
Index Support for SPARQL

Ralf Heese, Ulf Leser, Bastian Quilitz, and Christian Rothe

Humboldt-Universität zu Berlin
Department of Computer Science

(rheese|leser|quilitz|rothe)@informatik.hu-berlin.de

Abstract. The Resource Description Framework (RDF) is the funda-
mental data model underlying the Semantic Web. Recently, SPARQL has
been proposed as W3C standard for querying RDF repositories. As RDF
is a graph-based data model, the core problem of evaluating SPARQL
queries is matching query graph patterns against the data graph, which
is computationally very expensive. We address this problem by index-
ing graph patterns. In the spirit of SQL, we assume that users select
the patterns to be indexed. We formally define the problem of covering
indexes, i.e., finding those indexes whose graph-patterns are contained
in the query pattern, and derive formulas for estimating index selectiv-
ity. Finally, we study the problem of finding optimal sets of indexes for
a given query. We believe that our framework is the first comprehen-
sive suggestion for indexing RDF for SPARQL queries that goes beyond
simple indexing of labels.

1 Introduction

Efficient query processing is a key topic for database management systems
(DBMS). The choice of appropriate methods for speeding up queries depends on
the query language and on the data model underlying the DBMS. For instance,
the relational model together with relational algebra has lead to the develop-
ment of indexing techniques for individual attributes (such as the B-Tree [1])
and sets of attributes (multi-dimensional index structures [2, 3]), since access-
ing tuples by the value of attributes is in the core of most relational operators.
With the upcoming of the object-oriented model, indexing techniques for paths
emerged because following pointers across objects is a fundamental operation
for OO queries [4].

Recently, the W3C committee standardized the Resource Description Frame-
work (RDF [5]) as the fundamental data model underlying the Semantic Web.
Several RDF repositories have been developed using existing database technolo-
gies as storage medium [6–9]. The development of those repositories also fostered
research on query languages for RDF, such as RDQL [10] or RQL [11]. These
coalesced into the SPARQL Protocol And RDF Query Language (SPARQL),
which is the current candidate recommendation of the W3C for querying RDF
data [12].

SPARQL is a declarative, graph-based query language. A query essentially
is a combination of graph patterns, and the main operation while executing

a SPARQL query is the matching of those basic graph patterns against the
underlying RDF database. Most current SPARQL implementations translate a
query into a set of relational queries against the underlying relational DBMS,
usually transforming triples in the query graph into joins on the underlying triple
table. To evaluate these joins, the DBMS uses its conventional relational indexes.
We argue that this approach is insufficient for handling SPARQL with relational
databases, because it requires as many joins as the query has triple patterns.
Instead, we believe that indexing of patterns – rather than indexing attributes
– is the better, and more natural, choice.

In this paper, we present basic considerations about pattern-based indexing
of RDF databases for SPARQL queries. We adopt the general idea of relational
databases that users and administrators know their workload best and therefore
should choose appropriate indexes themselves. We define an index as a materi-
alized SPARQL query whose occurrences in the underlying RDF database are
computed in advance. We formalize the tasks of the query optimizer for choosing
an index or a set of indexes, given a SPARQL query. This leads to the notion
of eligible indexes, i.e., indexes whose patterns occur completely in the query
pattern. We show how the set of eligible indexes can be computed and develop
a formula for estimating the selectivity of eligible indexes for a given query. We
also discuss methods for selecting an optimal combination of eligible indexes and
for estimating their selectivity. Finally, we sketch how our framework could be
integrated into a native SPARQL query processor.

1.1 Related Work

There has been much research on RDF query evaluation over the last years.
Current implementations of RDF stores, such as Jena [13] or Redland [14], use
relational databases for persistent storage and utilize the indexing capabilities of
the underlying database. Yars [15] uses indexes optimized for RDF, but these are
also limited to single triple patterns. The restriction of indexing triples results
in the loss of structural information. Complex graph pattern queries have to be
decomposed into conjunctive queries of triple patterns and the results of these
queries are joined. Our work differs from current approaches used in RDF stores,
because we support indexes on basic graph patterns.

In [16], the authors propose a query language with well-defined semantics
and theoretically study the complexity of query processing, query containment,
and simplification of answers. Besides providing a formal foundation our work
aims at a practical implementation.

