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ABSTRACTMany appliations work with graph-strutured data. Asgraphs grow in size, indexing beomes essential to ensuresu�ient query performane. We present the GRIPP in-dex struture (GRaph Indexing based on Pre- and Postordernumbering) for answering reahability queries in graphs.GRIPP requires only linear time and spae. Using GRIPP,we an answer reahability queries on graphs with 5 millionnodes on average in less than 5 milliseonds, whih is un-rivaled by previous methods. We evaluate the performaneand salability of our approah on real and syntheti randomand sale-free graphs and ompare our approah to existingindexing shemes. GRIPP is implemented as stored proe-dure inside a relational database management system andan therefore very easily be integrated into existing graph-oriented appliations.
Categories and Subject DescriptorsH.2.8 [Database management℄: Database Appliations�graph indexing and querying
General TermsPerformane.
KeywordsGraph indexing, Reahability queries, Databases
1. INTRODUCTIONManaging, analyzing, and querying graph-like data is im-portant in many areas suh as geographi information sys-tems [14℄, web site analysis [12℄, and querying XML dou-ments with XPointers [22℄. In addition, the semanti webbuilds on RDF, a graph-based data model, and on graph-based query languages suh as RQL [19℄ or SparQL1. Thus,1http://www.w3.org/TR/rdf-sparql-query
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querying graphs will likely beome even more importantin the near future. In our own researh we mostly workwith data from the Life Siene domain. The importane ofgraphs in this area is also inreasing rapidly. It is now om-monly aknowledged that further progress in understand-ing the omplex mehanisms inside a living ell an only beahieved if the interplay of many omponents, organized innetworks, is understood [5℄. Nodes in these networks aremoleules, reations, or physial interations. These nodesmay be annotated with a vast amount of additional datastored in various databases. Edges represent interations,suh as the enzymati onversion of moleules, the regula-tion of gene expressions, or the physial interation of pro-teins. Large networks, e.g., metaboli [18℄ or protein-proteininteration networks [23℄, are built from single interations.In [16℄ van Helden and olleagues identi�ed several impor-tant queries on biologial networks. For instane, the ques-tion "�nd all genes whose expressions is diretly or indiretlyin�uened by a given moleule" an be mapped to a reah-ability query in a direted graph of genes and regulationevents.The size of the graphs or networks under onsiderationan be very large. Typial biologial networks are urrentlyin the range of tens of thousands of nodes. This num-ber inreases dramatially as ativity in measuring intera-tions moves from bateria to higher organisms, suh as hu-mans [4℄, whih are believed to ontain more than 300,000di�erent proteins. Already today, networks of biomedialentities (genes, diseases, drugs, et.) extrated from publi-ation databases ontain more than 10 million edges2.One important type of queries in graphs are reahabilityqueries. Given two nodes v and w in a graph, we want toverify whether there exists a path from v to w. There aretwo obvious approahes to answer suh queries. First, onean reursively traverse the graph at query time, startingfrom v and performing a depth-�rst or breadth-�rst searhuntil w is reahed or no more edges remain [9℄. Given agraph G with n nodes and m edges this method requires
O(m) lookups. No index is needed, but performane is badeven on small graphs. Seond, one an pre-ompute thetransitive losure (TC) of the graph. Using the TC as indexreahability queries an be answered by a single lookup. Buton the downside, the omputation of the TC is O(n3) andits size O(n2) [9℄. This renders its omputation and storageinfeasible for large graphs (see also Setion 7).Table 1 shows the worst ase omplexity of several ap-proahes to redue omputation ost or storage spae (see2See http://www.pubgene.org.



Setion 2.1 for details). Chen et al. [6℄ (Labeling+SSPI)only index a spanning tree and store additional edges ina separate index struture, alled SSPI. The entire indexrequires O(n+m) spae, but parts must be traversed reur-sively at query time. The Dual Labeling approah by Wanget al. [26℄ an be queried in onstant time. They also �rstompute a spanning tree and build a ondensed transitivelosure over the remaining t edges. Index generation requires
O(n + m + t3) time and its size is O(n + t2). This is aept-able for sparse, tree-like graphs (with t ≪ n), but for densergraphs (t > 2n) the method also requires an prohibitivelylarge amount of spae. Shenkel et al. [22℄ proposed HOPI,a method to ompute the 2-Hop-Cover, whih requires only
O(nm1/2) spae, but as the TC O(n3) time to ompute theindex.Table 1: Worst ase omplexities of di�erent indexand query strategies to answer reahability queries.Query time Index time Index sizeReursive O(n + m) - -Labeling+SSPI O(m− n) O(n + m) O(n + m)GRIPP O(m− n) O(n + m) O(n + m)Dual Labeling O(1) O(n + m + t3) O(n + t2)HOPI O(m1/2) O(n3) O(nm1/2)TC O(1) O(n3) O(n2)In this paper we present the GRIPP index (GRaph Index-ing based on Pre- and Postorder numbering) for indexingvery large graphs. Its basi idea is an adaptation of the pre-and postorder numbering sheme � so far only applied totrees [10℄ and direted, ayli graphs (DAGs) [1, 24℄ � to(yli, possibly unrooted) graphs. The GRIPP index anbe omputed in O(n + m) time and requires only O(n + m)spae. Therefore, GRIPP an be used to index graphs farbeyond the sope of the TC or Dual Labeling. Answer-ing reahability queries with GRIPP requires in worst ase
O(m − n) time (see Table 1), whih is the same as for La-beling+SSPI. However, we will show that with GRIPP theatual time to answer a reahability query is almost on-stant over di�erent sizes, shapes, and densities of graphs.We will support this laim both experimentally and analyt-ially. GRIPP indexes graphs ontaining 50,000 nodes and100,000 edges in ∼ 120 se and answers reahability querieson suh graphs in ∼ 3.5 ms using ∼ 2 queries. Even for thelargest graphs tested, onsisting of 5 million nodes and 10million edges, the query time inreases only marginally.GRIPP is designed as a persistent index stored in a rela-tional database management system (RDBMS). All opera-tions for indexing and querying are implemented as storedproedures, thus fully leveraging the main memory manage-ment apabilities of an RDBMS. Therefore, GRIPP has nopartiular requirements regarding the size of available mainmemory. Integrating our method into an existing, RDBMS-based appliation only requires the installation of storedproedures. After the index is reated using a simple SQLfuntion, appliations use another SQL funtion to answerreahability queries. We therefore believe that GRIPP is ahighly pratial, non-intrusive method.Our paper is organized as follows. In the next setion wedesribe our model and disuss related work. In Setion 3we present the GRIPP index struture itself. In Setion 4we show how to evaluate reahability queries using GRIPPand propose pruning strategies. The e�etiveness of GRIPP

