
On the Distance of Databases

Heiko Müller, Johann-Christoph Freytag, Ulf Leser
Humboldt-Universität zu Berlin zu Berlin,

10099 Berlin, Germany

{hmueller, freytag, leser}@informatik.hu-berlin.de

Abstract

We study the novel problem of efficiently computing the update distance for a pair of rela-
tional databases. In analogy to the edit distance of strings, we define the update distance of
two databases as the minimal number of set-oriented insert, delete and modification opera-
tions necessary to transform one database into the other. We show how this distance can be
computed by traversing a search space of database instances connected by update operations.
This insight leads to a family of algorithms that compute the update distance or approxima-
tions of it. In our experiments we observed that a simple heuristic performs surprisingly well
in most considered cases.
Our motivation for studying distance measures for databases stems from the field of scientific
databases. There, replicas of a single database are often maintained at different sites, which
typically leads to (accidental or planned) divergence of their content. To re-create a consistent
view, these differences must be resolved. Such an effort requires an understanding of the
process that produced them. We found that minimal update sequences are a proper representa-
tion of systematic errors, thus giving valuable clues to domain experts responsible for conflict
resolution.

On the Distance of Databases
__

__

 2

Contents

1 EDIT DISTANCE OF DATABASES 3

2 TRANSFORMERS FOR PAIRS OF DATABASES 7

2.1 CONTRADICTING DATABASES 7
2.2 UPDATE OPERATIONS 8
2.3 MINIMAL SEQUENCES OF UPDATE OPERATIONS 9

3 DISTANCE MEASURES FOR DATABASES 9

3.1 THE RESOLUTION DISTANCE 10
3.2 THE UPDATE DISTANCE 10

4 TRANSIT - MINIMAL TRANSFORMERS FOR DATABASES 12

4.1 SEARCH SPACE EXPLORATION 12
4.1.1 TRANSITION GRAPH 13
4.1.2 DUPLICATE DETECTION 14
4.1.3 REPRESENTATION OF DATABASES 16
4.1.4 PRUNING 16
4.1.5 BREADTH-FIRST ALGORITHM 16
4.1.6 DEPTH-FIRST ALGORITHM 18

4.2 ENUMERATION OF VALID MODIFICATION OPERATIONS 19
4.2.1 THE SET OF VALID MODIFICATION TERMS 19
4.2.2 THE SET OF VALID SELECTION PATTERNS 20
4.2.3 FILTERING VALID MODIFICATION OPERATIONS 21

4.3 HANDLING DELETE AND INSERT OPERATIONS 22
4.3.1 DELETE OPERATIONS AS SPECIAL CASE OF MODIFICATIONS 22
4.3.2 HANDLING ARBITRARY SEQUENCES OF UPDATE OPERATIONS 22

5 HEURISTICS AND PROBLEM VARIATIONS 22

5.1 A CLASSIFICATION OF MODIFICATION OPERATIONS 23
5.2 GREEDY TRANSIT 24
5.3 APPROXIMATION OF THE UPDATE DISTANCE 25

6 EXPERIMENTAL RESULTS 27

6.1 ALGORITHMS FOR FINDING EXACT SOLUTIONS 27
6.2 ACCURACY OF THE HEURISTIC APPROACHES 30

6.2.1 DIFFERENT OPERATION CLASSES 30
6.2.2 TRANSIT-DFS (GS) AND TRANSIT-BFS (GS) 32
6.2.3 GREEDY-TRANSIT AND TRANSIT-APPROX 33

7 FURTHER DISTANCE MEASURES 35

8 RELATED WORK 38

9 CONCLUSIONS & OUTLOOK 39

LITERATURE 41

On the Distance of Databases
__

__

 3

1 Edit Distance of Databases

Today, many databases are generated with overlaps in their sets of represented real-world
entities. There are various reasons for these overlaps:

• Replication of data sources: In e-commerce, for example, many business-critical ser-
vices demand high availability and a low latency. Therefore, web services and their
data are replicated at geographically distributed sites to improve the performance of
these services [GDN+03]. A common example from life science research are the three
databases GenBank, EMBL, and DDBJ within the International Nucleotide Sequence
Database Collaboration (INSDC) [INSDC]. These databases all manage the same set
of DNA sequences, but share the burden of submission handling and query answering.
Replication of data sources is also common for mobile devices to gain data access in-
dependently of the availability of a network connection.

• Independent production of data: Data representing a common set of entities or indi-
viduals is often collected and maintained independently by different groups or institu-
tions. For example, within a company the accounting department and the personnel
department maintain overlapping lists of the employees in the company. There may
also exists overlaps within the customer databases of different companies. In the area
of scientific research it is common practice to distribute the same set of samples, such
as clones, proteins, or patient’s blood, to different laboratories to enhance the reliabil-
ity of analysis results.

• Data integration and data warehousing: There is a plethora of data integration and
data warehousing projects world-wide (see [Ziegler] for a current listing). Within
these projects data is copied from sources, possibly transformed and manipulated for
data cleansing, and stored in an integrated data warehouse. Data integration results in
overlaps between the originals and the integrated databases.

Whenever overlapping data is administered at different sites, there is a high probability of the
occurrence of differences. These differences do not need to be accidental, but could be the
result of different data production and processing workflows at the different institutions. For
example, the three protein structure databases OpenMMS [BBF+01], MSD [BDF+03], and
Columba [RMT+04] are all copies of the Protein Data Bank PDB [BWF+00]. However, due
to different cleansing strategies, these copies vary substantially. In OpenMMS the focus is on
completing and updating literature references, while in MSD the focal point of data cleansing
is the standardization of used vocabularies. Thus, a biologist is faced with conflicting copies
of the same set of real world objects and the problem of solving these conflicts to produce a
consistent view of the data.
Learning about the reasons that led to inconsistencies is a valuable means in the task of con-
flict resolution. Many inconsistencies are highly systematic, caused by the usage of different
controlled vocabularies, different measurement units, different abbreviations, or by misinter-
pretations during experimental analysis. Knowledge about such systematic deviations can be
used to assess the individual quality of database copies for conflict resolution. Figure 1shows
an example of overlapping databases representing fictitious results of two research groups
examining the same set of amphibians with differing data production workflows. The contra-
dicting values are highlighted by shaded cells. Unfortunately, usually only the databases are
visible without any additional knowledge about the data generation or manipulation process
that lead to the occurring differences.

On the Distance of Databases
__

__

 4

Figure 1: Contradicting data sources resulting from different data production workflows
while examining the same set of amphibians.