Other related work includes research on indexes for object-oriented and XML
databases, and graph indexing. The work for object-oriented databases, e.g.,
[4], strongly depends on a fixed schema, which cannot be expected when using
RDF. For instance, the indexed properties used to navigate from one object to
another are fixed, while SPARQL also allows variables in place of properties.
Furthermore, OO approaches only index navigation paths between classes and
objects.

In the field of XML, numbering schemes have been developed to efficiently
index path expressions [17]. These approaches are specialized structures to pro-
vide efficient access to trees. The approaches cannot be applied directly to RDF,
because RDF data is a directed labeled graph which often contains cycles.

In the context of graph databases, fast algorithms have been developed to
solve the subgraph isomorphism problem, for example [18], but their usage is
limited to small graphs residing in main memory. Frequent subgraph mining as
described in [19] is orthogonal to our approach. Instead of mining for frequent
subgraphs we assume that the users and administrators of the RDF repository
define the indexes.
Comment 1: In contrast to conjunctive queries, we also allow variables
in place of properties.

1.2 Structure of this Paper

In the next section, we briefly review the RDF data model and SPARQL and
present the running example. In Section 3, we introduce pattern-based indexes
on RDF graphs. Afterwards, we formally define the index selection problem in
Section 4. Section 5 discusses the problem of selecting an optimal set of indexes
according to a cost function. We describe a solution to the problem and a formula
for estimating index selectivity. In Section 6, we sketch how our methods can be
included into a query engine for SPARQL, and Section 7 concludes the paper.

2 Preliminaries

Inspired by past proposals for query languages to retrieve data from RDF graphs,
the W3C currently standardizes a query language for RDF, namely SPARQL
Query Language for RDF [12]. The working draft defines a basic set of language
structures to declaratively query RDF graphs. The user can specify the form
of the result, the accessed data sources, and restrictions to select information
from the data graphs. We assume that the reader is familiar with RDF [5] and
SPARQL. Thus, we mention only the most important terms of these specifica-
tions in this section.

An RDF graph is defined as a set of triples and a triple in turn consists of
RDF terms. An RDF term is either an IRI, a blank nodes, or an RDF literal –
we denote with RDF-Tthe set of all RDF terms. We refer the reader to the RDF
specification [5] for their formal definitions.

The building blocks of a SPARQL query are triple patterns and filter expres-
sions. A triple pattern is best described as a triple that may contain variables,
and a filter expression is a boolean-valued expression. A set of triple patterns
is called a basic graph pattern. Complex pattern are constructed by combining
basic graph patterns and filter expressions using operations such as AND, UNION,
or OPTIONAL.

In this study, we restrict ourselves to conjunctive SPARQL queries, i.e.,
queries where triple patterns are connected only by logical AND. We will extend

our approach to handle UNION and OPTIONAL in our future work (see Section 7).
Furthermore, we do not consider the form of the result set, e.g., set of variable
bindings or RDF graph. Therefore, we use the following definition of a query
throughout this paper:

Definition 1 (Query). A query Q is a basic graph pattern. 2

In the remainder of this paper, we refer to the basic graph pattern of a query
as query pattern.

As our running example, we use the RDF schema shown in Figure 1 to
illustrate our ideas. The RDF schema is a part of the RDF scheme used in the
Lehigh University benchmark [20].

Fig. 1. RDF schema of the running example (namespaces are omitted)

3 Index Support for SPARQL

In database management systems (DBMS) indexes are important access paths to
efficiently retrieve database tuples that satisfy a certain constraint. In most cases,
it is sufficient to create an index on a single attribute, although current relational
DBMSs also provide specialized index structures for non-standard applications
such as spatial data or XML documents. Since the data model of RDF bases on
graphs and graphs are cumbersome to be represented in relational databases, we
believe that specialized index structures are also needed for RDF data.

We assume that users create indexes on a basic graph pattern. Creating an
index means that all occurrences of the pattern in the data graph are materi-
alized. We envisage a syntax similar to SQL as the example below illustrates.
The basic graph pattern enclosed in brackets describes the index criterion. The
example below creates an index with the name I1 on all subgraphs of the RDF
graph http://example.org/university.owl having the form of the indexed
pattern.