depends on the order in whih the graph is traversed duringindex reation, whih is disussed in Setion 5. In Setion6 we desribe several heuristis for an e�ient implementa-tion of GRIPP. In Setion 7 we give experimental results forsyntheti random, syntheti sale-free, and real biologialnetworks, with graph sizes ranging from 1,000 to 5,000,000nodes and di�erent graph densities. Setion 8 onludes thepaper.
2. BACKGROUND AND RELATED WORKWe adopt notation from Cormen et al. [9℄. A graph G =
(V, E) is a olletion of nodes V and edges E. We onlyonsider onneted graphs with labeled nodes and direted,unlabeled edges. The graph has n nodes and m edges, thesize of a graph is |G| = n + m. The degree of a node is thenumber of inoming and outgoing edges of the node. Thedensity of a graph is the ratio between n and m. Given agraph G, a path p is a sequene of nodes that are onnetedby direted edges.We assume that graphs are stored as a olletion of nodesand edges in an RDBMS. The information on nodes inludesa unique identi�er. Edges are stored as binary relationshipbetween two nodes, i.e., as adjaeny list.We analyze the problem of answering reahability querieson graphs. Let G = (V, E) be a graph and let v, w ∈ Vbe two nodes of G. w is reahable from v, i� there exists apath from v to w. Given two nodes v and w, the funtion
reach(v , w) returns true if w is reahable from v, and falseotherwise.Two nodes v, w ∈ G are in the same strongly onnetedomponent if reach(v , w) = reach(w , v) = true, otherwisenot. Collapsing every strongly onneted omponent into arepresentative node results in the omponent graph, whihforms a direted ayli graph (DAG).
2.1 Related WorkThe simplest way to answer reahability questions on gra-phs is to traverse the graph at query time using depth- orbreadth-�rst searh [9℄. SQL:2003 provides standard syn-tax to express reursive queries and some database man-agement systems have implemented that standard. But inmost RDBMS reursive queries annot be expressed by SQLqueries, but must be implemented using stored proedures(see Setion 7 for their performane).Another option is to pre-ompute the transitive losure(TC). The TC of a graph is the set of node pairs (v, w) forwhih a path from v to w exists. E�ient algorithms foromputing the TC in relational databases have been devel-oped [2, 21℄. But the size of the TC is O(n2) and its om-putation time O(n3), whih makes it inappliable to largegraphs. For instane, omputing the transitive losure withthe method desribed in [21℄ on a graph of 50,000 nodes and100,000 edges did not �nish within 24 hours (see Setion 7for details).To redue storage spae, Cohen and olleagues [8℄ devel-oped the 2-Hop-Cover, whih requires O(nm1/2) spae andan answer reahability queries with only two lookups. How-ever, the problem of omputing the optimal 2-Hop-Coveris NP-hard and requires the TC to be omputed �rst [8℄.Shenkel et al. [22℄ proposed graph partitioning as a methodto get away from the neessary pre-omputation of the en-tire TC, thus reduing storage requirements for the indexreation proess. This approah, alled HOPI, works very



well for forests with few onnetions between the di�erentsub-trees. But for denser graphs, suh as the metaboli net-work of KEGG, the partitioning is not e�etive as the sizeof the 2-Hop-Cover is only two times smaller than the tran-sitive losure itself (R. Shenkel, personal ommuniation,May 2006). Cheng et al. [7℄ proposed a omplex, geometrybased method that does not require the omputation of theTC to ompute the 2-Hop-Cover. In their approah they�rst identify strongly onneted omponents and then la-bel eah omponent. Based on these labels they generate areahability map that is used to ompute the 2-Hop-Cover.In ontrast to Cohen et al. they use an approximation fordetermining the densest subgraph, whih is required duringreation of the 2-Hop-Cover. This approximation reduesthe omputation time, but might inrease the index size.But for their tested graphs the storage spae is only slightlylarger than ompared to other approahes. However, theirapproah for omputing the index is main memory based,whih limits its salability towards very large graphs.
2.1.1 Interval-Based ApproachesA di�erent indexing strategy is to label nodes using thepre- and postorder numbering sheme. This indexing shemewas originally desribed for tree strutured data [10℄. In thepre- and postorder numbering sheme eah node in the treereeives a pre- and postorder value. Both values are assignedaording to the order in whih the nodes are visited duringa depth-�rst traversal of the tree. The preorder value vpre isassigned as soon as node v is enountered during the traver-sal. The postorder value vpost is assigned after all suessornodes of v have been traversed.A table of all nodes with their assigned pre- and postordervalues forms an index with whih reahability queries an beanswered with a single query. If w is reahable from v, wmust have a higher preorder and lower postorder value than
v, i.e., wpre > vpre ∧wpost < vpost. However, the evaluationof this ondition in an RDBMS is prohibitively slow dueto the two non-equijoins [13℄. An obvious optimization isto use only one ounter for the pre- and postorder values.Therefore, all suessor nodes w of v must lie within theborders given by the pre- and postorder values of v, i.e.,
[vpre, vpost]. Thus, reach(v , w) ⇔ vpre < wpre < vpost.Still, this method only works for trees. As soon as nodeshave multiple inoming edges, they are visited multiple timesduring a traversal, and thus no unique pair of pre- and pos-torder values an be assigned. To extend this strategy to di-reted, ayli graphs (DAGs) we used an 'unfolding' teh-nique [24℄, where eah added 'non-tree' edge in the DAGintrodues a new entry in the index struture. The tar-get node of the additional edge as well as all its suessorsget additional pre- and postorder values inurring an expo-nential explosion in the index size as DAGs beome very'tree-unlike'. Our newly proposed index struture GRIPPalso traverses nodes multiple times, but does not visit hil-dren of an already visited node again, whih makes its spaerequirements only linear in the size of the graph (see alsoSetion 3).Agrawal et al. [1℄ desribed a di�erent method to indexDAGs. They propagate pre- and postorder values upwards.The soure of an additional edge as well as all its anestorsreeive the pre- and postorder value of the target as anotherpre- and postorder value pair. In ontrast, in GRIPP onlythe target will get an additional pre- and postorder value.

