
Molecular event extraction from Link Grammar parse trees

Jörg Hakenberg1, Ill és Solt2, Domonkos Tikk2,3, Luis Tari 1,
Astrid Rheinl änder3, Quang Long Ngyuen3, Graciela Gonzalez1, and Ulf Leser3

1Arizona State University, Tempe, AZ 85283, USA,
2Budapest University of Technology and Economics, 1117 Budapest, Hungary,

3Humboldt Universität zu Berlin, 10099 Berlin, Germany.

Abstract

We present an approach for extracting molec-
ular events from literature based on a deep
parser, using in a query language for parse
trees. Detected events range from gene ex-
pression to protein localization, and cover a
multitude of different entity types, including
genes/proteins, binding sites, and locations.
Furthermore, our approach is capable of rec-
ognizing negation and the speculative char-
acter of extracted statements. We first parse
documents using Link Grammar (BioLG) and
store the parse trees in a database. Events are
extracted using a newly developed query lan-
guage with traverses the BioLG linkages be-
tween trigger terms, arguments, and events.
The concrete queries are learnt from an an-
notated corpus. On BioNLP Shared Task data,
we achieve an overall F1-measure of 29.6%.

1 Introduction

Biomedical text mining aims at making the wealth
of information available in publications available for
systematic, automatic studies. An important area of
biomedical text mining is concerned with the ex-
traction of relationships between biological entities,
especially the extraction of protein–protein inter-
actions from PubMed abstracts (Krallinger et al.,
2008). The BioNLP’09 Shared Task addresses the
problem of extracting nine different types of molec-
ular events (Kim et al., 2009) and thus targets a
problem that is considerable less-well studied than
protein-protein interactions. Such molecular events
include statements about the expression level of
genes, the binding sites of proteins, and the up/down

regulation of genes, among others. All events fo-
cus on genes/proteins and may include only a single
protein (e.g., protein catabolism), multiple proteins
(e.g., binding), and other arguments (e.g., phospho-
rylation site; protein location). The most complex
type of event considered in the task are regulations,
which may refer to other events (negative regulation
of gene expression) and may also include causes as
arguments. The task also addresses the problem that
experimental findings often are described in a defen-
sive manner (“Our results suggest ...”) or may appear
in negated context. This meta-information about an
extracted event should be taken into account when
text mining results are used in automated analysis
pipelines, but recognizing the degree of confidence
that can be put into an event adds further complex-
ity to the task. Overall, the three tasks in BioNLP’09
are:1) event detection and characterization,2) event
argument recognition, and3) recognition of nega-
tions and speculations.

The approach we present in this paper addresses
all three tasks. Essentially, our system consists of
three components: A deep parser, a query language
for parse trees, and a set of queries that extract spe-
cific events from parse trees. First, we use the Bio-
LG parser (Pyysalo et al., 2006) for parsing sen-
tences into a graph-like structure. Essentially, Bio-
LG recognizes the syntactic structure of a sentence
and represents this information in a tree. It adds links
between semantically connected elements, such as
the links between a verb and its object and sub-
ject. Second, we store the result of BioLG in a re-
lational database. This information is accessed by a
special-purpose query language (Tu et al., 2008) that

����������
	
� ��
����

	 � ������������� ��������� ���������� !" �� � "
Figure 1: Parse tree where constituents are connected by
solid lines, linkages between terminals shown as dotted
lines. E: adverb to verb, S: subject to verb, O: verb to
object.

matches a user-defined linguistic pattern describ-
ing relationships between terms (the query) to the
database of stored graphs. The query language thus
is a powerful, scalable, extensible, and systematic
way of describing extraction patterns. Using these
tools, we can solve the BioNLP tasks by means of a
set of queries, extracted from the training data set.

2 Methods

The Link Grammar parser is a deep syntactic parser
based on the Link Grammar theory (Sleator and
Temperley, 1993), which consists of a set of words
and linking requirements between words. The par-
ticular implementation of Link Grammar parsing we
use in our system is the BioLG parser described
in Pyysalo et al. (2006), which modifies the origi-
nal parser by extending its dictionary and by adding
more rules for guessing structures when facing un-
known words. The output of the parser is twofold:
it produces aconstituent tree as well as alinkage
that shows the dependencies between words. In Fig-
ure 1, solid lines indicate parent-child relationships
in the constituent tree, and dotted lines represent the
linkage. Three links were detected in the sentence:
S connects the subject-nounRAD53 to the transitive
verb regulates, O connects the transitive verb
regulates to the direct objectDBF4, andE con-
nects the verb-modifying adverbpositively to
the verbregulates.