CREATE INDEX I1 ON <http :// example . org / un i v e r s i t y . owl>
({?pub lub : pub l i ca t i onResearch ? r e s .

? grp lub : r e s e a r chPro j e c t ? r e s . })

Before we can formally define indexes on RDF graphs, we first clarify the
terms occurrence and solution of a basic graph pattern. Both definitions base
on substitution functions mapping the variables of a graph pattern into the set
of RDF terms and variables, i.e., s : VP → V ∪ RDF-T where VP denotes the
variables contained in a pattern P . As an abbreviation, s(P) denotes the result
of applying s to P , i.e., replacing every occurrence of a variable v ∈ VP by s(v).

Definition 2 introduces an important term for this paper: the occurrence of
a pattern. It is essential to define the solution of a basic graph pattern and to
describe the relationship between a query pattern and the indexed patterns.

Definition 2 (Occurrence of a pattern). Let P1 and P2 be two basic graph
pattern, P1 occurs in P2 (up to blank node renaming), denoted by P1 v P2, iff
there exists a substitution function s such that s(P1) ⊆ P2. 2

If a pattern P1 occurs in P2 we refer to each s(P1) as an occurrence of P1 in
P2. Furthermore, we denote by S(P1) the set of all occurrences of P1 in P2. If
the meant pattern is clear from the context, we abbreviate S(P), S(P1), . . . by
S, S1, . . ., respectively, to improve readability.

Figure 2 provides an example for Defintion 2. P1 occurs in P2 with a substi-
tution function that maps the variables ?pub and ?person of P1 to ?paper and
ex:bach of P2, respectively. This is the only occurrence of P1 in P2.

Fig. 2. The basic graph pattern P1 occurs in P2

A special case of Definition 2 represents the occurrence of a pattern P in
an RDF graph G, because the range of the substitution function s does not
contain any variables, i.e., ∀v ∈ P : s(v) 6∈ V. If s(P) ⊆ G holds then we call
the substitution function s solution of P in G. As proposed in the SPARQL
specification [12], we use simple entailment to define the solution of a basic
graph pattern. This means, that no triple needs to be inferred or constructed.
Determining a solution of a basic graph pattern is therefore equivalent to the
subgraph isomorphism problem.

The following definition uses the previously introduced terminology to define
indexes over RDF graphs.

Definition 3 (Index). An index I over an RDF graph G is a pair I = (P, S),
where P is a basic graph pattern and S is the set of all solutions of P in G. 2

Subsequently, we refer to the basic graph pattern of an index as index pattern.

4 Index Selection

A query engine has the tasks to generate a set of query execution plans (QEPs),
to estimate their costs, and to execute the cheapest one. In general, query pro-
cessing is divided into four phases: query parsing, query rewriting, QEP genera-
tion and QEP execution. In this paper, we focus on QEP generation. This phase
includes the selection of algorithms to implement each of the operators of the
logical plan constructed by the previous phases. In order to minimize the costs
of query execution, the query optimizer has to consider the existence of indexes
or other access paths, distribution of stored data values, physical clustering of
records, etc. [21]. Question 1: Ist [21] eine schlechte Referenz?

The selected access paths, e.g., scan (entry by entry) or access by an index, are
an important component of the overall costs of a query plan. Most systems use a
cost function that is basically an estimate of the number of disk I/O’s involved,
though some do take CPU utilization into account [21]. At the moment, we
assume the existence of a cost function that assigns a cost value to a QEP and
focus on the selection of indexes during the stage of query plan generation. In
its basic form, the query optimizer selects a single index from a set of available
indexes which is described in the first part of this section. Afterwards, we extend
the basic problem to the selection of multiple indexes, e.g., selecting a subset of
the available indexes.

Given a set of indexes and a query on an RDF graph, the query processor
can only exploit some of the indexes to answer the query, the so-called eligible
indexes. At the moment we require that the index pattern is completely contained
in the query pattern. If an index covers the query only partially then the index
may not contain all occurrences being in the result of the query and an expensive
post processing step may be necessary. The following definition characterizes the
set of indexes being of interest.

Definition 4 (Eligible index). Let Q be a query and G be an RDF graph. An
index I = (P, S) is eligible for use in answering the query Q on G if I is an
index over G and P occurs in Q, i.e., P v Q.