For GRIPP this omes at the ost that at query time we haveto traverse the index reursively as explained in Setion 4,while for the approah of Agrawal et al. the query time is lin-ear in the number of intervals assigned to a node. To reduethe number of intervals of a node and therefore storage spaeAgrawal et al. merge pre- and postorder ranges of nodes.They present an algorithm to ompute an optimal indexstruture, i.e., an index struture with least storage spae.This algorithm determines an optimal order for the traversalof nodes during labeling. The authors state that omputingthe optimal index struture has the same time omplexity asthe omputation of the transitive losure, whih also makesit inappliable to large DAGs. However, it would be worthstudying whether the heuristis desribed for GRIPP in Se-tions 5 and 6 would also be appliable here.
2.1.2 Hybrid ApproachesChen et al. [6℄ presented a hybrid index struture forDAGs, alled Label+SSPI. This approah uses pre- and pos-torder labeling for a spanning tree and an additional datastruture, alled SSPI, for storing non-tree edges. This re-sults in an index struture in the size of O(n + m). Foranswering reach(v , w) the spanning tree part is handled byan initial range query. If w is not found in the range of vthe additional data struture is traversed reursively, whihleads to (m − n) queries in worst ase (see Table 1).He et al. [15℄ proposed a di�erent indexing strategy, alledHLSS, that �rst identi�es strongly onneted omponentsand ollapses these to one node to redue the size of thegraph. The remaining struture is a DAG. They label thenodes of a spanning tree with pre- and postorder values. Toenode the reahability relationship over non-tree edges theyompute the 2-Hop-Cover over these edges. The query timeis not onstant, but depends on the size of the 2-Hop-Coverlabel of a node.Wang et al. [26℄ proposed an index struture, alled DualLabeling that allows to answer reahability queries in on-stant time. They also identify strongly onneted om-ponents and ollapse these to one node. They label thenodes of a spanning tree with pre- and postorder values.Instead of omputing the 2-Hop-Cover they ompute thetransitive losure over the remaining edges (alled TLC ma-trix). Using pre- and postorder values of nodes the TLC ma-trix an be further redued in size. The authors state thatin sparse, tree-like graphs the number of non-tree edges issmall. Therefore the size of the TLC matrix is muh smallerthan the TC of the graph itself.In Setion 7 we will ompare the approahes from Chenet al. and Wang et al. with our index struture GRIPP.
3. GRIPP INDEX STRUCTUREGRIPP extends the pre- and postorder labeling shemeto work on graphs. Every node in the graph reeives atleast one pair of pre- and postorder values. As nodes anhave multiple parents one pair is not su�ient to enode theentire graph struture. Therefore, some nodes will get morethan one pair of values.For now, we assume that the graph has exatly one rootnode, i.e., one node without inoming edges. We also assumean arbitrary, yet �xed order among hild nodes, e.g., givenby the ID of the node. In Setion 6 we explain how to dealwith graphs with multiple or no root nodes.For the reation of the GRIPP index we start at the root



node of G. During a depth-�rst traversal of G we assignpre- and postorder values. We always traverse hild nodesaording to their order. A node v with n > 1 inomingedges is reahed n times on edges ei, 1 ≤ i ≤ n. The edge eion whih we reah v for the �rst time is alled a tree edge.We assign a preorder value to v and proeed the depth-�rsttraversal. After all hild nodes have a value pair, v reeivesits postorder value. Of ourse, we reah v n−1 times again.Assume we reah v over edge ej , ej 6= ei. We all ej anon-tree edge and assign a pre- and postorder value to v,but do not traverse hild nodes of v. We store the pre- andpostorder values together with the node identi�er as nodeinstanes in an index table, IND(G). Every node will haveas many instanes in IND(G) as it has inoming edges in G.Analogously to the distintion of tree and non-tree edges wedistinguish between tree and non-tree instanes in IND(G).Definition 1 (Tree and non-tree instanes). Let
IND(G) be the index table of graph G. Let v ∈ V be a nodeof G and v′ be an instane of v in IND(G). v′ is a treeinstane of v, i� it was the �rst instane reated for v in
IND(G). Otherwise v′ is a non-tree instane of v.Figure 1(a) shows a graph and Figure 1(b) shows its in-dex table resulting from a traversal in lexiographi order ofnode labels. Nodes A and B have two instanes in IND(G)beause they have two inoming edges in G.rAB C DE F G H(a) Graph, G.

node pre post typer 0 21 treeA 1 20 treeB 2 7 treeE 3 4 treeF 5 6 treeC 8 9 treeD 10 19 treeG 11 14 treeB 12 13 non-treeH 15 18 treeA 16 17 non-tree(b) Index table, IND(G).Figure 1: Graph G and its GRIPP index table
IND(G). Solid lines represent tree edges, dashedlines are non-tree edges.The GRIPP index struture resembles a rooted tree, whihwe all the order tree, O(G).Definition 2 (Order tree). Let G = (V, E) and let
IND(G) be its index table. The order tree, O(G), is a treethat ontains all instanes of IND(G) as nodes and all edgesof G.Intuitively, O(G) onsists of a spanning tree T (G) of thegraph and a non-tree part N(G). T (G) ontains the treeinstane of every node in the graph and is onneted bytree edges ET . N(G) ontains a node for every non-treeinstane in IND(G), whih is onneted by a non-tree edgeto a node in the spanning tree T (G). Therefore, every non-tree instane is a leaf node, while tree instanes an be inneror leaf nodes. Note that the shape of O(G) depends onthe order with whih G is traversed. In Setion 6 we shallexplain how we an determine an order that is well suitedfor our purpose. In Figure 2 the instanes of IND(G) shownin Figure 1(b) are plotted. Nodes A and B our twie in
O(G) as they have two instanes in IND(G).
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Figure 2: Pre-/ postorder plane for IND(G) in Figure1(b). Dotted lines indiate O(G). Non-tree instanesare displayed in gray.The spae requirement to store the GRIPP index table is
O(n+m), i.e., linear in the size of the graph. More preisely
IND(G) has as many entries as G has edges plus one entryfor every root node (see also Setion 6.2). To reate theGRIPP index struture we perform a depth-�rst traversal,requiring O(n + m) time.
4. QUERYING GRIPPIn the following hapter we show how to use the GRIPPindex to e�iently answer reahability queries for a �xedpair of nodes. Reall that reahability queries in trees anbe answered with a single lookup beause all reahable nodesof a node v have a preorder value that is ontained within theborders given by vpre and vpost. When we try to query theGRIPP index struture in this way, we fae two problems.First, v has multiple instanes in IND(G), eah with itsindividual pre- and postorder value. Seond, in the preorderrange of an instane v′ we will only �nd instanes of nodesthat are reahable from v′ in O(G). Nodes reahable from
v in G but not from v′ in O(G) will be missed. Thus, to�nd all reahable nodes in G, we have to extend the searh,using the hop tehnique.
4.1 Hop techniqueTo evaluate reach(v , w) we use the index table IND(G).Observe that v an have many instanes in IND(G). Everynon-tree instane of v in IND(G) is a leaf node in O(G)and therefore has no suessors in O(G). Let v′ be the treeinstane of v. If v′ is an inner node in O(G) it has reahablenodes w′ in O(G) suh that v′

pre < w′

pre < v′

post. Those anbe retrieved with a single query. We all this set of instanesreahable instane set of v. In Figure 3(a) the reahableinstane set of node D is shown. It ontains instanes ofnodes G, B, H , and A.Definition 3 (Reahable instane set). Let
v ∈ V be a node of graph G and v′ ∈ IND(G) its tree in-stane. The reahable instane set of v, written RIS(v), isthe set of all instanes that are reahable from v′ in O(G),i.e., that have a preorder value in [v′

pre, v
′

post].To answer reach(v , w) we proeed as follows. We �rst �ndthe tree instane v′ of v and retrieve its reahable instaneset. If w ∈ RIS(v), we �nish and return true, otherwisewe have to extend the searh. If RIS(v) ontains non-treeinstanes of nodes, their hild nodes might not have an in-stane in RIS(v), i.e., these nodes are reahable from v in
G, but not from v′ in O(G). To aount for that, we have