Our detection of arguments for events is based on
Link Grammar linkages obtained from training data.
Essentially, we automatically extract all shortest link
paths that connect event trigger terms to themes,
themes to sites, themes to locations, and so on. We

+---------------Jp------------+
| +----------CH-------------+
| | +---------CH----------+

+----Mp----+ | | +----CH----+
| | | | | |
expression of P53, Rb, and Bcl-xL proteins

Figure 2: Linkage in a gene expression evidence. Mp:
prepositional phrase modifying a noun; Jp: connects
preposition to object; CH: noun modifier.

describe these examples as queries against a parse
tree, and evaluate these queries on the test data to ex-
tract and assemble events. An example for a linkage
in a gene expression evidence is shown in Figure 2.
It illustrates that the event trigger term ‘expression’
is connected to the three proteins ‘P53’, ‘Rb’, and
‘Bcl-XL’ in exactly the same way.

Our method for event argument recognition is
based on three components. The first parses train-
ing as well as test data using the BioLG parser,
and stores the result in a relational database. The
second component is a query language to search
the databases for known linkages. The third compo-
nent extracts these linkages from training data and
rewrites into such queries. These components are de-
tailed in Sections 2.1 to 2.3. Section 2.4 explains
our methods for context identification with respect
to negations and speculations. Sections 2.5 and 2.6,
finally, explain how we handle anaphora and enu-
merations, respectively.

2.1 Parse Tree Database and Query Language

A fundamental component of our approach is a parse
tree database (PTDB) for storing and querying parse
trees (Tu et al., 2008). PTDB is a relational database
for storing the results of the BioLG parser on arbi-
trary texts. For the task, we parsed all texts from the
training, development and testing data set. Recogni-
tion of entity types (gene etc.) of word tokens relied
on the provided annotation. Each abstract is repre-
sented in a manner that captures both the document
structure (such as title, sections, sentences) and the
parse trees of sentences.

Parse trees in PTDB are accessed by means of
a special purpose query language, called PTQL.
PTQL is an extension to LPath (Bird et al., 2006),
which itself is an adaptation of XPath (XPath, 2009)
to linguistic structures. Essentially, a PTQL query is
a hierarchical pattern that is matched against a set

of constituent trees together with additional require-
ments on linkages between matches. More specifi-
cally, a PTQL query consists four components de-
limited by colons:1) tree pattern,2) link conditions,
3) proximity conditions, and4) return expression. A
tree pattern describes the hierarchical structure and
the horizontal order between the nodes of a parse
tree, alink condition describes the linking dependen-
cies between nodes, aproximity condition specifies
words that are within a specified number of words
in the sentence, and thereturn expression defines
which variables should be returned as query result.
An example PTQL query is shown in Figure 3.

PTQL queries are evaluated on a PTDB using
a two step process. A query is first translated into
an IR-style keyword query to efficiently filter out
irrelevant sentences. This step is performed out-
side the database using an inverted index built with
Lucene (2009). In the second step, the query is trans-
lated into a complex SQL command which is re-
stricted to the sentence IDs that passed the first step.
This query is evaluated on the database, and the re-
sults are projected onto the return expression.

2.2 Extracting PTQL queries

From all events in the training data, we searched
for the shortest link paths that connected event trig-
gers to themes, themes to sites, themes to locations,
and so on. For each of the different event classes,
we obtained a set of link paths connecting the event
trigger to the theme. Links from themes to sites
(required for phosphorylation, binding, and regula-
tion events) where extracted from all three and then
joined into one set. We transformed all linkages into
PTQL queries, and ran these queries on the develop-
ment and test data sets, respectively. Note that this
entire process is performed automatically. As many
link paths are identical expect for their event trigger
terms, we manually grouped similar terms together;
queries were then expanded automatically to allow
for either one. An example is the following group
of inter-changeable terms that could replace ‘expres-
sion’ in gene expression events (see Figure 3):

expression ≡ {expression, overexpression, coex-
pression, production, overproduction, generation,
synthesis, biosynthesis, transfection, cotransfection}

For evaluation on the development data, we ex-
tracted all queries from the training data; for evalu-

ation on the test set, queries originate from training
and development data together.