Example 1. We illustrate Definition 4 with an example. Let Q be a query and
I1 and I2 be two indexes having the following pattern, respectively:

P(Q) = {?postdoc lub:advisor ?advisor ;
lub:emailAddress ?email .

?pub lub:publicationAuthor ?postdoc .
?pub lub:publicationResearch ?res . }

P(I1) = {?pub lub:publicationResearch ?res .
?grp lub:researchProject ?res . }

P(I2) = {?postdoc lub:advisor ?advisor ;
lub:emailAddress ?email .

?pub lub:publicationAuthor ?postdoc . }

The index I2 is eligible for answering the query Q, because the pattern of I2

occurs in the query pattern. In contrast, the pattern of the index I1 does not oc-
cur in in the pattern of Q, e.g., the triple pattern (grp, lub:researchProject,
?res) is not part of the query. Thus, I1 is not eligible. Figure 3 visualizes the
relationships between the patterns of Q, I1, and I2. 2

Fig. 3. Given a query Q, index I1 is not eligible index while index I2 is eligible

Definition 4 describes the set of indexes which may be used for query pro-
cessing. However, some of the eligible indexes will reduce the costs of query
evaluation more than other one. The query processor has the task to choose the
best indexes according to a cost function. Formally, we could describe the task
as follows: Let Q be a query, let Ie = {I1, . . . , In} be the set of eligible indexes
of Q, and let c be an arbitrary cost function. Single index selection chooses an
index I ∈ Ie such that the use of I minimizes the costs c(Q) for executing the
query Q.

Since the patterns of two eligible indexes may also overlap, a more interesting
case arises if the optimizer chooses not only a single index but a bunch of possibly
overlapping indexes for query evaluation. In the remainder of this section, we
formalize the problem of selecting a subset from the set of eligible indexes. Before
we can define the problem itself, we have to specify in which cases two indexes
overlap.

We differentiate between intentionally and extensionally overlapping indexes.
While the first type of overlapping is only defined on the index pattern, the
second one analyzes the occurrences stored in the indexes. Definition 5 formally
defines both types of overlapping.

Definition 5 (Overlapping indexes). Let I1 = (P1, S1) and I2 = (P2, S2) be
two indexes over an RDF graph G.

– I1 intentionally overlaps I2 if there exists a substitution function s with
s(P1) ∩ P2 6= ∅, i.e., P1 v P2.

– I1 extensionally overlaps I2 if ∀s1 ∈ S1∃s2 ∈ S2 : s1 ∩ s2 6= ∅.
– I1 and I2 intentionally/extensionally overlap if I1 intentionally/extension-

ally overlap I2 and vice versa. 2

Example 2. The two indexes I1 and I2 defined in Example 1 are not overlapping,
because the index pattern do not share a triple pattern. If we added the triple

pattern (?pub, lub:publicationAuthor, ?postdoc) to I1 then the indexes
would intentionally overlap. 2

The previous definition characterizes only the relationship between two in-
dexes. If we consider a set of indexes it is too restrictive to require that any pair
of indexes should overlap. Therefore, we define a set of overlapping indexes as
follows:

Definition 6 (Set of overlapping indexes). Let I be a set of indexes. A sub-
set Io of I is a set of overlapping1 indexes if Io satisfies the following properties
∀I1, I2 ∈ Io:

– I1, I2 overlap or
– ∃Ii1 , . . . , Iik

∈ Io : I1, Ii1 overlap ∧ I2, Iik
overlap ∧ Iij , Iij+1 overlap j =

1, . . . , k − 1 2

Sets of overlapping indexes are good candidates for reducing query execution
time, because the query engine can combine entries of these indexes to determine
partial solutions of the query without matching the query pattern against the
data graph. Sets of overlapping indexes are most beneficial if they are maximal.
We say that a set of overlapping indexes is maximal if no index can be added such
that the set is still overlapping, i.e., 6∃ I ′ ∈ I : Io∪I ′ is a set of overlapping indexes.
The property that indexes extensionally overlap is a stronger statement than that
indexes intentionally overlap. Any pair of extensionally overlapping indexes are
also intentionally overlapping, but the opposite is not true. Although deciding
if two indexes extensionally overlap has a higher complexity, the estimation of
their selectivity becomes more accurate (see Section 5.3).