to examine all non-tree instanes of nodes in RIS(v). Weall those nodes hop nodes. In Figure 3(a) RIS(D) ontainsnon-tree instanes of nodes B and A, i.e., both are hop nodesfor D.Definition 4 (Hop node). Let v, h ∈ V and h′ be anon-tree instane of h. If h′ ∈ RIS(v) then h is alled a hopnode for v.
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(b) RIS(D) and RIS(B)in dark gray; RIS(A) inlight gray.Figure 3: The example shows reach(D , r) evaluatedon the GRIPP index struture from Figure 1(b).Nodes A and B are hop nodes for D.Every hop node in RIS(v) has a reahable instane set in
O(G). The nodes in that set are reahable from v in G, butnot from v′ in O(G). But we need to hek if w is in one ofthose. Therefore, we identify all hop nodes and reursivelyhek their reahable instane sets by performing a depth-�rst searh over O(G) using hop nodes in asending orderof their preorder values. We stop traversing O(G) if we �ndnode w in some reahable instane set or if there exists nofurther non-traversed hop node in a reahable instane set.In IND(G) there exist m − n non-tree instanes, eah ofwhih an be a hop node. Thus, querying GRIPP to answer
reach(v , w) requires in worst ase m − n queries. However,in the following we show pruning strategies that allow toquery graphs on average in almost onstant time as shownin Setion 7.
4.2 Pruning strategiesConsider Figure 3(b) and reach(D , r). We �nd non-treeinstanes of nodes B and A in RIS(D). If we �rst use nodeA as hop node, we �nd non-tree instanes of A and B in
RIS(A). Clearly, we do not need to use A as hop nodeagain. Therefore, we next use B as hop node. The treeinstane of B is a suessor of the tree instane of A in
O(G). This implies that RIS(B) is ontained in RIS(A),i.e., we will not �nd new instanes in RIS(B) that are notalready ontained in RIS(A). Therefore, using B to retrieve
RIS(B) is not neessary; B an be pruned from the list ofhop nodes.In general we want to avoid posing queries for preorderranges whih we have already heked. During our searhwe keep a list U of all nodes that have been used to retrievea reahable instane set. Now assume we have found a newhop node h. The deision whether we need to onsider thereahable instane set of h entirely, partly, or not at all de-pends on the loation of the tree instane h′ of h relativeto the tree instanes of nodes in U . There are four possible

loations of h′ in relation to the tree instane u′ of a node
u ∈ U in O(G). These are shown in Figure 4. h′ either is(a) equal to, (b) a suessor of, () an anestor of, or (d) asibling to u′. Given that we may onsider all nodes in U forpruning, this results in four possible ases: (a) h′ is equal tothe tree instane of some node in U ; (b) h′ is suessor ofthe tree instane of some node in U ; () h′ is anestor to treeinstanes of nodes in U and neither (a) nor (b) is true; (d)
h′ is sibling to tree instanes of all nodes in U . Note thatthe pre- and postorder ranges of two instanes an neveroverlap. They are either disjoint or one is entirely ontainedin the other.In ase (d), no pruning is possible and we have to on-sider the entire reahable instane set of h, as there existsno previous reahable instane set that overs instanes in
RIS(h). For the remaining three ases we an apply pruningstrategies.

�
�
��

A
A

AA
�

h′ = u′(a) h′ equals u′

�
�
��

A
A

AA
�

u′

�
�

A
A
�

h′(b) h′ suessor of u′

�
�
��

A
A

AA
�

h′

�
�

A
A
�

u′() h′ anestor of u′

��AA
�

u′

�
�

A
A
�

h′(d) h′ sibling to u′Figure 4: Possible loations of h′ of hop node h rel-ative to u′, u ∈ U .In the �rst ase, we an skip h entirely beause a non-tree instane of h has already been used as hop node andtherefore the reahable instane set of the tree instane of hhas been heked.In the seond ase, we an also skip h. In this ase (seeFigure 4(b)) there exists u ∈ U suh that h′ is suessor of
u′, i.e., h′ ∈ RIS(u) in O(G). Thus, the entire reahableinstane set of hop node h is ontained in RIS(u).In the third ase we have to be more areful. ConsiderFigure 3(b) and the query reach(D , r). Assume, we haveretrieved RIS(D) and RIS(B) and expand the searh using
A as hop node. RIS(A) ontains the tree instane of B and
D and therefore also ontains RIS(B) and RIS(D) as well.Thus, when we onsider RIS(A) we an skip the pre- andpostorder range of RIS(B) and RIS(D).
4.2.1 Skip StrategyWe �rst assume that only one u′ exists that is a suessorof h′. Thus, the reahable instane set of u is ontained in
RIS(h). This situation is displayed in Figure 4(). Con-sidering the entire reahable instane set of h leads to du-pliation of work. To avoid this we use the skip strategyworking as follows. For every node u ∈ U we stored the pre-and postorder value, i.e., the borders of RIS(u). In thatrange all instanes are overed by RIS(u) and we an skipthe preorder range without missing instanes. We only haveto onsider instanes from RIS(h) whose preorder values lieoutside the pre- and postorder range of u′.If there is more than one suessor node of h in U , the



situation is slightly more ompliated. Essentially, we anskip all their ranges when searhing RIS(h). This ould beoptimized by merging ranges iteratively during the searh,thus reduing the number of neessary interval operations.However, beause we searh U only a few times during areahability query (see also Setion 7) we believe the ostto merge ranges does not aount for the gain of merging.Therefore, if multiple u exist in RIS(h) eah of their rangesis onsidered separately for skipping.
4.2.2 Stop StrategyWhen querying graphs for reahability between nodes vand w we an stop extending the searh as soon as we havefound an instane of w in the reahable instane set of theurrent hop node h. But if w /∈ RIS(h) we must hek everyhop node in RIS(h) and start a reursive searh. It wouldbe advantageous if we knew in advane that in RIS(h) nohop node exists that will extend the searh, beause in thatase we do not have to query for the tree instanes of hopnodes. We now show ases where this property an be pre-omputed.Reall that a hop node for node s is a node h that has anon-tree instane in RIS(s). h is not used as hop node ifthe tree instane of h is in RIS(s) (Figures 4(a), 4(b)). Wean preompute a list of nodes S for whih all hop nodeshave this property. We all these nodes stop nodes as theirreahable instane sets will not extend the searh.Definition 5 (Stop node). Let s ∈ V be a node ofgraph G and let RIS(s) be its reahable instane set in O(G).
s is alled a stop node i� all non-tree instanes in RIS(s)also have their orresponding tree instanes in RIS(s).Intuitively, a stop node s is a node in G for whih for ev-ery non-tree instane in RIS(s) exists a orresponding treeinstane in the same set. This means, that all nodes reah-able from s in G are reahable from s′ in O(G), i.e., havean instane in RIS(s). Clearly, nodes reahable from s in Gan also have non-tree instanes in other reahable instanesets than in RIS(s).When we reah the tree instane of a stop node s duringthe searh we immediately know that we do not need to ex-tend the searh using hop nodes of RIS(s). The GRIPP in-dex struture in Figure 1 ontains several stop nodes, namelynodes r, A, B, E, F , and C. As heuristi, during the searhwe prefer stop nodes as hop nodes over non-stop nodes.
5. THE IMPACT OF TRAVERSAL ORDERThe GRIPP index struture is reated using an arbitraryyet �xed order of nodes. The hosen order does not in�uenethe size of the index, as the spae requirements to storethe GRIPP index table is linear in the size of the graph.However, it has a strong in�uene on the performane ofreahability queries. In the following, we desribe an orderwhih works extremely well on many types of graphs. InSetion 6.1 we will show simple heuristis to approximatethis order with minimal e�ort. Using this order, queryingthe GRIPP index requires on average signi�antly less than
m−n reursive alls; in fat, as our experiments in Setion 7show, the number of alls remains almost onstant over alltested types of graphs.Our idea is based on the following observations. In everygraph one an identify strongly onneted omponents C1... Ck in linear time. Eah omponent an be ollapsed