2.3 Regular expressions forregulation events

Regarding regulation events, we concentrated on the
recognition of events with only the theme slot filled.
In the training data, 73.8% of the regulations (incl.
positive and negative regulation) do not have any
site, cause, or cause-site arguments/participants. We
addressed this task using regular expressions that
were matched against the annotated sentences in the
PTDB. Therefore, we sought for trigger expressions
of regulation events that immediately precede or fol-
low an annotation (protein name or event trigger).
For all four possible combinations (precede/follow
and protein/trigger) we created regular expressions
that were able to recognize the given patterns, for
example:
• (NOUN:trigger) (of) (PROTEIN), finds
[up-regulation]Trigger:Pos reg of [Fas ligand]Protein

• (PROTEIN) (NOUN:trigger), finds
mediate [IL-8]Protein [induction]Trigger:Pos reg

• (VERB:trigger) (EVENT:trigger), finds
[inhibit]Trigger:Neg reg [secretion]Event:Loc

• (EVENT:trigger) (VERB:trigger), finds
TNF-alpha [release]Event:Loc [peaked]Trigger:Pos reg

The actual patterns also allowed some event class
specific prepositions (of, with, to, etc.) and deter-
miners between the regulation trigger and the pro-
tein or event trigger. However, care has to be taken
as regulation events often are embedded in nested
structures which are not properly recognized by
regular expressions. Therefore, whenever a regula-
tion event pattern had been identified, we also con-
structed another event candidate with the appropri-
ate subexpression as the trigger, such as:

[[IkappaBalpha]Protein induction]]Event:Pos reg

was completely [inhibited]Trigger:Neg reg.

2.4 Context identification to find negations and
speculations

We identifiednegative context of events by simul-
taneously applying four different methods. In the
first three methods, we identified candidatenega-
tion trigger expressions (NTEs) by means of regu-
lar expressions that were created based on the anal-
ysis of surface patterns of negation annotation in the
training set. The fourth method uses the parse trees

//S{ //N[value=‘expression’](e) -> //PRP[value=‘of’](a)
=> //?[tag=‘gene’](t) -> //N[value=‘gene’](h) }
: e !Mp a and a !Jp t and t !CH h : : e.value, t.value

Figure 3: PTQL query for the extraction of some gene expression event. It searches for a sentence S that contains a
noun ‘expression’, followed by a preposition ‘of’, which isthen followed by a noun phrase (2nd line) that contains a
gene name (‘//?’, any node with tag=gene) and has ‘gene’ as head noun. The link types are specified in the 3rd line
using the variables each node is bound to (e,a,t,h): ‘expression’ has to be connected to ‘of’ with an ‘Mp’ link, the link
from ’of’ to the head noun has to be ’Jp’, and the ‘CH’ link specifies ‘gene’ as head noun. The return values of the
query are the values of nodes ’e’ and ’t’, which are bound to the event trigger ‘expression’ and the gene, respectively.
This query would return all three event/theme pairs from thephrase in Figure 2.

of sentences including negated event using a set of
queries for the identification of candidate NTEs. To
fine tune the combined prediction, we used some
manually encoded exceptions.

1) NTEs inside the trigger of an event: these ex-
pressions are partly or entirely event triggers and
usually suggest negative context, such asinability
andundetectable. In the training set, sometimes an
NTE indicated negation for some event classes but
not for others; we added exceptions to exclude such
NTE–event class combinations (e.g.,deficientwith
a negative regulation).

2) NTEs immediately preceding an annotation
(protein name or event trigger), e.g.,no(t), lack of,
minimal, absence of, cannot, etc.

3) NTEs in the span of all the annotation related
to an event (triggers, attributes recursively): these
NTEs can span over multiple sentences. Starting
with a hand-crafted dictionary of negation context
triggers (Solt et al., 2009), we selected those dictio-
nary items that had a positive effect on overall F1-
measure.

4) NTEs from parse tree patterns: We identi-
fied on the training data parse tree patterns in-
cluding NTEs (using hand-made NTE dictionary)
and protein names or event triggers. Candidate pat-
terns, e.g.,regulate*⇒in⇒but→not⇒in,
were then formulated as queries against the PTDB
and filtered via optimization.