Finally, we can define the main problem of our research: index selection. It
is defined as follows:

Definition 7 (Index selection). Let Q be a query, let Ie be the set of eligible
indexes of Q, and let c be a cost function. Index selection chooses maximal sets
of overlapping indexes from Ie such that the use of these indexes minimizes the
costs c(Q) for executing query Q. 2

5 Index Selection during Query Processing

While the previous sections focused on the formalization of the index selection
problem, this section sketches the algorithm how the query optimizer can solve
the index selection problem. Given a set of indexes I on an RDF graph G and
a query Q, the algorithm consists of three steps:

1. Determine all eligible indexes Ie ∈ I of Q.
2. Determine all maximal sets of overlapping indexes Io contained in Ie.
3. For each set i ∈ Io estimate its selectivity of the set i.
1 intentionally or extensionally

In the first step, the algorithm determines the indexes that may be used
for query evaluation. Since the maximal sets of overlapping indexes are good
candidates to cover a large part of the query pattern, they are computed in the
second step. Finally, the algorithm estimates the selectivities of index these sets,
because they are an important indicator for the cost of query evaluation. In this
section, we discuss each step separately.

5.1 Determining Eligible Indexes

The query optimizer has to determine the set of indexes that can potentially be
used for evaluating a given query. According to Definition 4 the optimizer has to
test for all available indexes if their index pattern occurs in the query pattern,
i.e., check for each index if there exists a substitution function such that index
pattern occurs in the query pattern. Note, that there may exist more than a
single substitution function having this property, if the index pattern occurs at
more than once in the query pattern. The problem is tightly connected to the
problem of containment of relational (conjunctive) queries (see for instance [22]).

A simple algorithm to test for eligibility of an index starts with an empty set
of substitution function and constructs, triple pattern by triple pattern, a map-
ping between the index pattern and the query pattern. The algorithm iterates
over the triples of the index pattern, and incrementally constructs the substitu-
tion functions. If one of these triple patterns does not occur in the query pattern
or lead to an inconsistent substitution function then the investigated index can
definitely be marked as non-eligible. While generating the substitution function,
the algorithm has to ensure that only consistent mappings are generated. For
instance, there must not exists a mapping from a variable of an index pattern to
two different resources or variables of the query pattern. The complexity of the
algorithm is O(

∑
J∈I |Q||PJ |), where | · | denotes the number of triple patterns

contained in a pattern and I denotes the set of all available indexes. To iterate
over the triples of the query pattern is inefficient, because if a triple pattern of
the query pattern does not occur in an index pattern, this index could still be
eligible.

Alternatively, we can reformulate the problem of finding eligible indexes as
a query. Hereby, we substitute the variables of the query pattern by new and
unique resource identifiers and interpret it as an RDF graph. Furthermore, we
interpret the index pattern as as SPARQL queries; if there exists a solution then
the index is eligible. Since the query pattern and index pattern are generally
small, this is an easy method to find eligible indexes. This approach is derived
from the frozen facts algorithm used to solve the query containment problem [23].

Example 3. We use the query pattern and the index pattern of I2 from Ex-
ample 1 to illustrate the frozen fact algorithm. Each variable contained in the
pattern of Q is substituted by a new resource identifier. The result of this trans-
formation s(Q) is interpreted as an RDF graph and the pattern of the index
I2 is matched against this graph (see Figure 4). In this example the matching
result is not empty. Thus, the pattern of I2 occurs in Q. 2

Fig. 4. Determining eligible indexes using the frozen facts algorithm

5.2 Determining Maximal Sets of Overlapping Indexes

In Section 4, we introduced sets of extensionally and intentionally overlapping
indexes as candidates for reducing query execution time. The second step of the
index selection algorithm determines the sets of overlapping indexes contained
in the set of eligible indexes. Calculating the extensional overlap between two
indexes is potentially expensive, because all occurrences of one index have to be
compared with all occurrences of the other one. Thus, this step should not be
executed during query compilation but is preferably computed at index creation
time. Note, that a test for intentional overlaps (which is cheap to compute as only
the triple patterns are concerned) can be used as an effective filter for testing
extensional overlaps.