into a representative node (see Figure 5). The reahabilityinformation for nodes within one omponent are idential(this obvious optimization is used by many graph indexingstrategies, suh as [1℄ or [26℄). Therefore, we an divide theproblem of �nding a good traversal order in two separateparts. First, �nd a good traversal order for nodes withinone strongly onneted omponent and seond, �nd a goodtraversal order for the omponents in the omponent graph.
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C2Figure 5: Struture of a graph. Solid lines indiateedges, dotted lines paths. The gray area ontains allnodes and edges in the strongly onneted ompo-nents.We �rst onsider the traversal order for nodes within astrongly onneted omponent C. Assume that during indexreation we reah node c ∈ C. We add the tree instane of cto IND(G). If no other node of C has been traversed before,we traverse all remaining nodes of C � all are reahable from
c sine C is a strongly onneted omponent. Thus, everynode in C will have a tree instane in RIS(c) and we ananswer reach(v , w) for v = c and w ∈ C with a single lookup.If v 6= c, but v ∈ C the situation is di�erent. Suppose
RIS(v) ontains a non-tree instane of c and suppose we use
c as �rst hop node. We then an answer reach(v , w) (with
w ∈ C) with two reursive alls, i.e., one to retrieve RIS(v)and one for RIS(c). To ahieve this for every v ∈ C, wehave to �nd a traversal order suh that for every node v ∈ C,
RIS(v) ontains a non-tree instane of c. We therefore mustsolve the following problem: Find a node c ∈ C suh thatwe an divide C in partitions P1, . . . , Pn with n equals theindegree of c. For every Pi, 1 ≤ i ≤ n ompute a Hamiltonpath starting at node v and ending at node c, with v = cor v hild node of a node in Pj , j 6= i. If we reate GRIPPalong those Hamilton paths we an ensure that for everynode v ∈ C, RIS(v) ontains at least one non-tree instaneof c.Now suppose that we have not traversed any suessornodes of c in G when we traverse c, i.e., we have not traversedany nodes of C or any nodes in suessor omponents of
C. We traverse nodes in C along Hamilton paths and alsotraverse all nodes in suessor omponents of C. This meansall reahable nodes of c in G have a tree instane in RIS(c).In addition, every non-tree instane in RIS(c) must alsohave its orresponding tree instane in RIS(c), i.e., c is astop node. In Figure 6 the tree instane of c, c′ is shownas double irled node in the gray area. Given v ∈ C wean answer reach(v , w) for any node w ∈ G with at most



two reursive alls, one initial all to test RIS(v), �nding anon-tree instane of c (or possibly already an instane of w),and a seond all using c as hop node to test RIS(c). As cis a stop node we do not have to use any further hop nodes,regardless if RIS(c) ontains an instane of w or not.
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Figure 6: Optimal GRIPP index struture. Cirlesindiate tree instanes, squares non-tree instanes.The double irled node is the stop node, the doublesquared nodes are its non-tree instanes. In gray isthe area of instanes of the giant strong omponent.Therefore, we have to ensure that omponent C is tra-versed before any of its suessor omponents in the ompo-nent graph. Clearly, this is not possible for any C, but theproblem is alleviated by the following observation. Erdösand Rényi [11℄ proved that direted random graphs withmore edges that nodes ontain one giant strongly onnetedomponent C. The size of C depends on the graph den-sity. The experimental results given in Setion 7 show thatthis is also true for our generated sale-free graphs. There-fore, graphs of a ertain density usually appear as shownin Figure 5, with one omponent being very large (giant)and all other omponents being small. In this setting, it isonly important to traverse the giant omponent before anyof its suessor omponents. The remaining suessor om-ponents are traversed in desending order of the size of theirsuessor sets, i.e., of the number of reahable nodes. Reall,for nodes in a omponent C that has been traversed beforeany of its suessor omponents we an answer reach(v , w),with v ∈ C and w ∈ G, with two reursive alls.We an also estimate the number of reursive alls to an-swer reach(v , w) for every node v /∈ C. If RIS(v) ontains nonon-tree instane we an immediately return false using oneall. Otherwise, we have to query GRIPP reursively, butwe will at most use m′ − n′ reursive alls with m′ numberof edges and n′ number of nodes in the omponent graph.In some ases this number an even be redued. Considerthe ase where v is sibling to nodes in C and RIS(v) onlyontains non-tree instanes of nodes in C and possibly ofnodes in suessor omponents of C. Suppose we �rst usea node from C as hop node. We then need at most threereursive alls to answer reach(v , w). One all to retrieve
RIS(v), �nding the non-tree instane h′ of a node h ∈ Cand using h as hop node, one all to retrieve RIS(h), whihontains a non-tree instane of c, and one all to test RIS(c).If we an ensure this order of hop nodes we an also answerreahability queries for suh ases with a onstant number

of alls.Conluding, a good traversal order an be obtained as fol-lows. First identify all strongly onneted omponents andbuild the omponent graph. Using Tarjan's algorithm thistakes O(n+m) time. Seond, determine the traversal orderof omponents in the omponent graph by omputing thesize of the suessor sets of all k omponents, whih requires
O(k3) time. Third, ompute a good order for nodes withinevery omponent C by �rst identifying a node c and thenomputing Hamilton paths as desribed above. As �ndingHamilton paths in graphs is NP-omplete [9℄, this is not fea-sible for pratial appliation. In the next setion we presenta simple heuristi for determining a traversal order, whih,as we will show experimentally in Setion 7, requires an al-most onstant number of alls to answer reach(v , w) overdi�erent sizes, shapes and densities of graphs.
6. IMPLEMENTATIONIn this setion we present a suitable heuristi to omputea GRIPP index struture that works well on many types ofgraphs. We also present details on our implementation ofthe GRIPP indexing and searh algorithm.
6.1 Giant Component and Node OrderDuring the reation of the GRIPP index for large graphswe want to avoid to ompute the strongly onneted om-ponents, as this also requires time. We found the followingheuristi to work very well. To ensure that we traverse nodesof the giant strongly onneted omponent before any othernodes we want to traverse a node from the giant stronglyonneted omponent as �rst node during index reation.Therefore we reate a virtual root node (see Setion 6.2)and attah an additional edge between the virtual root nodeand the node with the highest degree. This node an befound very quikly and, as nodes with a high degree tendto have many suessor nodes and an be reahed by manynodes, this node is very likely a member of the giant stronglyonneted omponent. Choosing this node has the addi-tional advantage that it also has many inoming edges andtherefore will get many non-tree instanes in IND(G). Thismeans that it is likely to �nd a non-tree instane of thatnode in the reahable instane set of other nodes, and reallthat this node is a stop node.In the next step of the index reation we traverse hildnodes of that node. We try to traverse the hild node withthe largest reahable instane set �rst as this node overs alarge part of the remaining graph. We use the heuristi thata node with a high degree is likely to have a larger reahableinstane set than a node with a lower degree. Therefore, weprefer hild nodes with a high degree, i.e., we traverse hildnodes aording to their degree.In Setion 7 we show that using these heuristis we reahan almost onstant query time over di�erent sizes and shapesof graphs.
6.2 Virtual root nodeWe only explained the reation of the GRIPP index stru-ture for graphs with a single root node. However, all kindsof graphs an be treated in the following way, essentiallyignoring how many nodes have no inoming edges. We �rstadd a virtual root node r to the graph. We add an edgebetween r and the node with the highest degree among allnodes. We then traverse and label the nodes as explained in