We also applied the parse tree based method to
identify speculation context (details not shown). We
observed that some apparently speculative contexts
were, to our surprise, considered as facts by the an-
notators if the pattern occurred in the last sentence
of the abstract, such as:These data suggests. . .. To
counteract such situations, we developed a pattern-
location heuristic by dividing the abstract into title,

body, and conclusion part. Frequent speculation can-
didate patterns were evaluated separately on each
part and filtered via optimization.

2.5 Resolving anaphora

Almost 8% of all events in the training set span
multiple sentences. Our solution outlined so far
works at the sentence level and is therefore unable
to correctly recognize such events. To overcome
this deficiency, we developed a baseline method
for anaphora resolution, which is implemented as a
pre–processing step. First, we identified all events
spanning multiple sentence in the training set and
collected typical anaphora expressions for proteins
(e.g., this gene, these proteins, both factors). For
each anaphora occurrence in development and test
sets, we searched the closest preceding protein(s);
here we also took into account if the anaphora was
singular or plural. We also expected that resolved
anaphora would generate additional PTQL queries
and would thus improve the overall recall twofold.
Unfortunately we could not analyze the results of
our resolution approach on the train set (due to lack
of time) and could hence not take full advantage of
this idea. So far, we only addressed anaphora refer-
ring to protein(s). Once an anaphora and its refer-
enced expression(s) were recognized, we effectively
duplicated the original sentence with referenced ex-
pressions substituting the anaphora; PTQL queries
would thus run on the original sentence as well as
on the resolved version.

2.6 Handling enumerations

In most cases, PTQL queries were able to correctly
recognize events that involve enumerated entities.
However, when the enumeration included some spe-
cial characters (brackets, slashes) or led to incor-

rect parse trees, our queries were not able to extract
all annotated events. We applied post-processing to
solve this problem, which was applicable when at
least one protein in the enumeration was annotated
as a part of an event. Post-processing was based on
regular expressions searching for additional proteins
occurring in the neighborhood of an initial one, sep-
arated from it only by an enumeration separator. If
found, the original event was replicated by substitut-
ing the original protein with the new ones.

3 Datasets and results

Statistics concerning event classes and number of in-
stances per event class can be found in the overview
paper for the shared task, see (Kim et al., 2009). All
in all, we extracted 1845 different link paths from
the training data (2197 from training plus devel-
opment) that connect two constituents each (event
trigger term to protein, or protein to site, for in-
stance), corresponding to as many PTQL queries.
Table 1 shows the number of link paths per event
class and argument type. From Table 2, which lists
the top query per event class according to support
in the training data, it becomes obvious that most
events are described in fairly simple ways (“gene
expression” or “ phosphorylation of gene”). Adding
the development data increased the number of events
by 20.8% and the number of unique link paths
by 19.1%. This might indicate that adding more data
in the future will produce less and less new link
paths, but we still observe a decent amount of link
paths yet not covered. Per link path type, the increase
rate ranged from only 9% (localization: theme to at-
loc) over 11-15% for basic events (gene-expression
or transcription trigger term to theme) to almost 27%
(regulation: theme to site).

On the BioNLP’09 Shared Task test set, the
method achieved an F1-score of 45.6% for the ba-
sic types, 9% on regulation events, with a total of
29.3% for Task 2 (see Table 3). On Task 3, the F1-
score was 8.6%. For Task 1, which was handled by
us implicitly with Task 2, the F1-score was 32.1%.
The combined F1-score for all tasks was 29.6%. Pre-
cision was significantly higher than recall in all cases
(overall: 60% precision at 20% recall).

Concerning regulation events, since we only
aimed to recognize the simplest ones with this

Event class: arguments Unique Total
Localization: event-theme 120 237
Localization: theme-atloc 39 56
Localization: theme-toloc 28 43
Binding: event-theme 578 996
Binding: theme-site 64 130
Gene expression: event-theme 447 1507
Transcription: event-theme 208 498
Protein catabolism: event-theme 42 98
Phosphorylation: event-theme 59 153
Phosphorylation: theme-site 34 60
Regulation: event-theme 178 267
Regulation: protein-site 11 40
Regulation: event-csite 2 2
Regulation: event-cause 35 54

Sum 1845 4141

Table 1: Number of link paths per event class and pair of
arguments (based on the training data). Themes are pro-
teins for the first block of events, and proteins or other
events for the three regulation types. atloc: at location,
toloc: to location.