The problem of determining the maximal sets of indexes is usually solved by
dynamic programming. Starting with a pair of indexes, the set is incrementally
expanded by an index and it is checked if the set is still overlapping. Sophis-
ticated heuristics would avoid to explore the complete search space. Instead of
following this approach, we interpret the overlap relationship between indexes
as an adjacency graph (see Definition 8) and exploit the fact that overlapping
indexes belong to the same connected component in the adjacency graph (see
Lemma 1).

Definition 8 (Adjacency Graph). Let I be a set of indexes. A graph GA =
(V,E), where V is the set of vertices and E is the set of edges, i.e., E ⊆ V ×V , is
the adjacency graph of I if there exists a mapping m : I → V with the following
properties:

– m is bijective
– Let I1, I2 ∈ I be two indexes. (m(I1),m(I2)) ∈ E ⇔ I1, I2 overlap2 2

2 intentionally or extensionally

Considering the adjacency graph of a set of indexes, we make the following
important observation:

Lemma 1. Let GA be the adjacency graph of a set of indexes I. For any two
indexes I1, I2 ∈ I the following holds: I1 and I2 belong to the same connected
component in GA if and only if I1 and I2 overlap.

Proof. Follows directly from Definition 8. 2

Applying Lemma 1 to the index selection problem, we only need to determine
the connected components of the adjacency graph corresponding to the set of
eligible indexes to obtain the maximal sets of overlapping indexes. Knowing these
sets is important for estimating their selectivity and, thus, the costs of a query
execution plan.

5.3 Estimating Costs

Up to now we only assumed the existence of a cost function used to estimate the
costs of a query execution plan. A widely accepted influence factor on the costs
is the selectivity of an operation, i.e., the ratio between the size of the operation
result and the size of the operation input. In this section, we first introduce the
selectivity of a single index before we consider sets of indexes. Based on the
results of this section, the plan optimizer can decide on the set of overlapping
indexes to be used in query evaluation.

Given a query Q over an RDF graph G and an eligible index I = (P, S), we
have to calculate the ratio between the size of entries selected by an index and
the size of the input data. Since the pattern P occurs |S| times in the RDF graph
G, an operator using the index I produces |S| subgraphs of G as its result. The
size of the input data is the number of all subgraphs in G having at most the size
|P |, e.g., all potential solutions of the index pattern P . Note, that a single triple
of an RDF graph can match more than one triple pattern of an index pattern.
Therefore, we define selectivity of an index as follows:

Definition 9 (Selectivity of a single index). Let G be an RDF graph and
I = (P, S) be an index over G. The selectivity of I, denoted as sel(I), is defined
as follows:

sel(I) =
|S|
|G||P |

2

A small selectivity value of an index is better, because only a small number
of occurrences is obtained from the index and has to be considered in further
query processing, e.g., testing for subgraph isomorphism.

We now discuss the selectivity of a set of indexes. In this case, selectivity
generally decreases, because an occurrence of one index pattern can be combined
with any occurrence of another one. Thus, the number of occurrences multiply.
The selectivity of two indexes depends on the overlapping of the index pattern:

their index pattern may completely overlap, partially overlap, or not overlap at
all. Therefore, we can derive the following estimation for the selectivity of a set
of indexes:

Lemma 2 (Selectivity of a set of indexes). Let G be an RDF graph and
{I1, . . . , In} with Ii = (Pi, Si), i = 1, . . . , n be a set of indexes over G. The upper
bound for the selectivity of using these indexes for query processing is as follows:

sel(I1, . . . , In) ≤
∏

i=1,...,n |Si|
|G|max {|P1|,...,|Pn|}

Proof. As any occurrence of one index can be combined with any occurrence of
another one we have sel(I1, . . . , In) ≤ sel(I1) · · · sel(In). We can simulate the set
of indexes by a single index having the merge all index pattern as index pattern.
We define the merge of index pattern, denoted by t, similar to the merge of
RDF graphs. The size of the resulting index pattern is at least |P1 t . . .tPn| ≥
max {|P1|, . . . , |Pn|}. Then we can estimate the selectivity of a set of indexes as
follows:

sel(I1) · · · sel(In) ≤
∏

i=1,...,n |Si|
|G|{|P1t...tPn|}

≤
∏

i=1,...,n |Si|
|G|max {|P1|,...,|Pn|}

2

Lemma 2 bases on the assumption that we do not know anything about
the set of indexes. Additional information about the indexes allow for a more
accurate estimation of their selectivity. For example, if we know that the index
pattern are extensionally overlapping then the selectivity changes as stated in
the following lemma.