Setion 3 starting from r and using hild nodes in the orderof their degree. In general, some nodes will not be reahedduring this traversal, i.e., nodes without inoming edges ornodes in not onneted subgraphs. We �nd those nodes andadd another edge from r to the node with the highest degree.This is repeated until all nodes have at least one instane inthe index table. This way, we uniformly handle graphs withnone, one, or multiple root nodes.
6.3 Stop node listTo reate the list of stop nodes we have to hek thereahable instane set of every node. As this is too timeonsuming for large graphs, we test only seleted nodes. Weare espeially interested in nodes whose reahable instaneset overs a large amount of instanes. Therefore, we onlyonsider hild nodes of the virtual root node as stop nodeandidates. Additionally, we require that the size of thereahable instane set of a stop node andidate exeeds aertain threshold t. Furthermore, we only test a node if itis a potential hop node, i.e., if it has a non-tree instane in
IND(G). For a stop node andidate s we hek if the treeinstane h′ of every hop node in RIS(s) has a preorder valuethat is lower than the preorder value of the tree instane s′of s. If that is the ase, h′ is sibling to s′ in O(G) and s isnot a stop node; otherwise, s is a stop node.
6.4 Query algorithmThe GRIPP index as well as all temporary information(stop nodes, visited hop nodes, et.) are stored in rela-tional tables. The instane type of a node is stored as spe-ial attribute in the index table. We reated b-tree indexeson relevant attributes, inluding a ombined index on theattributes preorder, node, and instane type. To answer
reach(v , w) Algorithm 1 starts by testing w ∈ RIS(v) witha query over the index. It then adds v to the list U of usednodes. If v is a stop node, the algorithm stops.Otherwise, we perform a depth-�rst searh onsideringnon-tree instanes in RIS(v) in asending order of their pre-order rank as hop nodes, unless RIS(v) ontains a non-treeinstane of a stop node, whih is preferentially used. In thenext step we selet all hop nodes from RIS(v) whih are notalready overed by another reahable instane set. For ev-ery hop node h we determine the loation of its tree instane
h′ and test if RIS(h) is ompletely or partly overed fromnodes in U . If not, we proeed, using h as next hop node.We stop one we found an instane of w or if there are nomore non-traversed hop nodes. All heks are implementedas relational queries.
6.5 Practical ApplicabilityThe GRIPP indexing and query algorithm is implementedas stored proedure. Therefore, there is virtually no limitin the size of the graphs, as all operations are performedas SQL queries leveraging the memory management of theunderlying RDBMS. As an additional advantage, GRIPPmay be integrated very easily into all appliations that storegraph-like data in a RDBMS. All that needs to be done isthe installation of stored proedures. Views an be used toreate the expeted table struture for the indexing funtion.The index is stored in a separate table. Then, reahabilityof two nodes an be tested by a simple all of a user-de�nedSQL funtion.

Algorithm 1: Funtion to answer reach(v , w) using theGRIPP index.used_hops ← ∅used_stops ← ∅FUNCTION reahability(v, w) RETURNS booleanif w ∈ RIS(v) thenreturn trueelseused_hops ← used_hops ∪ (v)if v ∈ STOP_NODES thenused_stops ← used_stops ∪ (v)return falseelsewhile non_tree_inst ← nextStop(RIS(v)) dotree_inst ← getTreeInst(non_tree_inst)if reahability(tree_inst, w) then returntrueendif isInRIS(v, used_stops) thenreturn falseendH1 ... Hn ← getUsedHopsInRIS(v)// skip rangesnon_tree_instanes ← getNonTreeInst(RIS(v) \RIS(H1) \ ... \ RIS(Hn))foreah non_tree_inst ∈ non_tree_instanes dotree_inst ← getTreeInst(non_tree_inst)if !hasChildren(tree_inst) thenontinueend// if new hop has been used as hopif tree_inst ∈ used_hops thenontinueend// if new hop is in a RIS of a used hopif isInRIS(tree_inst, used_hops) thenontinueend// otherwise all reursivelyif reahability(tree_inst, w) then returntrueif isInRIS(v, used_stops) thenreturn falseendendreturn falseendendend
7. EXPERIMENTAL RESULTSTo evaluate our approah we use syntheti as well as real-world data. We ompare GRIPP in detail to the Dual Label-ing approah from Wang et al. [26℄ and the Labeling+SSPIapproah from Chen et al. [6℄. Both algorithms an onlyindex direted, ayli graphs (DAG). Therefore we �rstidentify strongly onneted omponents of G and ollapseeah omponent into a representative node. This step takes
O(n+m) using Tarjan's algorithm [9℄. The resulting ompo-nent graph is a DAG. To ompare our approah we reatedand queried the GRIPP index for the omponent graph aswell as for the graph itself. For a more detailed omparisonof GRIPP with TC and reursive funtions see [25℄.For syntheti data we reated random as well as sale-free graphs in the size of 1,000 to 5,000,000 nodes and 0 to2,000% more edges than nodes using the methods desribedin [3℄. The degree distribution in sale-free graphs follows apower law with an exponent γ = 2.7. As real-world data we