Event class TP FP FN Rec Prec F1
Localization 42 28 132 24.14 60.00 34.43
Binding 69 86 280 19.77 44.52 27.38
Gene expr. 373 99 349 51.66 79.03 62.48
Transcription 22 30 105 16.06 42.31 23.28
Protein cat. 7 5 7 50.00 58.33 53.85
Phosphoryl. 31 57 108 22.30 35.23 27.31
Sub-total 544 305 991 35.44 64.08 45.64
Regulation 1 12 291 0.34 7.69 0.66
Positive reg. 70 146 917 7.09 32.41 11.64
Negative reg. 14 14 365 3.69 50.00 6.88
Reg. total 85 172 1573 5.13 33.07 8.88
Task 2 total 629 477 2564 19.70 56.87 29.26
Negation 9 24 218 3.96 27.27 6.92
Speculation 13 33 195 6.25 28.26 10.24
Task 3 total 22 57 413 5.06 27.85 8.56
Overall 710 475 2907 19.63 59.9229.57

Table 3: Official results for the BioNLP’09 Shared Task
tasks 2 and 3, approximate span, recursive matching.

method, not surprisingly the recall of the method is
very low, but the precision is on par with the ones of
other events (for positive and negative regulation).
The precision gets diminished because only a partial
event was submitted, accounting for a false positive
and false negative.

The post-processing improved the F1-score of
Task 2 slightly (1.2%) for the first 6 events at 3%
better recall and 6% worse precision. For regulation

Pair Nodes Links Support
Localization↔ theme GENE(t1) => localization(e1) t1→CH→e1 36/237
Binding↔ theme GENE(t1) => association(e1) t1→CH→e1 42/996
Gene expression↔ theme GENE(t1) => expression(e1) t1→CH→e1 347/1507
Transcription↔ theme GENE(t1) => gene(a1) => transcription(e1) t1→CH→a1 and a1→CH→e1 72/498
Protein catab.↔ theme proteolysis(e1) => of(a1) => GENE(t1) e1→M→a1 and a1→J→t1 32/98
Phosphorylation↔ theme phosphorylation(e1) => of(a1) => GENE(t1) e1→M→a1 and a1→J→t1 48/153

Table 2: Queries per argument pair (event↔theme) with the highest support in the training data. All nodes are bound to
variables (round brackets) that are use in the links to depict connections between nodes. Note that all event trigger terms
are placeholders for alternatives (see text): ‘expression’ also refers to instances that used the terms ‘co-expression’,
‘synthesis’, ‘production’, etc. GENE: wildcard for any gene name; RES: residue. CH: links head noun to modifying
noun; M: connects nouns to post-nominal modifiers; J: connects prepositions to objects.

Method TP FP FN P R F1
Inside trigger 15 8 92 65.2 14.0 23.1
Before trigger 62 17 45 78.5 57.9 66.7
Span-based 6 3 101 66.7 5.6 10.3
Parse tree query 4 1 103 60.0 5.6 10.7
(I∪B∪S) 79 27 28 74.5 73.8 74.2
(I∪B∪S∪P) 82 28 25 76.6 74.6 75.6
I∪B∪S∪P noF 84 79 23 50.9 75.7 60.9

Table 4: Performance for negation context identification
on thedevelopment set. The last row indicates the im-
portance of fine tuning (F): when event class–trigger pair
exceptions and NTE exceptions are not applied, the pre-
cision decreases considerably with only a small increase
in recall. See text for details in each method.

events its impact was higher since for those no Bio-
LG based solution was applied. Its overall effect on
Task 2 was almost a 4% improvement in F1-score
and recall, at 15% decreased precision.

Identification of negative context

Table 4 shows the effectiveness of each method
for the identification of negative context on the de-
velopment set. Searching for the negation inside the
event trigger had little effect on the final results,
since a specific word was rarely identified as being
the trigger of more than one event classes. The most
reliable spot to look for negation was immediately
before the term that triggered the event (lack of ex-
pression of . . .).

Identification of speculation

Table 5 shows the effectiveness of our parse
tree based method for the identification of spec-
ulation context on the development set. With the
use of location-based heuristic we could improve

Method TP FP FN P R F1
w/o location hrst. 53 47 42 53.0 55.8 54.4
with location hrst. 52 34 43 60.5 54.7 57.5

Table 5: Performance of parse tree based speculation
identification, with or without location heuristics; eval-
uated on the development set.

the F1-score of our method by 3%, at 7% bet-
ter precision and 1% worse recall. The parse tree
based method worked significantly better for spec-
ulative context than for negation, because specula-
tions are expressed in less multifarious way, and trig-
ger words are more specific for the context.

