime,
queries are analyzed to see whether their execution can be sped-up by using one

RDFMatView: Indexing RDF Data using Materialized SPARQL queries 15

or more of those precomputed partial results. The subsequent query rewriting
and integration of precomputed results into the overall result generation was
implemented following three different approaches on a standard SPARQL query
processor. Initial experiments with different queries, different indexes, and dif-
ferent data sets showed that the performance gains in query processing can be
considerable.

However, a closer look reveals that our cost model needs to be improved in
several aspects. In particular, it needs to model the influence of the number of
used indexes, the size of the covers, and the number of residual query patterns.
A more accurate estimation of the impact of these elements and its inclusion in
the cost model is important to select an better cover.

Up to now, we assume a predefined set of indexes suitable for a given workload
of SPARQL queries. A natural extension to this assumption is to study ways of
finding the optimal set of indexes under some resources constraints, given a
workload. We report on some initial results in this direction in [28], but these
also need to be improved by using a better cost model.

References

1. Manola, F., Miller, E.: RDF Primer (February 2004) W3C Recommendation.

2. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF (April
2008) W3C Recommendation.

3. Wilkinson, K., Sayers, C., Kuno, H., Reynolds, D.: Efficient RDF storage and
retrieval in Jena2. In: Proc. First International Workshop on Semantic Web and
Databases. (2003)

4. Stephen Harris, N.G.: 3store: Efficient Bulk RDF Storage. In: 1st International
Workshop on Practical and Scalable Semantic Systems (PSSS’03). (2003)

5. Harris, S.: SPARQL Query Processing with Conventional Relational Database
Systems. In: International Workshop on Scalable Semantic Web Knowledge Base
System. (2005)

6. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture
for Storing and Querying RDF and RDF Schema. In: International Semantic Web
Conference. (2002) 54–68

7. Harris, S., Lamb, N., Shadbolt, N.: 4store: The Design and Implementation of a
Clustered RDF Store. In: 5th International Workshop on Scalable Semantic Web
Knowledge Base Systems (SSWS2009). (2009)

8. Harth, A., Decker, S.: Optimized Index Structures for Querying RDF from the
Web. In: LA-WEB ’05: Proceedings of the Third Latin American Web Congress,
Washington, DC, USA, IEEE Computer Society (2005) 71

9. Goldstein, J., Larson, P.A.: Optimizing Queries Using Materialized Views: A
Practical, Scalable Solution. In: SIGMOD ’01: Proceedings of the 2001 ACM
SIGMOD international conference on Management of data, New York, NY, USA,
ACM (2001) 331–342

10. Dataset, U.R.: http://dev.isb-sib.ch/projects/uniprot-rdf/

11. Project, W.S.C.: Linking Open Data on the Semantic Web.

12. Bio2RDF. http://bio2rdf.org/ (2009)

16 Roger Castillo, Christian Rothe, and Ulf Leser

13. Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: Scalable Semantic Web
Data Management using Vertical Partitioning. In: VLDB ’07: Proceedings of the
33rd international conference on Very large data bases, VLDB Endowment (2007)
411–422

14. Weiss, C., Karras, P., Bernstein, A.: Hexastore: Sextuple Indexing for Semantic
Web Data Management. Proc. VLDB Endow. 1(1) (2008) 1008–1019

15. Neumann, T., Weikum, G.: RDF-3X: a RISC-style engine for RDF. Proc. VLDB
Endow. 1(1) (2008) 647–659

16. Udrea, O., Pugliese, A., Subrahmanian, V.S.: GRIN: A Graph Based RDF Index.
In: AAAI. (2007) 1465–1470

17. Groppe, S., Groppe, J., Linnemann, V.: Using an Index of Precomputed Joins in
order to speed up SPARQL Processing. In Cardoso, J., Cordeiro, J., Filipe, J.,
eds.: Proceedings 9th International Conference on Enterprise Information Systems
(ICEIS 2007 (1), Volume DISI), Funchal, Madeira, Portugal, INSTICC (June 12 -
16 2007) 13–20

18. Connolly, T.M., Begg, C.E., Strachan, A.D.: Database Systems: A Practical Ap-
proach to Design, Implementation and Management. Addison Wesley Longman
Publishing Co., Inc., Redwood City, CA, USA (1996)

19. ARQJena: ARQ - A SPARQL Processor for Jena.
http://jena.sourceforge.net/ARQ/ (2010)

20. Castillo, R., Leser, U., Rothe, C.: RDFMatView: Indexing RDF Data for SPARQL
Queries. Technical Report 234, Humboldt Universitaet zu Berlin (2010)

21. Halevy, A.Y.: Answering Queries Using Views: A Survey. The VLDB Journal
10(4) (2001) 270–294

22. Bizer, C., Schultz, A.: The Berlin SPARQL Benchmark. International Journal
On Semantic Web and Information Systems - Special Issue on Scalability and
Performance of Semantic Web Systems, 2009 (2009)

23. Chebotko, A., Lu, S., Jamil, H.M., Fotouhi, F.: Semantics Preserving SPARQL-
to-SQL Query Translation for Optional Graph Patterns. Technical report, Depart-
ment of Computer Science, Wayne State University (2006)

24. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2Bench: A SPARQL Per-
formance Benchmark. Data Engineering, International Conference on 0 (2009)
222–233

25. Comer, D.: The Difficulty of Optimum Index Selection. ACM Trans. Database
Syst. 3(4) (1978) 440–445

26. Caprara, A., Fischetti, M., Maio, D.: Exact and Approximate Algorithms for
the Index Selection Problem in Physical Database Design. IEEE Transactions on
Knowledge and Data Engineering 7(6) (1995) 955–967

27. Chaudhuri, S., Narasayya, V.R.: An Efficient Cost-Driven Index Selection Tool
for Microsoft SQL Server. In: VLDB ’97: Proceedings of the 23rd International
Conference on Very Large Data Bases, San Francisco, CA, USA, Morgan Kaufmann
Publishers Inc. (1997) 146–155

28. Castillo, R., Leser, U.: Selecting Materialized Views for RDF Data. In: Semantic
Web Information Management Workshop (SWIM 2010). (2010)