Table 2: Average time and size for di�erent indexing methods on syntheti sale-free graphs with 100 % moreedges than nodes. (a) Average time (se).Component Graph Dual Labeling GRIPP Label + SSPINo. nodes No. nodes No. edges Time GRIPP index Stop nodes1,000 422.2 588.8 2.9 8.8 0.8 0.2 1.15,000 2,184.6 3,111.8 16.1 906.8 4.0 2.8 6.910,000 4,324.6 6,152.0 34.1 7,937.6 8.0 6.0 16.550,000 21,816.0 31,110.4 278.1 > 86,400.0 41.3 33.6 208.9(b) Average number of tuples.Component Graph Dual Labeling GRIPP Label + SSPINo. nodes No. nodes No. edges Node labels TLC values GRIPP index Stop nodes Node labels SSPI1,000 422.2 588.8 423.2 3,431.8 768.2 1.0 423.2 533.25,000 2,184.6 3,111.8 2,185.6 117,699.8 3,975.0 1.0 2,185.6 2,838.410,000 4,324.6 6,152.0 4,325.6 452,693.8 7,969.6 1.0 4,325.6 5,583.450,000 21,816.0 31,110.4 - - 39,905.0 1.0 21,817.0 28,267.0
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Transitive closure(b) Average time (se)Figure 7: Average time and size for the GRIPP index table, Dual Labeling on the omponent graph, and thetransitive losure for syntheti sale-free graphs with 100 % more edges than nodes.used data of metaboli networks provided by KEGG [18℄,aMAZE [20℄, and Reatome [17℄. Nodes represent enzymes,hemial ompounds or reations, while edges represent thepartiipation of an enzyme or ompound in a reation. Thedegree distribution in metaboli networks follows a powerlaw with exponent γ = 3.0, i.e., they are also sale-free.Properties of these data set an be seen in Table 4.We implemented GRIPP as well as all ompetitive meth-ods (based the original ode kindly provided by their au-thors) as stored proedures in a ommerial objet-relationaldatabase system. Tests were performed on a DELL dualXeon mahine with 4 GB RAM. Queries were run with-out rebooting the database. The indexing times are aver-aged over �ve di�erent graphs for every number of nodesand edges. The query times for reach(v , w) are averagedover 5,000 randomly seleted node pairs for every numberof nodes and edges.For the index reation and querying we also omparedGRIPP to omputing the transitive losure for the entiregraph. Clearly, querying the transitive losure is the fastestmethod, but we annot ompute the transitive losure forgraphs ontaining more than 10,000 nodes and 20,000 edgesin feasible time and the resulting struture would ontainover 60 million tuples. We also ompared GRIPP to re-ursive query strategies, whih need no index reation atall. We used our own implementation of a reursive searhand the reursive SQL ommand available in the RDBMS.Our own implementation of a reursive traversal is always

outperformed by GRIPP and all ompeting methods. Evenin graphs having the small world harateristi, i.e., whereeah node an be reahed from eah node within ∼ 6 steps, abreadth-�rst strategy requires in the order of d6 alls, where
d is the average out-degree of nodes. The built-in reur-sive SQL ommand outperforms our own reursive funtionfor very small and sparse graphs. However, it is extremelyslow already for medium-sized graphs. A single query on agraph with 1,000 nodes and 1,500 edges took more than 7hours to omplete. The reason seems to be that all pathsare enumerated in the graph beginning from the start node.
7.1 Index CreationTable 2(a) shows the average time required to index sale-free graphs with 1,000 to 50,000 nodes and 100 % more edgesthan nodes. The omponent graph has on average 43% ofthe nodes and 31% of the edges of the original graph, i.e., theomponent graph is muh smaller than the original graph.All used graphs ontain one giant strongly onneted ompo-nent. For instane, sale-free graphs with 50,000 nodes and100,000 edges have one giant strongly onneted omponentthat ontains on average 28,184 nodes, i.e., more than halfthe nodes of the entire graph. The remaining omponentsusually ontain only one node.For graphs of 50,000 or more nodes we ould not omputethe Dual Labeling within 24 hours using our database-basedre-implementation. We also tried the C++-based main-memory implementation of Dual Labeling provided by the



authors of this algorithm. Compared to our re-implemen-tation, their program is muh faster for small graphs, butthe program breaks for graphs with 50,000 or more nodes. Inontrast, omputing the GRIPP index table on the ompo-nent graph for the same omponent graphs took less than 50seonds. Computing the GRIPP index on the entire graphrequires about 120 seonds. Our results support the analysisthat the time omplexity of Dual Labeling is O(n+m+ t3),e.g., omputing the index for 50,000 nodes and 100,000 edgesmight take almost two weeks. In ontrast, omputing theGRIPP index as well as the Label+SSPI index is linear inthe number of edges. Therefore, both indexes an be om-puted for even larger graphs. We show this in the followingfor GRIPP.Table 2(b) shows the average size of the index strutures.Dual Labeling generates by far the largest index, mainly dueto the TLC values. The TLC values basially represent aondensed transitive losure over the remaining edges. Butthe index struture is two orders of magnitude smaller thanthe transitive losure over the entire graph. For instane,for sale-free graphs with 10,000 nodes and 20,000 edgesDual Labeling requires on average 460,000 tuples, while thetransitive losure requires on average over 60 million tuples.GRIPP and Label+SSPI require spae linear in the sizeof the graph. The GRIPP index is slightly smaller than La-bel+SSPI, beause GRIPP reates one tuple for every edgeplus one tuple for every hild to the virtual root node. La-bel+SSPI reates one tuple for every node in the omponentgraph (Node labels) and stores for every node that has morethan one parent node all parent nodes in the SSPI index. Inaddition one tuple is reated for every node that has a parentnode with an entry in the SSPI index, i.e., in worst ase thisindex has the size of m. This worst ase is almost reahedfor the indexed graphs.The �gures for random graphs (data not shown) for allthree methods are almost idential to the �gures for sale-free graphs.To test the salability of GRIPP we reated the index forgraphs with 1,000 to 5,000,000 nodes and 100 % more edgesthan nodes. We did not ompute the omponent graph, butapplied the GRIPP indexing algorithm diretly to the graph.Figure 7 shows the omputation time and size of the GRIPPindex, Dual Labeling, and the transitive losure for synthetisale-free graphs. The data support our laim that GRIPPan be omputed in linear time and spae. In worst ase,i.e., for a graph with n − 1 nodes without inoming edgesand m edges GRIPP has the size of n − 1 + m. Figures forrandom graphs are omparable (data not shown).We also indexed graphs with 100,000 nodes and inreasinggraph density (data not shown). The data show that GRIPPalso sales roughly linear with inreasing number of edges.For example, the omputation of the GRIPP index table for100,000 nodes and 400,000 edges took less than 400 seonds,ompared to about 240 seonds for a graph with 100,000nodes and 200,000 edges.Conluding, GRIPP and Label+SSPI are highly salablein terms of index reation, while Dual Labeling an not beapplied to large graphs. In the next setion we evaluate thequery performane.
7.2 Query timesWe ompare querying GRIPP with querying the other twoindexing methods. For the omparison we randomly seleted