3.1 Error analysis

An analysis of false positives (FP) and false neg-
atives (FN) revealed the following main types of
errors (in order of decreasing gravity). Our system
produced much better precision than recall, which is
reflected in dominance of FNs over FPs. Note that,
as we used parse trees on training and test data, parse
errors result both in incorrect queries and wrongly
extracted results. Some of these errors, mainly due
to missing or incorrect parse trees or links, could be
recovered by the post-processing if the surface pat-
terns were simple.
1. FNs: no corresponding link path query
2. FNs: there exists a corresponding yet slightly
different link
3. FNs: query links to a (pre or post) modifier of the
gene, but not the actual gene name
4. FNs: query misses one argument
5. FPs: wrong event categorization (mostly gene
expression vs. transcription)

6. FNs: unseen event trigger term, location, or site
7. FPs: wrong despite perfect match wrt. a link path
from the training data
8. FNs, FPs: incorrect or partial parse tree
9. FNs: problems with anaphora, brackets, or
enumerations

We discuss these error classes in more detail. The
first problem may be attributed to the small size
of the training data, but is also a general property
of pattern-based methods in NLP. The second class
stems from the current inability of our query lan-
guage to deal with morpho-syntactical variation in
language (see next Section). A large portion (3) of
false negatives was due to link paths that went to
the gene/theme in the training data, but to the head
of a noun phrase that contained a gene/theme in the
test data (or vice versa); or the link went to a noun
pre-modifier. An example is the following, where
the first phrase originates from the training data and
gene is placeholder for the actual gene/protein name:

“... phosphorylatesgene ...”
“... phosphorylatesgene protein ...”
“... phosphorylates X domain ofgene ...”

In all three cases, there is a link from the verb to its
object, but in the lower two examples, that object is
‘protein’ and ‘domain’, respectively. Only for a few
such cases, all three link paths were contained in the
training data.

For 5% of the false positive events (5), we
predicted the wrong event class, while all trigger
terms/arguments were correct. Half of those were
mix-ups of positive regulation, predicted as gene ex-
pression; another group has gene expression pre-
dicted as localization. 13% of FPs were a result of
both: the prediction was part of a corresponding FN
(but some argument was missing), and at the same
time we predicted the wrong type. For a small frac-
tion (1.5%) of false negative events on the devel-
opment set, we found a corresponding false posi-
tive event where one argument (ToLoc, Cause, Site,
Theme2) was missing; 11 of those were binding
events (comprising 9% of FNs for binding).

A relatively small portion of false negatives were
due to non-existing linkages (8) for a sentence. We
stopped parsing after 30sec per sentence; this yields
partial linkages in some cases, which we could still
use for extraction of link paths (training data) or

querying against (test data); sometimes, no linkage
was available at all. This timeout also influences the
quality of linkages, which result in false positives as
well as false negatives.

As for context identification, our approach per-
formed significantly weaker on the test set, since
over 70% of negations and speculations were re-
lated to regulation events (measured on the joined
train and development sets), for which we applied a
coarse baseline method, i.e., here a large part of the
base events were missing.

4 Related work

We focus our discussion on approaches to informa-
tion extraction that also use LinkGrammar. Evalua-
tions of other deep parsers for information extrac-
tion in the life sciences may, for instance, be found
in Miyao et al. (2009) and Pyysalo et al. (2008).
Note that most other systems based on deep pars-
ing convert IE into a classification problem, often
using some kind of convolution kernels, for exam-
ple, Kim et al. (2008); instead, we employ a pattern-
matching approach where patterns are expressed as
queries. A similar approach is described in Fundel
et al. (2007), where three rules are defined to ex-
tract protein-protein interactions from an aggregated
form of dependency graphs. These rules could in
fact easily be expressed as queries in our language.

Ding et al. (2003) studied the extraction of
protein-protein interactions using the Link Grammar
parser. After some manual sentence simplification to
increase parsing efficiency, their system assumed an
interaction whenever two proteins were connected
via a link path; an adjustable threshold allowed to
cut-off too long paths. As they used the original ver-
sion of Link Grammar, Ding et al. argue that adap-
tations to the biomedical domain would enhance the
performance. Pyysalo et al. (2004) extracted inter-
action subgraphs, spanning all predicates and ar-
guments at the same time, from the Link Gram-
mar linkage of known examples. Failure analysis re-
vealed that 34% of the errors were due to unknown
grammatical structures, 26% due to dictionary issues
and a further 17% due to unknown words.