Assuming that conflicts do not occur randomly but follow specific (but unknown) regularities,
patterns of the form “IF condition THEN conflict” provide a valuable means to facilitate their
understanding. Evaluated by a domain expert, the patterns can be utilized to assess the cor-
rectness of conflicting values and therefore for conflict resolution. In [MLF04] we proposed
the adaptation of existing data mining algorithms to find such patterns.
In this paper, we develop a different approach for finding regularities in contradicting data-
bases: The detection of minimal update sequences. Figure 2 shows such a minimal sequence
of six update operations (using SQL syntax) transforming the first data source of Figure 1 into
the second. Each operation may act as a description of potential systematic difference in data
production that lead to the occurring conflicts.

(1) UPDATE GROUP1.AMPHIBIAN

SET COLOR = ‘Olive’
WHERE ORGANISM = ‘Frog’
AND COLOR = ‘Green’

(2) UPDATE GROUP1.AMPHIBIAN
SET SIZE = 20
WHERE COLOR = ‘Olive’

(3) UPDATE GROUP1.AMPHIBIAN
SET COLOR = ‘Grey-Spotted’
WHERE ORGANISM = ‘Newt’
AND SEX = ‘M’
AND COLOR = ‘Grey’

(4) UPDATE GROUP1.AMPHIBIAN
SET COLOR = ‘Grey&Yellow’
WHERE ORGANISM = ‘Newt’
AND SEX = ‘F’
AND COLOR = ‘Grey’

(5) UPDATE GROUP1.AMPHIBIAN
SET ORGANISM = ‘Frog’
WHERE ORGANISM = ‘Toad’

(6) UPDATE GROUP1.AMPHIBIAN
SET SEX = ‘W’
WHERE SEX = ‘F’

Figure 2: A sequence of update operations transforming a given data source into another one.

On the Distance of Databases
__

__

 5

For example, Group2 does not differentiate between organisms toads and frogs (5), both
groups use different representation for the gender female (6) and Group2 uses variations of
color gray for male and female newts (3) and (4).
Our idea of using minimal update sequences as descriptions for database differences is best
explained by analogy to the usage of the string edit distance [Lev65] in biological sequence
analysis (see Figure 3). The DNA sequence of a gene is a string over a four letter alphabet. To
learn about the function of a specific gene in a specific species, biologists search for evolu-
tionary related genes of known function in other species. This evolutionary relatedness (or
distance) is proportional to the number of evolutionary events that have occurred to the se-
quence of a common ancestor, deriving the observed sequences, which in turn is proportional
to the number of evolutionary events that would be necessary to turn one gene into another.
Using a simple model of evolution encompassing only changes, deletions, and insertions of
single bases (i.e., characters of the sequence), the number of evolutionary events is measured
by the edit distance between two gene sequences, i.e., the minimal number of edit operations
(or evolutionary events) that transform one string into the other.
Similarly, we consider updates, insertions, and deletions of tuples as the fundamental opera-
tions for the manipulation of data stored in relational databases. Thus, to assess the “evolu-
tionary relationship” of two databases, we propose to use the minimal number of such opera-
tions that turn one databases into the other. We call this number the update distance between
two databases. Each sequence of operations as long as the update distance is one of the sim-
plest possible explanations for the observed differences (see for example Figure 2). Following
the “Occam’s Razor” principle, we conclude that the simplest explanations are also the most
likely. Minimal update sequences therefore give valuable clues on what has happened to a
databases to make it different from its original state. The update distance is a semantic dis-
tance measure, as it is inherently process-oriented in contrast to purely syntactic measures
such as counting differences.
In this paper, we present several exact and approximate algorithms for computing the update
distance and for finding minimal sequences of update operations for a pair of databases. Even
though we consider only a restricted form of updates (namely those where the attribute values
are set to constants), our algorithms for computing the exact solution require exponential
space and time. However, we also present greedy strategies that lead to convincing results in
all examples we considered.
To give an idea of the complexity of the problem, consider the databases of Figure 4. Clearly,
their update distance can be determined by enumerating update sequences of increasing length
until one sequence is found that implements all necessary changes. This would generate
294,998 intermediate states.

Figure 3: Edit distance of biological sequences (left) versus update distance
of databases (right).

On the Distance of Databases
__

__

 6

r1 A1 A2 A3 r2 A1 A2 A3
 1 1 1 1 1 1
 2 1 1 2 1 1
 3 1 1 3 1 1
 4 2 1 4 2 0
 5 3 1 5 3 0
 6 4 1 6 4 0
 7 5 1 7 5 0
 8 6 1 8 6 0
 9 1 0 9 1 0
 10 1 0 10 1 0

a) UPDATE r1 SET A3 = 0
 UPDATE r1 SET A3 = 1 WHERE A1 = 1
 UPDATE r1 SET A3 = 1 WHERE A1 = 2
 UPDATE r1 SET A3 = 1 WHERE A1 = 3

b) UPDATE r1 SET A3 = 0 WHERE A1 = 4
 UPDATE r1 SET A3 = 0 WHERE A1 = 5
 UPDATE r1 SET A3 = 0 WHERE A1 = 6
 UPDATE r1 SET A3 = 0 WHERE A1 = 7
 UPDATE r1 SET A3 = 0 WHERE A1 = 8

c) UPDATE r1 SET A3 = 2 WHERE A2 = 1 AND A3 = 1
 UPDATE r1 SET A3 = 0 WHERE A3 = 1
 UPDATE r1 SET A3 = 1 WHERE A3 = 2

Figure 4: An example for the need to introduce conflicts in order to find an optimal solution.

An intuitive idea to prune the search space would be to use a greedy strategy, i.e., to select at
each stage the operation that solves the most conflicts. This reduces the number of generated
intermediate states to 42 for the databases of Figure 4. The shortest sequence found using
such an approach has four elements (Figure 4a), although the update distance between data-
bases r1 and r2 is only three (Figure 4c). Another pruning idea might be to avoid modification
operations that introduce new conflicts. This results in only 32 generated intermediate states.
However, using this heuristic worsens the result, as now the shortest sequence is of length
five (Figure 4b). Intuitively, it is often necessary to use operations that in first place introduce
new conflicts, because these conflicts can be used as discriminating conditions in later update
operations. The first operation in Figure 4c temporarily increases the total number of con-
flicts, but this is compensated in later operations that are now able to solve more conflicts
within one statement.
The paper is structured as follows: Section 2 defines minimal update sequences that transform
a given database into another database. Also introduced is the necessary vocabulary, i.e., up-
date operations and sequences of update operations, used throughout this paper. In Section 3
we give a formal definition of the update distance for overlapping databases and derive an
upper and lower bound, which are important for optimization. Section 4 outlines algorithms
for calculating minimal update sequences transforming a given database into another. In Sec-
tion 5 we discuss heuristics and problem variations to improve the efficiency of the algorithm.
Section 6 shows the results of experiments we have performed after implementing the de-
scribed algorithms and heuristics. We define two additional distance measures in Section 7.
Section 8 discusses related work. We conclude in Section 9.

