
Fast Similarity Searches and Similarity Joins in Oracle DB

Astrid Rheinländer, Ulf Leser

Humboldt-Universität zu Berlin

Wissensmanagement in der Bioinformatik

Keywords:

Similarity Search, Similarity Join, Prefix Tree Index, Extensible Indexing Interface

Introduction

Similarity search and similarity join on strings are important operations for applications such as

duplicate detection, error detection, data cleansing, or comparison of biological sequences [GIJ+01,

NMS04]. Especially DNA sequencing produces large collections of erroneous strings which need to

be searched, compared, and merged. In our talk, we will use ESTs as our running example. ESTs

(Expressed Sequence Tags) are short DNA sequences with lengths mostly in the region of 300 to 800

bases that are commonly used to identify genes and their localization on a chromosome. However, to

be cost-effective, ESTs are obtained by a single sequencing pass which yields in an estimated error

rate of 1% [KA06]. This implies that searching and joining EST data sets should always be carried out

approximately rather than exactly. Since the EST sets that are considered go in the millions , efficient

execution of such similarity operations is crucial.

 Oracle DB has no build-in support for similarity searching. A naive implementation using stored

procedures does not scale to the amount of data produced in Life Science projects (see section

“Experiments”). We developed PETER, a prefix tree based indexing algorithm supporting

approximate search and approximate joins. Our tool supports Hamming and edit distance as similarity

measure and is available as a cartridge for Oracle DB, as C++ library, and as command line tool. It

combines an efficient implementation of compressed prefix trees with advanced pre-filtering

techniques that exclude many candidate strings early. We evaluate our tool on several collections of

long strings containing up to 5,000,000 entries of length up to 3,500. Our experiments reveal that

PETER is faster by orders of magnitude compared to Oracle in the inexact case. We also show that

PETER outperforms the built-in join methods on such data sets (very long strings) even in the exact

case.

 A technical description of our method appeared in [RKH+10]. In this talk, we concentrate on

issues regarding the integration of our method into the Oracle database.

Similarity Measures

Similarity-based operations must be based on a concrete similarity measure. PETER supports:

Hamming distance

The Hamming distance dhd(s, t) of two strings s, t of equal length is the number of mismatching

characters in s and t. We say two strings are within Hamming distance k if dhd(s, t) ≤ k. Obviously,

computing the Hamming distance of two strings with |s| = |t| = n is possible in O(n).

Edit distance:

The edit distance ded(s1, s2) of two strings s, t with |s| = n, |t| = m is the minimal number of insertions,

deletions, or replacements of single characters needed to transfrom s into t. We say two strings are

within edit distance k, if ded(s, t) ≤ k. Using dynamic programming, the edit distance can be computed

O(m*n) [G01]. However, faster computation is possible when one is only interested in highly similar

strings. The k-banded alignment algorithm [F84] finds the edit distance of two strings with edit

distance of at most 2k in O(k * max{m, n}).

Fig. 1: Compressed prefix tree. Grey nodes are string nodes. Min/max specify minimum and maximum string lengths, fv

denotes the frequency vector.

Compressed Prefix Trees

Our fundamental data structure are compressed prefix trees [D68], built on top of a set of strings.

A compressed prefix tree index T for a set of strings R is a rooted, directed tree that meets the

following conditions:

1. Every node x is labeled with a sequence of characters 𝑐𝑖 ∈ Σ of length l ≥ 1. The labels of any

two children y, z of the same node x start with a different character.

2. Every string 𝑠 ∈ 𝑅 maps to some node 𝑥 ∈ T such that the concatenation of all labels from T’s

root to x exactly is s. We call x string node and assign the corresponding ID to x.

3. (Compression of suffixes). Let x be the root of a subtree formed by a linear chain of children

x1,...,xm , where solely xm is a string node and has no further children. Then, x,x1,...,xm are

merged to a single node x' whose label is the concatenation of their labels. The ID of xm is

assigned to x'.

4. (Compression of infixes). Let x be the root of a subtree formed by a linear chain of children

x1,...,xm , where no node is a string node and only xm has more than one child. Then, x,x1,...,xm-1

are merged to a single node x' whose label is the concatenation of their labels.