An adaption of Link Grammar that handles some
of the failure cases is BioLG (Pyysalo et al., 2006).
BioLG includes additional morpho-guessing rules,

lexicon expansion, and disambiguation using a POS
tagger. Adding morpho-guessing rules and using a
domain-specific POS tagger for disambiguation re-
sulted in an increase from 74.2 to 76.8% in re-
call; it also increased parsing efficiency by 45%.
Szolovits (2003) adapted the Link Grammar parser
by expanding the lexicon with data from UMLS
Specialist. This expansion consisted of 200k new en-
tries (including 74k phrases), resulting in a 17% in-
crease in coverage on a corpus of 495k words.

The main differences between the cited previous
works and our approach are:1) we extract only pair-
wise subgraphs (e.g., from a trigger term to a sin-
gle protein) and then attempt to construct events
based on such small components;2) we consider
link types, predicates, prepositions, and other nodes
as requirements for a valid linkage with respect to
event argument recognition;3) we use a query lan-
guage to query persistently stored parse trees instead
of parsing each sentence and then comparing it to
known link paths;4) we combine subgraph match-
ing with extensive pre- and post-processing rules us-
ing regular expressions and other filtering rules.

5 Conclusions

We presented a method for extraction of molecu-
lar events from text. We distinguished nine classes
of events and identified arguments associated with
them. We also characterized each event for either be-
ing speculative or negated. The underlying method
extracts link paths between all relevant pairs of ar-
guments involved in the event from a Link Grammar
parse (BioLG, see Pyysalo et al. (2006)). These link
paths connect, for instance, an event trigger term
to its theme, or a protein theme to a binding site.
We query the graph formed by these linkages us-
ing a dedicated query language for parse trees (Tu
et al., 2008) which allows us to very quickly imple-
ment large sets of rules. We combine queries with
extensive pre- and post-processing using a mixture
of different techniques. For the BioNLP’09 Shared
Task, we focused on all event classes but the three
types of regulation. For the other six, we obtain an
overall F1-score of 45.6%, for all nine it was 29.3%
(task 2). Including speculation and negation (task
3), the overall total on all nine event classes was
29.6%. All in all, we found that link paths connect-

+----Js----+ +--Js-+
+--Mp--+ +--CH--+ +--Mp--+ |
| | | | | | |

expression of c-Fos gene expression of c-Fos

Figure 4: Example for alternative structures / optional
nodes. In this case, the linkage should reflect the connec-
tion from ‘expression’ to a noun that refers to a gene, in-
dependent of its head. The ‘Mp’ and ‘Js’ links would be
required, the ‘CH’ link from head to actual gene optional.

ing constituents of known types (e.g., event trigger
term, gene) as extracted from training data yield a
precise way for event argument detection. Using a
specialized query language on pre-processed data
(NER; parsing) greatly enhances the utility of such
extracted rules to put together more complex events.
Still, our current approach lacks in overall recall
(20–52%, depending on event class), often due to
slight variations that include, for instance, alterna-
tive nodes along a link path that were not observed
in training data.

Our approach could be improved in various ways.
First, we currently extract queries from the train-
ing corpus and use them directly as they are. We
see that to improve recall, queries need to be gen-
eralized further. In previous work (Hakenberg et al.,
2008) we showed that such generalized rules may be
learned automatically (from much larger corpora),
which helped to increase recall considerably at a
modest precision penalty. Second, our query lan-
guage currently performs exact matching, while it
would be more advantageous to implement some
form of fuzzy semantics, producing a ranked list of
hits. This could include wildcards, alternative nodes,
alternative sub-paths, optional nodes etc. An exam-
ple is discussed in Figure 4. Finally, we also believe
that it would be rather easy to include more sophis-
ticated ways of performing anaphora resolution to
properly address events spanning multiple sentences
and referential phrases within sentences.

Acknowledgments

We kindly acknowledge funding by Science
Foundation Arizona and Alexander-von-Humboldt
Stiftung.