On the Distance of Databases
__

__

 7

2 Transformers for Pairs of Databases

In the following, we build the necessary vocabulary for the definition of the update distance in
the next section. Section 2.1 defines matches, conflicts and uncertainties between two data-
bases. Section 2.2 introduces the types of basic operations we assume as possible updates.
Section 2.3 defines sequences of these operations in order to transform a given database into
another.

2.1 Contradicting Databases
The data sources within this paper are relational databases as defined in [Cod70]. These data-
bases consist of a single relation r and they all follow the relational schema R(A1, …, An).
Each attribute A ∈ R is associated with a domain of possible values, denoted by dom(A).
Without loss of generality we assume dom(A) = ℕ for all attributes A ∈ R. Tuples are de-
noted by t and values corresponding to attribute A by t[A]. We assume the existence of a pri-
mary key constraint for schema R. Without loss of generality we assume A1 to be the primary
key attribute. We will use ID as synonym for attribute A1. The primary key represents the
unique object identifier for finding duplicate tuples between databases. A single database is
therefore free of duplicates. We use t{j} to refer to the tuple with primary key value j, j ∈ ℕ.
A pair of tuples from databases r1 and r2 is called a matching pair if they possess identical
primary key values. The set of all matching pairs between databases (i.e., relations) r1 and r2
is denoted by M(r1, r2), i.e.,

M(r1, r2) = {(t1, t2) | (t1, t2) ∈ r1 × r2 ∧ t1[ID] = t2[ID]}

Let m = (t1, t2) be a matching pair from M(r1, r2). The different tuples from m are denoted by
tup1(m) and tup2(m). The equal primary key value of both tuples is denoted by id(m). A pair
of databases r1 and r2 is called overlapping if M(r1, r2). There might also be tuples in r1 and r2
without a matching partner in the other database. These tuples are called unmatched. The set
of tuples from database r1 that are unmatched by tuples from r2 is denoted by U(r1, r2), i.e.,

U(r1, r2) = {t1 | t1 ∈ r1 ∧ ¬∃ (t2 ∈ r2 ∧ t1[ID] = t2[ID])}

Within a matching pair several conflicts may occur. We represent each conflict by the match-
ing pair m and the attribute A in which the conflict occurs.

DEFINITION 1 (SET OF CONFLICTS): The set of conflicts between a pair of databases r1 and r2,
denoted by C(r1, r2), is the set of all tuples (m, A) where a conflict in attribute A of pair m
exists, i.e.,

C(r1, r2) = {(m, A) | (m, A) ∈ M(r1, r2) × R ∧ tup1(m)[A] ≠ tup2(m)[A]}.♦

A pair of databases r1 and r2 is called contradicting, if there exists at least one conflict be-
tween them, i.e., C(r1, r2) ≠ ∅. We call the databases different if they are contradicting or
there exist unmatched tuples between them, i.e., C(r1, r2) ≠ ∅ ∨ U(r1, r2) ≠ ∅ ∨ U(r1, r2) ≠ ∅.
As an example, consider the databases from Figure 4. The set of matching pairs contains ten
elements. There are no unmatched tuples in either one of them and there are five conflicts,
i.e., C(r1, r2) = {((t1{4}, t2{4}), A3), ((t1{5}, t2{5}), A3), ((t1{6}, t2{6}), A3), ((t1{7}, t2{7}),
A3), ((t1{8}, t2{8}), A3)}.

On the Distance of Databases
__

__

 8

2.2 Update Operations
Update operations are used to modify existing databases. They can be considered as functions
that map databases onto each other. Let ℜ(R) denote the infinite set of databases following
schema R that satisfy the primary key constraint. An update operations ψ is then defined as a
mapping ψ: ℜ(R) → ℜ(R). For relational databases there are three types of basic update op-
erations, namely insert, delete, and modify [Vos91]. An insert operation creates a new tuple.
A delete operation removes a set of tuples satisfying a given selection criteria. A modification
operation changes the value for an attribute within a set of tuples satisfying a given selection
criteria. Before we define the update operations and sequences in detail we introduce the fol-
lowing concepts to fix the expressiveness of the operations.

DEFINITION 2 (TERM): A term τ over schema R is tuple (A, x), with attribute A ∈ R and
value x ∈ dom(A). We also define attr(τ) = A and value(τ) = x.♦

A term can be interpreted as a Boolean-function on tuples. A tuple t satisfies τ, denoted by
τ(t) = true, if t[attr(τ)] = value(τ). By τ(r) we denote the set of tuples from r which satisfy τ.
We say that the tuples in τ(r) are selected by τ. Terms are combined to patterns acting as se-
lection criteria in update operations.

DEFINITION 3 (PATTERN): A pattern ρ over schema R is a set of terms over schema R. We
only consider patterns which do not contain different terms with equal attributes, i.e.,

∀ τi, τj ∈ ρ : attr(τi) = attr(τj) ⇔ τi = τj.♦

A tuple t satisfies ρ, denoted by ρ(t) = true, if it satisfies each term within ρ. A pattern is
therefore a conjunction of terms. An empty pattern is satisfied by each tuple of a database.
Similar to the definitions above, ρ(r) denotes the set of tuples satisfying ρ. We say that ρ se-
lects the set of tuples ρ(r) from the database r.

DEFINITION 4 (UPDATE OPERATION): An update operation ψ over schema R is a mapping
ψ : ℜ(R) → ℜ(R). We differ between three types of update operations:

• The insert operation, denoted by ψι, is a n-tuple (τ1, …, τn). It contains exactly one
term for each of the attributes Ai from R. It adds a new tuple tnew to r, with
tnew[Ai] = value(τi) for 1 ≤ i ≤ n. The insert operation is therefore also denoted by
ψι(tnew). If there already exists a tuple t in r with t[ID] = tnew[ID], the database remains
unchanged. Otherwise, the result of ψι(r) is r ∪ {tnew}.

• The delete operation, denoted by ψδ, is defined by a single pattern ρ. It removes all
tuples from a relation, that satisfy the pattern ρ, i.e., ψδ(r) = r / ρ(r).