5,000 node pairs for every number of nodes and edges andomputed reach(v , w).Table 3(a) shows the average number of reursive allsfor the di�erent query strategies on sale-free graphs with1,000 to 50,000 nodes and 100 % more edges than nodes.Dual Labeling requires only one all to answer reach(v , w)using the index struture. The number of reursive alls forthe Label+SSPI strategy depends on the size of the graph.For graphs of 50,000 nodes and 100,000 edges it requires onaverage 994 reursive alls, ranging from 1 all for a pair ofnodes in the same omponent to 11,504 alls in worst ase.This explains the high standard deviation.Table 3: Average number of alls and average querytime to answer reach(v , w) for the three di�erentquery strategies on sale-free graphs with 100%more edges than nodes.(a) Average number of alls.No.nodes DualLabeling GRIPPDAG Label+SSPI1,000 1.0 ± 0.00 1.8 ± 0.74 22.0 ± 52.305,000 1.0 ± 0.00 1.9 ± 0.82 92.1 ± 238.3110,000 1.0 ± 0.00 1.8 ± 0.77 194.7 ± 497.6850,000 - 1.9 ± 0.77 944.3 ± 2,419.83(b) Average query time (ms).No.nodes DualLabeling GRIPPDAG Label+SSPI1,000 0.8 ± 0.33 1.6 ± 1.45 5.9 ± 13.395,000 0.8 ± 0.32 2.0 ± 2.15 22.7 ± 59.3910,000 0.8 ± 0.32 2.1 ± 2.56 48.8 ± 127.6750,000 - 4.4 ± 6.74 253.0 ± 637.68When querying the omponent graph (DAG) as well asthe graph itself using GRIPP the number of reursive allsremains almost onstant over di�erent sizes of graphs, sup-porting our analysis from Setion 5 and seletion of heuris-tis. The maximum number of reursive alls is between 7and 8 for di�erent sizes of sale-free graphs. The numberof reursive alls for GRIPP on DAGs is smaller than ongraphs. The reason is that we do not require a reursive allfor nodes in the same omponent, i.e., we an immediatelyanswer reach(v , w) if both nodes are in the same omponent.The query times shown in Table 3(b) for the di�erentstrategies orrespond well with the number of reursive alls.Dual Labeling requires on average 0.8 ms regardless the sizeof the graph. For GRIPP on the omponent graph the av-erage query times range from 1.6 to 4.4 ms while for La-bel+SSPI the query times range from 5.9 to 253.0 ms. Thetime di�erene between GRIPP and Label+SSPI strategygrows as the number of nodes and edges inreases. Thesame is true for random graphs (data not shown).Figure 8(a) shows the average time neessary to answer
reach(v , w) using GRIPP on sale-free and random graphs.The query times inrease slightly with inreasing numberof nodes. The reason is that reahable instane sets be-ome larger. As these are aessed through b-tree indexesthe inrease is sublinear. The number of reursive alls re-mains with 2.3 almost onstant over the di�erent sizes ofgraphs with onstant density (data not shown), supportingour analysis from Setion 5. The maximum number of re-ursive alls ranges from 6 alls for the graph with 1,000nodes to 10 alls for the graph with 5,000,000 nodes.
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(b) Graphs with 100,000 nodes.Figure 8: Average query times (ms) and standard deviation for syntheti random and sale-free graphs.Table 4: Indexing and querying real-world graphs using GRIPP.Database Graph size GRIPP index Stop nodes Querying GRIPPNo.nodes No.edges Density Time(se) No.Tuples Time(se) No.Tuples Avg. querytime (ms) Avg. No.reursive allsReatome 3,677 14,447 3.93 21.1 14,906 0.6 22 4.63 ± 4.016 2.56 ± 1.124aMAZE 11,876 35,846 3.02 35.4 37,568 0.1 1 3.43 ± 1.597 2.25 ± 0.967KEGG 14,269 35,170 2.46 37.2 36,527 0.1 1 3.34 ± 1.430 2.36 ± 0.913Figure 8(b) shows the average query time for graphs with100,000 nodes and inreasing density. We observed thatwith inreasing density the number of reursive alls forGRIPP even dereases. For instane, on sale-free graphswith 100,000 nodes and 150,000 edges GRIPP requires onaverage 2.3 reursive alls to answer reach(v , w). In on-trast, for sale-free graphs with 100,000 nodes and 450,000edges GRIPP requires on average only 1.8 and the timedrops from 3.4 ms to 2.5 ms. This trend ontinues as thedensity inreases (tested for graphs with 100,000 nodes andup to 2,000,000 edges). There are two reasons for this. First,with inreasing graph density the size of the giant stronglyonneted omponent also inreases, i.e., more nodes arereahable from the �rst traversed node. Therefore, whenreahing that node, a large fration of the graph is alreadyovered and less reursive alls are neessary. The seondreason is that more and more nodes reeive non-tree in-stanes in GRIPP. This means with inreasing density thehane inreases that RIS(v) ontains an instane of w.With further inreasing graph density, Dual Labeling andLabel+SSPI will also perform better as the size of the om-ponent graph dereases. For Dual Labeling this means thatgenerating the index will beome faster, and for Label+SSPIindexing as well as querying will be faster.
7.3 Real world graphsTo evaluate GRIPP on real-world graphs we used themetaboli networks provided by Reatome [17℄, aMAZE [20℄,and KEGG [18℄. Table 4 shows the properties of the graph,i.e., number of nodes and edges and density. The table alsoshows the time required to ompute the GRIPP index andthe stop node list. The times orrespond well with the timesfor generated graphs of omparable size.The table also shows the the average number of alls andaverage time to answer reach(v , w). The average number ofalls as well as the average query time is slightly higher thanfor syntheti sale-free graphs of omparable size. This in-diates that, although the networks are also sale-free, theystill have a di�erent struture than syntheti graphs.

8. CONCLUSIONWe presented the GRIPP index struture for reahabilityqueries on direted graphs. Sine reating GRIPP requiresonly linear time and spae, it an be used to index graphswith �ve million and more nodes. We showed analytiallyand experimentally that using GRIPP we an answer reah-ability queries on many types of graphs in almost onstanttime using an almost onstant number of alls. As GRIPPis entirely based on SQL it an easily be integrated intoexisting graph appliations.No graph index struture suits all possible graph appli-ations equally well. We tested GRIPP on syntheti ran-dom and sale-free graphs and on real biologial datasetsof various sizes and shapes and obtained very favorable re-sults. GRIPP works partiular well on large graphs thatontain one large strongly onneted omponent, whih is atypial feature of graphs having a density above a ertainthreshold. For very small graphs whose indexes an be om-puted and held in main memory, GRIPP is outperformedby methods based on transitive losure or variations of it,suh as Dual Labeling. The later is also superior for verysparse graphs, as long as they have below ∼ 10.000 nodes.For denser graphs the omponent graphs typially shrinksenormously (as almost all nodes fall into one omponent),whih favors all methods that �rst ompute the omponentgraph (inluding GRIPP-DAG). However, GRIPP is by farthe fastest method for indexing typial and large biologialnetworks. This observation very likely arries over to othertypes of graphs suh as soial networks or Web graphs, asthese share many harateristis with biologial networks [3℄.Finally, GRIPP is highly advantageous for any appliationwhih stores and analyzes graphs in a RDBMS sine its in-tegration is very easy.In the future we plan to inlude GRIPP as indexing om-ponent into a omprehensive graph query language. Wewill study extensions of GRIPP to support distane (lengthof the shortest path between two nodes) and path lengthqueries (all paths between two nodes of a ertain length).



Finally, for this purpose GRIPP needs to be adapted to set-oriented query semantis. A typial query would have toompute, given a node v and a set of nodes W , all nodes in
W reahable from v. We are on�dent that there are betterways of using the GRIPP index struture for suh queriesthan alling the reahable funtion |W | times.
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