References

Steven Bird, Yi Chen, Susan B. Davidson, Haejoong Lee,
Yifeng Zheng. 2006. Designing and Evaluating an
XPath Dialect for Linguistic Queries. In:Proc ICDE,
pp.52, Washington, DC, USA.

Jing Ding, Daniel Berleant, Dan Nettleton, Eve S.
Wurtele. 2002. Mining MEDLINE: Abstracts, Sen-
tences, or Phrases? In:Proc. PSB, pp. 326–337,
Kaua’i, Hawaii, USA.

Jing Ding, Daniel Berleant, Jun Xu, Andy W. Ful-
mer. 2003. Extracting Biochemical Interactions from
MEDLINE Using a Link Grammar Parser. In:Proc
IEEE ICTAI, pp. 467–471.

Katrin Fundel, Robert Küffner, Ralf Zimmer. 2007.
RelEx–relation extraction using dependency parse
trees.Bioinformatics, 23(3):365–371.

Jörg Hakenberg, Conrad Plake, Loic Royer, Hendrik
Strobelt, Ulf Leser, Michael Schroeder. 2008. Gene
mention normalization and interaction extraction with
context models and sentence motifs.Genome Biology,
9(S1):S14.

Seonho Kim, Juntae Yoon, Jihoon Yang. 2008. Kernel
approaches for genic interaction extraction.Bioinfor-
matics, 24(1):118–126.

Jin-Dong Kim, Tomoko Ohta, Sampo Pyysalo, Yoshi-
nobu Kano, Jun’ichi Tsujii. 2009. Overview of
BioNLP’09 Shared Task on Event Extraction. In:
Proc Natural Language Processing in Biomedicine
(BioNLP) NAACL 2009 Workshop, June 4-5, Boulder,
CO, USA.

Martin Krallinger, Alfonso Valencia, Lynette Hirschman.
2008. Linking genes to literature: text mining, infor-
mation extraction, and retrieval applications for biol-
ogy. Genome Biol, 9(Suppl 2):S8.

Lucene, available at http://lucene.apache.org
Yusuke Miyao, Kenji Sagae, Rune Sætre, Takuya Mat-

suzaki, Jun’ichi Tsujii. 2009. Evaluating contribu-
tions of natural language parsers to protein-protein in-
teraction extraction.Bioinformatics, 25(3):394–400.

Sampo Pyysalo, Filip Ginter, Tapio Pahikkala, Jorma
Boberg, Jouni Järvinen, Tapio Salakoski, Jeppe
Koivula. 2004. Analysis of Link Grammar on
Biomedical Dependency Corpus Targeted at Protein-
Protein Interactions. In:NLPBA/BioNLP at COLING-
2004, pp. 15–21, Geneva, Switzerland.

Sampo Pyysalo, Tapio Salakoski, Sophie Aubin, Ade-
line Nazarenko. 2006. Lexical adaptation of link
grammar to the biomedical sublanguage: a compara-
tive evaluation of three approaches.BMC Bioinfor-
matics, 7(Suppl 2):S2.

Sampo Pyysalo, Antti Airola, Juho Heimonen, Jari
Björne, Filip Ginter, Tapio Salakoski Pyysalo. 2008.

Comparative analysis of five protein-protein interac-
tion corpora.BMC Bioinformatics, 9(Suppl 3):S6.

Daniel Sleator and Davy Temperley. 1993. Parsing En-
glish with a Link Grammar. In:Proc 3rd Int Workshop
on Parsing Technologies, Aug 10-13, Tilburg/NL and
Durbuy/B.

Peter Szolovits. 2003. Adding a medical lexicon to an
English Parser. InProc AMIA, pp. 639–643, Nov 8-
12, Washington DC, USA.

Illés Solt, Domonkos Tikk, Viktor Gál, Zsolt T. Kard-
kovács. 2009. Semantic classification of diseases in
discharge summaries using a context-aware rule based
classifier.JAMIA, in press.

Luis Tari, Jörg Hakenberg, Graciela Gonzalez, Chitta
Baral. Querying a Parse Tree Database of Medline
Text to Synthesize User-Specific Biomolecular Net-
works. InProc Pac Symp Biocomput, 14:87-98.

Phan Huy Tu, Chitta Baral, Yi Chen, and Graciela Gonza-
lez. 2008. Generalized text extraction from molecular
biology text using parse tree database querying. Tech-
nical Report TR-08-004, Arizona State University.

XML Path Language, see http://www.w3.org/TR/xpath