• The modification operation, denoted by ψµ, is a term-pattern pair (τ, ρ). We exclude
key attributes from being modified. Therefore, attr(τ) is element of R / ID. A modifi-
cation operation modifies all tuples within a relation, which satisfy ρ. For these tuples,
the value for attribute attr(τ) is set to by value(τ).♦

Given a modification operation ψµ = (τ, ρ), we refer to τ as the modification term, to value(τ)
as the modification value, to attr(τ) as the modified attribute, and to ρ as the modification pat-
tern. Note that there not necessarily exists a reverse operation for each modification operation.
For example, the operation ψµ = ((A2, 7), {(A3, 1)}) sets the value for attribute A2 to 7 for the
tuples t{1}, …, t{8} when applied to database r1 from Figure 4. We need at least six modifi-
cation operations to undo this single operation. There is also no single reverse operation for
delete operations that delete more than one tuple.

On the Distance of Databases
__

__

 9

2.3 Minimal Sequences of Update Operations
We now have all the tools at hand to define minimal sequences of update operations.

DEFINITION 5 (UPDATE SEQUENCE): An update sequence Ψ = <ψ1, …, ψk> is an ordered list
of update operations. Applied on a database r1, an update sequence generates (or derives) a
database r2 = Ψ(r1) by executing the update operations in given order on r1, i.e.,
Ψ(r1) = ψk(…(ψ1(r1))…).♦

The databases which are generated by the update operations of an update sequence while
transforming r1 into r2 are called intermediate states. Obviously, the order of operations
within an update sequence is important. For example, the update sequences Ψ1 = <ψµ1, ψµ2>
and Ψ2 = <ψµ2, ψµ1> with ψµ1 = ((A2, 7), {(A3, 1)}) and ψµ2 = ((A3, 7), {(A3, 1)}) have differ-
ent results when applied to database r1 of Figure 4. The first sequence results in a database
where the value for attribute A2 and A3 is 7 in tuples t{1}, …, t{8}. In the second sequence
the operation ψµ1 has no effect, as the pattern is no longer satisfied by any of the tuples after
applying operation ψµ2.
We call Ψ a transformer for databases r1 and r2, iff Ψ(r1) = r2. The number of update opera-
tions within a sequence is called its length and is denoted by |Ψ|. Figure 4 lists three update
sequences of different length, which are transformers for the databases r1 and r2.

DEFINITION 6 (MINIMAL TRANSFORMER): An update sequence Ψ is called a minimal trans-
former for a pair of databases r1 and r2, if Ψ(r1) = r2 and there does not exists another trans-
former Ψ’ with Ψ’(r1) = r2 and |Ψ’| < |Ψ|.♦

There may be several minimal transformers for a pair of databases r1 and r2. The set of all
minimal transformers for r1 and r2 is denoted as T(r1, r2). Figure 5 shows two minimal trans-
formers (in SQL-like notation) that transform r1 into r2 and r2 into r1, respectively.

r1 A1 A2 A3 A4 r2 A1 A2 A3 A4
 1 2 1 1 1 2 1 3
 2 1 2 1 2 2 2 3
 3 1 2 0 3 2 2 3
 4 1 2 1 4 2 2 3

Ψ(r1) = r2 Ψ(r2) = r1

UPDATE SET A4 = 3
UPDATE SET A2 = 2 WHERE A2 = 1

UPDATE SET A2 = 1 WHERE A3 = 2
UPDATE SET A4 = 1
UPDATE SET A4 = 0 WHERE A1 = 3

UPDATE SET A2 = 2
UPDATE SET A4 = 3

UPDATE SET A4 = 0 WHERE A1 = 3
UPDATE SET A4 = 1 WHERE A4= 3
UPDATE SET A2 = 1 WHERE A3 = 2

Figure 5: The set of minimal transformers for a pair of databases.

3 Distance Measures for Databases

Within this section we define distance measures for databases to quantify their similarity.
Such a measure is represented by a distance function, which assigns a non-negative value to a
pair of databases, with a smaller value, i.e., a shorter distance, reflecting a greater similarity.
Similar to existing distance measures for strings, which rely on the edit operations insert, de-
lete, and replace, we use sequences of update operations in our definitions.

On the Distance of Databases
__

__

 10

3.1 The Resolution Distance
An obvious distance measure for a pair of databases is the total number of differences be-
tween them. This number is given by the sum of unmatched tuples and conflicts between
these databases. Such a distance measure reflects the maximal number of necessary update
operations for transforming one of the databases into each other.

DEFINITION 7 (RESOLUTION DISTANCE): For a pair of databases r1 and r2, the resolution dis-
tance ∆R(r1, r2) is defined as the sum of the number of unmatched tuples in either database and
the number of conflicts between the databases, i.e.,

∆R(r1, r2) = |U(r1, r2)| + |U(r2, r1)| + |C(r1, r2)|.♦

For the databases r1 and r2 in Figure 5, the resolution distance is 7 and it equals the number of
conflicts between the databases r1 and r2. It follows, that ∆R(r1, r2) = ∆R(r2, r1), as C(r1, r2)
equals C(r2, r1). The resolution distance is not a metric, as the triangle inequality ∆R(r1, r2) +
∆R(r2, r3) ≥ ∆R(r1, r3) odes not hold. For example, a tuple occurring within r1 and r3 but not in
r2 counts only twice on the left side of the inequality but potentially (|R| - 1)-times on the right
side, because there may occur a conflict within every non-key attribute of the corresponding
matching pair.

LEMMA 1: For each pair of databases r1 and r2 there exists a transformer Ψ of length
∆R(r1, r2).
PROOF: In order to transform r1 into r2 we have to (i) remove the tuples from r1 without a
matching partner in r2, (ii) solve the conflicts within the matching pairs, and (iii) insert those
tuples which exist in r2 but not r1. Due to the primary key property every single tuple t from
database r is individually selectable by a pattern ρ = {(ID, t[ID])}. As the primary key is un-
changeable this is always true for any existing tuple. The deletions are accomplished using a
single delete operation for every unmatched tuple in r1, i.e., for every tuple in U(r1, r2). The
conflicts are solved using a single modification operation for every element (A, m) from
C(r1, r2), with the modification term τ = (A, tup2(m)[A]) and the pattern ρ = {(ID, id(m))}.
The inserts are performed by executing an insert operation on r1 for every tuple unmatched
tuple from r2, i.e., for every tuple in U(r2, r1). Overall, this requires |U(r1, r2)| delete opera-
tions, |C(r1, r2)| modification operations, and |U(r2, r1)| insert operations. Any sequence of
these operations is a transformer for r1 and r2.♦

3.2 The Update Distance
The described transformers not necessarily reflect the optimal solution regarding the number
of update operations needed to transform one database into another. Often, there is the possi-
bility to solve more than one conflict using a single modification operation. The same is true
for multiple deletes in order to minimize the overall number of necessary operations. This is
reflected in the definition of the following distance measure, which considers update opera-
tions that affect an arbitrary number of tuples.