Lemma 3. Let G be an RDF graph and {I1, . . . , In} with Ii = (Pi, Si), i =
1, . . . , n be a set of indexes over G. If {I1, . . . , In} is extensionally overlapping,
then the following estimation of the selectivity of using these indexes for query
processing holds:

sel(I1, . . . , In) ≤ min (|S1|, . . . , |Sn|)
|G|max {|P1|,...,|Pn|}

Proof. Because the indexes are extensionally overlapping (see Definition 6), at
most min (|S1|, . . . , |Sn|) occurrences can be selected by the set of indexes. 2

Taking the selectivity of the eligible indexes into account the query optimizer
can decide which indexes are valuable for query processing. Lemma 3 illustrates
that maximal sets of overlapping indexes are a good choice of indexes to reduce
query execution time.

6 Integration into a Query Processor

In [24] we describe the SPARQL query graph model (SGQM) which we use to
represent a SPARQL query during query processing and to store additional in-
formation about the compilation process. The SQGM forms a key data structure
for query processing. To validate our approach of rule-based rewriting of queries
into queries that can be evaluated more efficiently, we implemented a query en-
gine that is built on top of the Jena Framework [13]. After parsing a SPARQL
query by ARQ, the query is translated into a SQGM and rewriting rules are
applied. Subsequently, the query is transfered to the query execution engine of
ARQ and evaluated (see Figure 5).

Fig. 5. SQGM based query pro-
cessing of SPARQL queries

To integrate a support index selection into
our query engine, an indexing component has
to be implemented being responsible for man-
aging indexes. Besides the usual tasks of an
indexing component, e.g., create, delete, and
update indexes, it has additionally the task to
determine the overlaps between the indexes.
As depicted in Figure 5 index selection is
linked to two phases of the query processing:
query rewriting and QEP generation. Beside
others a goal of the query processor during
the query rewriting phase is to reformulate the
query such that available indexes can be used
to answer the query, i.e., index pattern occur
in the query. In the QEP generation phase
the query processor constructs query execu-
tion plans and uses the selectivities of the el-
igible indexes to estimate the overall costs of
the generated QEPs.

7 Conclusion

In this paper, we provided a framework for pattern-based indexing of RDF
databases for SPARQL queries. Although there exist other RDF query languages
similar to SPARQL, we chose SPARQL, because it will be the standard query
language of the Semantic Web. However, our approach can also be applied to
other RDF query languages, that bases on matching of triple pattern.

Similar to relational databases we suppose that users and administrators of
an RDF database can define indexes on their RDF graphs. We define an index as
a SPARQL query consisting of a single basic graph pattern whose occurrences in
the underlying RDF database are computed in advance. How these occurrences
are stored is a topic of future work.

We especially focused on the selection of not only a single index but a set
of indexes. To decide on which indexes to use for query processing, we provided

the notion of selectivity of a set of indexes. The selectivity of an index is an
important parameter to estimate the costs of an query execution plan involving
this index. Future work includes the implementation of our approach and the
evaluation of index selection during query processing.

Up to now we considered only queries consisting of a basic graph pattern.
Our approach can be extended to FILTER clauses by including these clause in
index patterns. Having FILTER clauses in the index pattern, determining eligible
indexes becomes more complex, because the query processor has to check if
query pattern is part of the index patterns. In future work, we will extend our
approach to full SPARQL. For example, if we consider OPTIONAL clauses, then
query rewriting becomes important for index selection. Since basic graph pattern
can be grouped arbitrarily, the rewriting component is responsible to reformulate
the query such that indexes can be used for query evaluation.

References

1. Bayer, R., McCreight, E.M.: Organization and maintenance of large ordered in-
dices. Acta Informatica 1 (1972) 173–189

2. Bentley, J.L.: Multidimensiuonal binary search in database applications. IEEE
Transactions on Software Engineering 4(5) (1979) 397–409

3. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-tree: an efficient
and robust access method for points and rectangles. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data. SIGMOD Record,
New York, NY, USA, ACM Press (1990) 322–331

4. Bertino, E.: Index configuration in object-oriented databases. The VLDB Journal
3(3) (1994) 355–399

5. Beckett, D.: RDF/XML Syntax Specification (Revised).
http://www.w3.org/TR/rdf-syntax-grammar/ (2004) W3C Recommendation.