We attach further information to every node, namely minimum/maximum string lengths and a

frequency vector. Figure 1 shows an example of a compressed prefix tree. It has simple nodes (e.g.,

“A”), a compressed infix node (“CTG”), and a compressed suffix node (“TGCCTGGTA”).

Algorithms

Search

PETER essentially performs a depth-first traversal of the prefix tree applying different pruning

techniques [RKH+10] which will be explained in detail in our talk. Before descending from a node,

we apply length and frequency filters. We also prune if we exceed the allowed distance threshold. In

case of edit distance searches, we apply q-gram filtering for every reached string node PETER checks

a flag whether a Hamming or edit distance search is performed and computes the new distance. When

a match was found, the pair of matching EST objects (each pair consists of the ESTs and their UIDs)

is added to the result set. Finally, the result set is returned to the user and by default printed to

stdout.

Join

When using the join operator on two relations, conceptionally the intersection of two trees is

computed. Both index trees T and S are traversed concurrently, such that the tree with less nodes is

traversed first. Tree sizes are checked at startup. Length and frequency filtering are applied as in the

search algorithm. If we reach a string node in tree T (or S, respectively), we fetch the complete string

represented by this node and perform a call to the search function, with the string as pattern, the

remaining subtree S′ of S (T′ of T) and the current distance value as parameters. We continue the

distance computation for the next untreated characters in the string and S′ (T′). The result set contains

all pairs of matching EST objects and is constructed through the search algorithm. Finally, it is

returned to the user and printed to stdout.

Integration in Oracle DB

We integrated our data structure and algorithms in Oracle 10g XE as a shared library using the Oracle

Data Cartridge Interface (ODCI). Amongst others, the ODCI provides functionality to user-defined

indexes (via Extensible Indexing Interface) and table functions (Table Function Interface). Integrating

user-defined functions and indexes in Oracle consists of two parts: The first part is the program code,

compiled as a shared library outside of Oracle and saved in the $ORA_HOME/bin directory. The

second part involves declarations and definitions in PL/SQL directly executed in Oracle, including a

reference to

the library. When index and query functions are accessed for the first time in a session, PL/SQL uses

the data dictionary to determine the location of the shared library in the file system. A listener process

immediately invokes a session-specific agent (extproc) and passes the call including procedure and

library name and any parameters, if present, to it. Extproc then loads the library and runs the desired

function, that, in our case, in turn opens the index and later on suffix files if required. Any return

values are passed back via extproc to PL/SQL. Throughout the session, extproc remains alive,

which implies that initialization costs for extproc emerge only once. Figure 2 shows the interplay of

Oracle and prefix tree index components in control flow.

Experiments

We use ESTs to evaluate the performance of PETER both for similarity and for exact operations

(k=0). Index creation and optimization was performed in advance and is not included in the measured

times (see Fig.3). We observed that the time for index creation grows, as expected, linear with the

number of indexed strings. We compare the performance of PETER against two competitors: The

Unix tools command line tools grep, agrep, and nrgrep, and build-in or user-defined functions (UDF)

inside Oracle. Our evaluation revealed that a combination of length and q-gram filtering seems to be

the best overall configuration. Therefore, in all following experiments with PETER we always used

length filtering for Hamming distance and a combination of length and q-gram filtering for edit

distance searches and joins.

Fig. 2: Execution of PETER operators inside Oracle DB.

Performance of Similarity Search and Joins

We compared the execution times of PETER for Hamming and edit distance for various thresholds to

Unix command line tools. We used grep for k = 0, and agrep and nrgrep for 𝑘𝜖{1,2,3,8}, respectively.

First, we performed individual searches for each pattern 𝑝𝜖𝑇3 in the indexed EST set T1. When

searching with the Unix tools all searches were started to match only complete strings to the given

pattern. For exact search, we outperform grep significantly with a factor of 63 for Hamming distance

and a factor of 50 for edit distance scoring enabled. Figure 4 contrasts the average execution times of

inexact searches to agrep and nrgrep. For very short patterns, we outperform agrep with factors in the

range of 640 for k = 1 up to 1063 for k = 8 on Hamming distance and a factor up to 450 for edit

distance constraints. When searching with patterns of arbitrary length, we are up to 60 times faster

than nrgrep for Hamming distance and up to 45 times faster for edit distance. Even if we add the costs

for index creation to the evaluation, PETER amortizes quite fast. For example, if we run multiple

Hamming distance (edit distance, respectively) searches in T1 with k = 1, it takes only 10 (15) searches

to outperform the cumulated runtimes of agrep. Compared to nrgrep, it takes 125 (105) Hamming

distance (edit distance) queries until PETER is profitable.