DEFINITION 8 (UPDATE DISTANCE): For a pair of databases r1 and r2, the update distance
∆U(r1, r2) is defined as the length of any minimal transformer for r1 and r2.♦

Note that the update distance also is not a metric as it is not a symmetric relation, i.e.,
∆U(r1, r2) not necessarily equals ∆U(r2, r1). We consider the minimal transformers as explana-
tions for observed differences between two databases. In order to avoid meaningless (or triv-
ial) update sequences like (1) delete all tuples in r1, and then (2) for each tuple in r2 perform

On the Distance of Databases
__

__

 11

an insert operation, we further restrict the valid update operations within the transformers.
For any intermediate state ri in the process of transforming r1 into r2 an operation ψ is valid, if
ψ is active and:

a) ψ is an insert operation, with tnew ∈ r2 / (r2 ⋉ID r1), ,

b) ψ is a delete operation, where ρδ(ri) ⊆ r1 / (r1 ⋉ID r2), or
c) ψ is a modification operation.

We thereby allow inserts only for tuples from r2 without a matching partner in r1 and deletes
for tuples in r1 without a matching partner in r2. Modification operations are unrestricted. For
the databases in Figure 5 the listed transformers are minimal. This results in an update dis-
tance ∆U(r1, r2) of two and an update distance ∆U(r2, r1) of three. The resolution distance and
the update distance both describe minimal sequences of update operations for transforming
one database into the other. They differ, however in the set of utilized update operations. In
Section 4.3.2 we describe briefly how to extend the approaches for unrestricted update opera-
tions.
Unfortunately, there does not exist an easy formula for calculating of the update distance as
there is one for the resolution distance. An algorithm to determine the update distance and the
set of all minimal transformers for a given pair of databases is described in Section 4. While
the calculation of the update distance is non-trivial, we can define upper and lower bounds.

LEMMA 2: An upper bound for the update distance between a pair of databases r1 and r2, de-
noted by UB(r1, r2), is given by the resolution distance ∆R(r1, r2).
PROOF: Due to LEMMA 1, there exists a transformer of length ∆R(r1, r2) for r1 and r2. Any
transformer of length greater than the resolution distance is therefore not minimal.♦

To also define a lower bound, we make use of the fact that according to our definition each
modification operation modifies only one attribute. We subsume the conflicts that are poten-
tially solvable using a single modification operation within a conflict group.

DEFINITION 9 (SOLUTION): Given a pair of databases r1 and r2 and a matching pair m ∈ M(r1,
r2). The solution of an existing conflict (m, A) ∈ C(r1, r2) is given by the value tup2(m)[A] that
has to by used as modification value in a modification operation to solve the conflict when
transforming r1 into r2.♦

DEFINITION 10 (CONFLICT GROUP): Given a pair of databases r1 and r2. A conflict group κ is
an attribute-value pair (A, x) with attr(κ) = A ∈ R and value(κ) = x ∈ dom(A). κ represents
the subset of conflicts (m, A) from C(r1, r2) having the following property:

(m, A) ∈ C(r1, r2) ∧ attr(κ) = A ∧ value(κ) = tup2(m)[A].♦

Thus, all conflicts represented by a conflict group κ occur in the same attribute A and have
the same solution x. These conflicts are hence solvable using a modification operation with κ
as the modification term. Let K(r1, r2) be the set of all conflict groups between a pair of data-
bases. There exist two conflict groups for the databases r1 and r2 of Figure 5, namely κ1 = (A2,
2) and κ2 = (A4, 3). Note, that the set K(r2, r1) for the databases of Figure 5 contains three con-
flict groups, i.e., κ1 = (A2, 1), κ1 = (A4, 0), and κ1 = (A4, 1).
Due to the definition of the modification operations, we need at least one modification opera-
tion for solving the conflicts represented by a given conflict group.

On the Distance of Databases
__

__

 12

LEMMA 3: The lower bound for the update distance between a pair of databases r1 and r2, de-
noted by LB(r1, r2), is given by:

.

PROOF: In order to transform r1 into r2 with the restrictions for update operations as described
above, we need exactly one insert operation for each tuple in |U(r2, r1)|, at least one modifica-
tion operations for each conflict group in K(r1, r2), and at least one delete operations if there
are tuples to be deleted.♦

For the example in Figure 4 the update distance is three, as shown by the update sequences in
c). The lower bound of the update distance is one and the upper bound is five. For the data-
bases in Figure 5 the update distance ∆U(r1, r2) is two, which is also the lower bound.

4 TRANSIT - Minimal Transformers for Databases

This section describes the TRANSIT algorithms to determine the set of minimal transformers
for similar databases r1 and r2. Regarding the minimization of transformer length, an early
execution of insert operations does not provide any benefit. Instead, early inserts bear the
chance that following modification or delete operations affect the inserted tuples and cause
additional contradictions. Inserts are therefore delayed until all other contradictions have been
eliminated. Delete operations can be handled as special cases of conflict resolution with modi-
fication operations. We therefore omit the separated treatment of deletes and postpone this to
Section 4.3. As a consequence, we only consider modification operations and restrict the pre-
sented algorithm to databases having a complete mutual overlap, i.e., U(r1, r2) = U(r2, r1) = ∅.
Given a pair of databases ro and rt, called origin and target, the TRANSIT algorithms essen-
tially enumerate the space of all databases reachable by applying sequences of modification
operations to ro. Doing so efficiently poses several challenges for which we describe solu-
tions. First, we introduce transition graphs as formalizations of the search problem. Since
many update sequences lead to the same database state, duplicate detection is of outermost
importance. We describe a hashing scheme for efficient duplicate checking. We show how we
use upper and lower bounds defined in Section 3.2 to prune the search space leading to a
branch and bound algorithm. We then describe a breadth-first strategy for traversing the
search space and briefly sketch a depth-first strategy. In Section 4.2 we show how – given a
database state – the set of all possible modification operations can be computed using a min-
ing algorithm that computes closed frequent itemsets. Finally, Section 4.3 explains how to
handle delete operations as a special case of modification operations and briefly discusses the
usage of unrestricted sequences of update operation. Still, throughout this paper we mainly
limit our explanations to modification operations.