6. Alexaki, S., Christophides, V., Karvounarakis, G., Plexousakis, D., Tolle, K.: The
RDFSuite: Managing Voluminous RDF Description Bases. In Decker, S., Fensel,
D., Sheth, A.P., Staab, S., eds.: Proceedings of the Second International Workshop
on the Semantic Web. (2001) 1–13

7. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A generic architecture for
storing and querying RDF and RDF schema. In Horrocks, I., Hendler, J.A., eds.:
Proceedings of the First International Semantic Web Conference. Volume 2342 of
Lecture Notes in Computer Science., Springer (2002)

8. Wilkinson, K., Sayers, C., Kuno, H., Reynolds, D.: Efficient RDF Storage and
Retrieval in Jena2. In Cruz, I.F., Kashyap, V., Decker, S., Eckstein, R., eds.:
Proceedings of the First International Workshop on Semantic Web and Databases.
(2003)

9. Beckett, D.: The Design and Implementation of the Redland RDF Application
Framework. In: Proceedings of the Tenth International Conference on World Wide
Web, New York, NY, USA, ACM Press (2001)

10. Miller, L., Seaborne, A., Reggiori, A.: Three Implementations of SquishQL, a
Simple RDF Query Language. Technical Report HPL-2002-110, HP Labs (2002)

11. Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M.:
RQL: A Declarative Query Language for RDF. In: Proceedings of the Eleventh
International Conference on World Wide Web, New York, NY, USA, ACM Press
(2002)

12. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF.
http://www.w3.org/TR/rdf-sparql-query/ (2006) W3C Candidate Recommenda-
tion.

13. Open Source: Jena – A Semantic Web Framework for Java.
http://jena.sourceforge.net/ (2006)

14. Beckett, D.: Redland RDF Application Framework (2004) Supported by EU IST
project SWAD-Europe.

15. Harth, A., Decker, S.: Optimized index structures for querying rdf from the web.
In: Proceedings of the 3rd Latin American Web Congress, IEEE Press (2005)

16. Gutierrez, C., Hurtado, C., Mendelzon, A.O.: Foundations of semantic web
databases. In Deutsch, A., ed.: Proceedings of the 23st ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, New York, NY, USA,
ACM Press (2004) 95–106

17. Weigel, F., Schulz, K.U., Meuss, H. In: The BIRD Numbering Scheme for XML
and Tree Databases – Deciding and Reconstructing Tree Relations Using Effi-
cient Arithmetic Operations. Volume 3671 of Lecture Notes in Computer Science.
Springer Berlin/Heidelberg (2005) 49–67

18. Cordella, L., Foggia, P., Sansone, C., Vento, M.: A (Sub)Graph Isomorphism
Algorithm for Matching Large Graphs. IEEE Transactions on Pattern Analysis
and Machine Intelligence 26(10) (2004) 1367–1372

19. Yan, X., Yu, P.S., Han, J.: Graph indexing: a frequent structure-based approach.
In Weikum, G., König, A.C., Deßloch, S., eds.: Proceedings of the ACM SIGMOD
International Conference on Management of Data, New York, NY, USA, ACM
(2004) 335–346

20. Guo, Y., Pan, Z., Heflin, J.: LUBM: A Benchmark for OWL Knowledge Base
Systems. Journal of Web Semantics 3(2) (2005) 158–182

21. Date, C.J.: An introduction to database systems. 4th edn. Volume I. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA (1986)

22. Lenzerini, M.: Data integration: a theoretical perspective. In Popa, L., ed.: Pro-
ceedings of the 21st ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, New York, NY, USA, ACM Press (2002) 233–246

23. Ramakrishnan, R., Sagiv, Y., Ullman, J.D., Vardi, M.Y.: Proof-tree transforma-
tion theorems and their applications. In: Proceedings of the 8th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, New York, NY,
USA, ACM Press (1989) 172–181

24. Heese, R.: Query graph model for sparql. In: International Workshop on Semantic
Web Applications: Theory and Practice. Proceedings of ER workshops. (2006)