Fig. 3. Left: Properties of EST sets. Right: Index creation (line) wrt. set size (bar).

Fig. 4. Search in PETER vs. Unix tools for pϵT3, kϵ{1,2,3,8} (log-scale).

For approximate joins, we are not aware of any Unix command line tool that could handle this

problem. Comparing edit distance to Hamming distance joins, the latter always performed in a range

of 30% to 60 % better, mostly dependent on the given threshold. We observe an exponential growth of

join execution times with respect to the threshold although the result sets don’t grow exponentially.

The reason for this is that the search space increases exponentially with growing k. While tree

traversal, PETER descends further as k grows and for every additional node, that is reached in T ,

there are |σ| additional sub-trees examined in S.

Performance inside Oracle

We compared PETER’s performance against exact and similarity-based search and joins inside the

Oracle. For searching, we performed single SELECT queries on the B*-indexed relation T1 for each

EST string in T3. At all times and for different pattern length, the built-in SELECT-operator achieves

better runtimes than a prefix tree based search. Factors vary dependent on the pattern length, in a range

of 2 (|p| ≤ 400) to 1.3 (|p| ≥ 800). There are mostly two reasons for this result. First, the operations in

the prefix tree index are handled via the extension interface which produces overhead for every call.

Second, the extension interface does not allow caching of data. While the internal implementation uses

the internal buffer pool of the database to cache the most important parts of the B*-index, this is not

possible for user-defined indexing. Given these severe drawbacks, it is notably that PETER is only so

little slower.

Fig. 5. Comparison of PETER with UDF searches (log-scale).

Regarding joins, we computed T1⋈T2i as a Hash join and as a Sort-Merge join and compared these

results to PETER. Joins on the prefix tree index always outperformed both Hash join (with factors

between 1.5 and 4) and Sort-Merge join (with factors 3.8 to 10). Note that the problem of caching is

not a severe one here, as computing the join requires loading both indexes only once.

As there are no built-in functions for similarity operations inside Oracle DB, we implemented them as

user-defined functions (UDF) in PL/SQL. We compared the execution time of UDF-based similarity

search and joins to PETER. Fig.5 shows that PETER for similarity searches performs better by an

order of magnitude than using just UDFs. For Hamming distance search, prefix tree indexing leads to

a runtime improvement factor of about 520, for edit distance searches of about 890. We also tried to

perform similarity joins for k = 1 with UDFs on T3⋈T2e, but as the join operations did not finish within

a day, we aborted the execution. Similarity joins with prefix trees finished for 𝑘𝜖{1,2} in less than one

minute.

References

[D68] D. R. Morrison. PATRICIA - practical algorithm to retrieve information coded in

 alphanumeric. Journal of the ACM (JACM), 15(4), 1968.

[F84] J. W. Fickett. Fast optimal alignment. Nucleic Acids Research, 12, 1984.

[G01] G. Navarro. A guided tour to approximate string matching. ACM Computing

 Surveys, 33(1), 2001.

[GIJ+01] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan, and D.

 Srivastava. Approximate string joins in a database (almost) for free. In VLDB

 2001.

[KA06] A. Kalyanaraman and S. Alaru. Expressed sequence tags: Clustering and

 applications. In Handbook of Computational Molecular Biology, Boca Raton,

 2006. Chapman & Hall / CRC computer information science.

[NMS04] N. Koudas, A. Marathe, and D. Srivastava. Flexible string matching against large

 databases in practice. In VLDB 2004.

[RKH+10] A. Rheinländer, M. Knobloch, N. Hochmuth, and U. Leser. Prefix Tree Indexing

 for Similarity Search and Similarity Join on Genomic Data. In SSDBM 2010.

Contact:

Astrid Rheinländer, Ulf Leser

Humboldt-Universität zu Berlin

Institut für Informatik

Wissensmanagement in der Bioinformatik

Unter den Linden 6

D-10099 Berlin

E-Mail {rheinlae,leser}@informatik.hu-berlin.de

Internet: http://www.informatik.hu-berlin.de/wbi