4.1 Search Space Exploration
Given a pair of databases ro and rt our goal is to determine T(Ro, rt). Our approach essentially
starts by determining all databases derivable from ro by a single modification operation. We
call the resulting databases level-1 databases. Level-2 databases are computed by using all

On the Distance of Databases
__

__

 13

level-1 databases as starting point for another modification. This process continues until we
reach rt. The level at which the target is reached first reflects the minimal number of modifica-
tion operations necessary to derive rt from ro, i.e., the update distance ∆U(ro, rt). To determine
T(ro, rt) the algorithm also needs to enumerate all other sequences that are of the same length.
We maintain the sequence of modification operations with each. Since multiple sequences
may generate the same database, level-n databases may have an update distance that is actu-
ally shorter than n. We later treat the detection of duplicated databases. Since we enumerate
all possible modifications at each level and for each databases, we ensure that our first match
with rt defines the shortest possible sequence.

4.1.1 Transition Graph
We represent the search space using a directed labeled graph, called transition graph. Vertices
of this graph are databases connected by directed edges representing modification operations.

DEFINITION 11 (TRANSITION GRAPH): For two databases ro and rt, the transition graph
GT = (V, E) with vertices V and edges E is defined as follows: V is the set of all databases
derivable from ro using an update sequence of length shorter than or equal to the update dis-
tance ∆U(ro, rt). This implies that rt ∈ V. E is the set of all edges e = (r1, r2, ψ) for which
ψ(r1) = r2, r1, r2 ∈ V. The update operation represents the edge label, denoted by label(e). We
call r1 the source of e, denoted by source(e), and r2 the target of e, denoted by target(e).♦

A path between two databases r1 and r2 within the transition graph is a sequences of edges that
connect r1with r2.

DEFINITION 12 (PATH): A path ϕ = <e1, …, ep> within transition graph GT = (V, E) is a se-
quence of edges from E with source(ei) = target(ei-1) for all 1 < i ≤ p. Two databases r1 and r2
are connected by ϕ if source(e1) = r1 and target(ep) = r2.♦Each path between two databases r1
and r2 defines a transformer for r1 and r2. The path ϕ = <e1, …, ep> represents a transformer Ψ
= <label(e1), …, label(ep)>, with Ψ(source(e1)) = target(ep). In accordance to DEFINITION 6 a
path is minimal if no shorter path between the same two databases exists. Clearly, the set of
minimal transformers for ro and rt is given by all minimal paths from ro to rt within the transi-
tion graph. For a transition graph GT = (V, E) the minimal transition graph GTmin = (Vmin,
Emin) with Vmin ⊆ V and Emin ⊆ E is the part of the transition graph GT containing only those
vertices and edges that are contained in the minimal paths between ro and rt.
Essentially, the TRANSIT-algorithms iteratively construct the transition graph – or a part of it
containing at least the minimal transition graph – starting with ro as the only vertex. Figure 6
shows an example of such a transition graph. The different levels are outlined by horizontal
lines and derivable databases are only shown at the level of their update distance from ro (as
opposed to showing them on each level at which they are derived). Vertices and edges of the
minimal transition graph are enclosed within a gray box.
Duplicate databases while constructing the transition graph occur whenever the same database
is derived by different update sequences. We differ between inter-level and intra-level dupli-
cates. Inter-level duplicates occur, if update sequences of different length derive the same
database, i.e., the same databases is derived at different levels. Duplicates at different levels of
the graph may introduce cycles. Since the corresponding edges – delineated by dotted lines
for clarity in Figure 6 – cannot be part of a minimal transformer, they are not included in the
graph. This ensures that the resulting graph is acyclic. Intra-level duplicates result from dif-
ferent update sequences of equal length that derive the same database. These duplicate data-
bases result in multiple edges between two vertices on adjacent distance levels.

On the Distance of Databases
__

__

 14

Figure 6: An exemplified transition graph as generated by the TRANSIT algorithm without
pruning.

4.1.2 Duplicate Detection
A large portion of all generated databases are duplicates due to different update sequences
deriving the same database. For example, the operations ψ1 = ((A3, 0), {(A3, 1)}) and ψ2 =
((A3, 0), {}) derive the same result when applied to database r1 of Figure 4. Also, may update
sequences derive the same database from itself. For example, the update sequence <((A2, 0),
{(A1, 1)}), ((A2, 1), {(A1, 1)})> derives r1 from r1 using a 2-step update sequence. We must
detect duplicates efficiently to avoid unnecessary explosion of the search space.
Figure 7 shows a pair of databases having an update distance ∆U(r1, r2) of four. Also shown in
the figure are the number of newly generated databases at each level, as well as the number of
duplicates, and the overall number of executed modification operations. There are a total of
24,586,604 executed modification operations while processing, i.e., generating the derivable
databases, for 198,019 databases. The generated transition graph has a total of 4,823,538 ver-
tices and 16,997,183 edges. The Figure also shows, that there is a very high rate of generated
duplicates (ca. 80% of the generated databases), thus necessitating and justifying additional
effort in order to detect and remove these duplicates. This number would even be higher if
duplicate databases where not detected and removed from the graph.
Duplicate detection requires comparison of entire databases, i.e., the complete scan of two
databases. To reduce the number of duplicate checks, we compute a hash value for each data-
base and maintain a hash table for generated databases. Complete database comparisons are
only performed when the hash values of two databases are equal, which drastically reduces
the number of (expensive) full database comparisons at the price of having to maintain the
hash table.

On the Distance of Databases
__

__

 15

r1 A1 A2 A3 A4 r2 A1 A2 A3 A4
 1 1 2 3 1 2 2 6
 2 1 3 3 2 2 3 6
 3 1 2 1 3 2 3 1
 4 1 2 2 → 4 2 3 2
 5 1 2 7 5 2 3 7
 6 1 2 6 6 2 3 6
 7 2 2 5 7 2 2 5
 8 0 2 6 8 0 2 6

 Generated
Databases

Inter-level
Duplicates

Intra-level
Duplicates

Operations
executed

∆U = 1 111 0 11 122
∆U = 2 5,761 1,905 5,585 13,251
∆U = 3 192,146 165,303 340,871 698,320
∆U = 4 4,625,519 7,422,214 11,827,178 23,874,911

∑ 4,823,537 7,589,422 12,173,645 24,586,604

Figure 7: The number of generated databases, duplicates, and modification operations exe-
cuted using the naïve approach for a pair of similar databases of update distance four.

We currently employ the following hash function for databases: Without a loss of generality
we assume the Ids to be integers in the range 1, …, m. We number the attribute values of the
particular tuples in the following order 0:t{1}[A1], 1:t[{1}[A2], …, (n * m) - 1:t{m}[An],
called the cell index (Figure 8). With each database we maintain a list of the conflicting val-
ues with an order based on this cell index (Figure 8 shows such a list for the conflicts between
databases r1 and r2 from Figure 7). Starting at position 0, we select k values from this list, hav-
ing cell index positions c1, …, ck, with ci = (i – 1) * (number of conflicts / k) for 1 ≤ i ≤ k. The
final hash value is an integer with k digits, where the i-th digit is the value of cell ci modulo
10. For the example in Figure 8 for k = 4 we use the values at position 0, 3, 6, and 9 with the
resulting hash value being 2131 (the position of the digits being numbered from right to left).
We also tested a hash function based on a histogram of the attribute values occurring within a
database. We thereby maintain for each occurring value from dom(A) the number of its occur-
rences within the databases (also shown in Figure 8). From this list we again take k values to
compute the hash value. We found the later scheme to be inferior in our experiments.

r1 A1 A2 A3 A4 Cell A1 A2 A3 A4
 1 1 2 3 Index 1 2 3 4
 2 1 3 3 5 6 7 8
 3 1 2 1 9 10 11 12
 4 1 2 2 13 14 15 16
 5 1 2 7 17 18 19 20
 6 1 2 6 21 22 23 24
 7 2 2 5 25 26 27 28
 8 0 2 6 29 30 31 32

List of Conflicting Values Histogram of Values

Position 0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3 4 5 6
Index 2 4 6 8 10 11 14 15 18 19 22 23 Value 0 1 2 3 5 6 7
Value 1 3 1 3 1 2 1 2 1 2 1 2 Occur. 1 7 9 3 1 2 1

Figure 8: Cell index an list of conflicting values as used for the hashing function.

On the Distance of Databases
__

__

 16

4.1.3 Representation of Databases
The usage of a hash table greatly reduces the number of comparisons of complete databases.
Still, in cases of equal hash values we must access the actual values in the database for com-
parison, i.e., we need access to the complete database in the vertices. We implemented two
different representations of these databases.
In a first representation we maintain complete databases within the vertices. While this is
memory consuming the access to the actual data values is fast. Alternatively, for each data-
base r only a transformer Ψ(ro) = r is maintained within the corresponding vertex. This greatly
reduces the memory requirement for transition graph maintenance. As a downside, we are
now forced to re-derive the database r from the origin every time access to the actual tuples
and attribute values is required. Therefore, this representation even further depends on the
ability of the hash function to generate equally distributed hash values for the databases in
order to avoid collisions.

4.1.4 Pruning
The TRANSIT-algorithms try to avoid generating the complete transition graph. The number
of vertices outside of the minimal transition graph in Figure 6 shows that many of the gener-
ated databases are not part of any minimal transformer. This observation is supported by ex-
amining the minimal transition graph for the databases of Figure 7. The minimal transition
graph contains 18 vertices and 36 edges which is far below the number of about 5,000,000
generated databases and 17,000,000 edges in the constructed transition graph.
This large difference suggest that pruning is essential. In TRANSIT, pruning uses the upper
and lower bounds for the update distance as defined in Section 3.2. Let β denote the current
upper bound for the update distance between ro and rt. This bound is initialized following
LEMMA 2 as UB(ro, rt). Each generated database r with LB(r, rt) > (β - ∆U(ro, r)) is not in-
cluded in the transition graph because any path from ro to rt through r will have at least ∆U(ro,
r) + LB(r, rt) > β edges and is therefore not minimal. The update distance ∆U(ro, r) is main-
tained with each vertex in order to avoid recalculation.
We decrease β whenever a database r is generated with (∆U(ro, r) + ∆R(r, rt)) < β. For such a
database there exists a transformer Ψ(ro) = r with length |Ψ| = ∆U(ro, r). Then LEMMA 1 guar-
antees the existence of a transformer Ψ’(r) = rt with length |Ψ’| = ∆R(r, rt). The following sim-
ple Lemma proofs the existence of a transformer Ψ’’(ro) = rt having length |Ψ’’| = ∆U(ro, r) +
∆R(r, rt).

LEMMA 4: Given transformers Ψ1(r1) = r2 and Ψ2(r2) = r3, there exists a transformer Ψ3(r1) =
r3 with length |Ψ3| = |Ψ1| + |Ψ2|.
PROOF: Transformer Ψ3 is a concatenation of Ψ1 = <ψ11, …, ψ1k> and Ψ2 = <ψ21, …, ψ2p>,
i.e., Ψ3 = <ψ11, …, ψ2k, ψ21, …, ψ2p>. The length of Ψ3 is |Ψ1| + |Ψ2| and the result of Ψ3(r1)
equals Ψ2(Ψ1(r1)) which is r3.♦
Each time the bound β is decreased we remove all databases t from the transition graph with
insufficient bound, i.e., for which ∆U(ro, r) + LB((r, rt) > β.

4.1.5 Breadth-First Algorithm
The described approach resembles a branch and bound behavior [LD60]. Therein, we can
explore the search space either in breadth-first or in depth-first manner. We first describe a
breadth-first algorithm.

On the Distance of Databases
__

__

 17

The algorithm generates all databases derivable by update sequences of increasing length.
Within the branch step a database is chosen for processing. We generate all databases that are
derivable from this database by a single modification operation. Next, in the bound step the
current bound is decreased if possible and databases are pruned as described. After finishing
the processing of the current database we chose the next database for processing from the re-
maining, untested databases in the graph. We process all databases at the current level first
before proceeding to databases at the next level. We continue until rt is reached and no un-
tested database remains. Figure 9 shows the changes to the transition graph from Figure 6
when using a breadth-first approach. The fictitious upper and lower bounds of the databases
are shown in white boxes on the right of every vertex. The order in which the databases are
processed is given by the number in the dark gray circles attached to the left of the vertices.
For example, the database on the left side of level 1 is pruned, because every path from ro to rt
through this vertex is at least of length 5, while the current bound is 4 after generating all da-
tabases at level 1. Due to the pruning of databases in the bound step large portions of the
originally shown transition graph not generated or tested in the breadth-first approach.
The corresponding algorithm TRANSIT-BFS is shown in Figure 10. Each database from the
previous level, maintained in VP, is processed while enumerating the current level (lines 9-
27). The databases at the current level, maintained in VC, afterwards become the candidates
for the enumeration of the next level (line 28). We sort the candidates in ascending order of
their lower and upper bounds. This is done with the intention of being able to decrease the
current bound β as soon as possible, avoiding the unnecessary insertion of databases that are
pruned afterwards. After reaching the destination the algorithm returns the set of minimal
paths in the transition graph from the origin to the target (line 30). In Figure 9 the databases in
the sets Vp and VC are highlighted for the construction of level 2.
If we are only interested in calculating the update distance, the algorithm can terminate im-
mediately after rt is derived for the first time (check for equality after line 12).

Figure 9: Exemplified transition graph construction when using a breadth-first approach

On the Distance of Databases
__

__

 18

1 TRANSIT-BFS(ro, rt) {
2 GT := ({ro}, {});
3 VP := V(GT);
4 ∆U = 0;
5 β := ∆R(ro, rt);
6 while(rt ∉ VP) {
7 ∆U = ∆U + 1;
8 VC := {};
9 for each ri ∈ VP do {
10 MDF := modifier(ri, rt);
11 for each ψ ∈ MDF do {
12 rnew := ψ(clone(ri));
13 if ((LB(rnew, rt) + ∆U) ≤ β) {
14 if (rnew ∉ V(GT)) {
15 V(GT) := V(GT) ∪ {rnew};
16 E(GT) := E(GT) ∪ {(ri, rnew, ψ)};
17 VC := VC ∪ {rnew};
18 if ((∆R(rnew, rt) + ∆U) < β) {
19 β := ∆R(rnew, rt) + ∆U;
20 prune Vp, VC, GT, β;
21 }
22 } else if (rnew ∈ VC) {
23 E(GT) := E(GT) ∪ {(ri, rnew, ψ)};
24 }
25 }
26 }
27 }
28 VP := sort(VC);
29 }
30 output min_paths(GT, ro, rt);
31 }

Figure 10: The breadth-first algorithm TRANSIT-BFS.

Processing a database starts by determining the set of possible modification operations (line
10 – see Section 4.2 for details). Each of the operations is applied to a copy of the database, as
modification operations alter the given database (line 9). The resulting database is added to
the transition graph and to VC if it does not already occur within the graph (lines 14-17). Oth-
erwise, the database is a duplicate. It is an intra-level duplicate, if it also occurs in VC. In this
case the database has been derived before at the current distance level. Intra-level duplicates
add additional edges. Otherwise, no changes occur.

4.1.6 Depth-First Algorithm
The transition graph may also be constructed in depth-first manner. We refer to the corre-
sponding algorithm as TRANSIT-DFS. Within this algorithm, after finishing the processing
of the current database, i.e., generating all databases derivable with a single modification op-
eration, we immediately proceed to the next distance level. From all generated database, we
chose the one with the smallest lower bound as new current database. Pruning is performed as

On the Distance of Databases
__

__

 19

described above. The depth-first approach finds a first solution after processing fewer data-
bases then the breadth-first approach. Although this solution is not necessarily optimal, it of-
ten helps to perform more pruning. After reaching the target database, TRANSIT-DFS needs
to return to the previous databases and test them as candidates, again in a depth-first manner.
This is continued until all databases that have not been pruned by the bounding step have been
tested.
In TRANSIT-DFS we maintain the databases processed and generated on the current path on
a stack to enable upward traversal. Compared to TRANSIT-BFS, duplicate detection is com-
plicated by the problem that the identical databases may be generated multiple times at de-
creasing levels. Every time a database is repeatedly derived at a lower level, it has to be con-
sidered as a candidate again and cannot be rejected as a duplicate. Due to the depth-first pro-
ceeding we temporarily add databases to the transition graph having an update distance from
ro above the update distance ∆U(ro, rt). This is contrary to our definition of the transition graph
(DEFINITION 11), where we only consider databases having an update distance below or equal
to ∆U(ro, rt). Still, due to the performed pruning, we will remove databases r with an update
distance ∆U(ro, r) > ∆U(ro, rt) from the final transition graph.
The advantage of using the branch and bound approaches is shown by comparing the follow-
ing numbers with those from Figure 7. Using TRANSIT-BFS, the minimal transformers for
the two databases are found after exploring only 255 databases. The algorithm thereby exe-
cutes a total of 42,010 modification operations and generates 3,651 databases. When using
TRANSIT-DFS 1,433 databases are processed, with 226,655 modification operations exe-
cuted and 1,609 databases generated.

4.2 Enumeration of Valid Modification Operations
Following DEFINITION 4, a modification operation is pair of modification term τ and modifi-
cation pattern ρ. We are only interested in enumerating modification operations that change
the database. We call these operations valid. For a database r, the set of possible modification
operations then is the Cartesian product of the set of valid modification terms and the set of
patterns.

4.2.1 The Set of Valid Modification Terms
Terms (DEFINITION 2) are attribute-value pairs. Within modification terms only non-key at-
tributes are permitted. The set of valid modification terms is the union of valid modification
terms for each non-key attribute. For each attribute A ∈ R / ID this set is A × dom(A). A
problem is the infinite size of dom(A) that leads to an infinite set of modification terms and
therefore an infinite set of modification operations. Consequently, the algorithm would not
terminate, although almost all of the generated databases are isomorphic with respect to their
ability to participate in a shortest update sequence.
We must therefore constrain the set of possible modification values. We accomplish this goal
by using the values occurring within the current database r and the target rt. In summary, we
permit the following values for modification terms for attribute A:

• All values from the target that occur within attribute A, denoted by rt[A]. Some of
these values have to be used at least once as modification value for conflict solution.
The remaining values are also contained in the following set.

• All values occurring for attribute A in the current database r, denoted by r[A]. In some
situations increasing the selectivity of individual values enables to solve more con-
flicts using a single modification operation afterwards. An example is shown in Figure
11. Without allowing existing values to be used as modification values, we need at

On the Distance of Databases
__

__

 20

least eight operation for solving the existing conflicts (four operations selecting on
A5 = 1 and four operations selecting on A5 = 0). If we set the values in attribute A5 for
tuples t{7} and t{8} to 1, we are enabled to solve the conflicts in attributes A2 to A5
using a single operation afterwards.

• Any of the remaining values from dom(A) not contained in rt[A] ∪ r[A] is a poten-
tially necessary modification value, possibly to serve as a unique selection criterion in
later stages of the algorithm. Thus, the actual value does not matter, as long as it is dif-
ferent from all other currently used values. We chose one value using a random func-
tion. We call these values proxies.1

The proxies are maintain within a separate list for each attribute, called proxy(A). Within the
final modification sequence, the occurring proxies can be replaced by any valid subset of
dom(A) of size |proxy(A)|, which is disjoint with ro[A] ∪ rt[A].

r1 A1 A2 A3 A4 A5 r2 A1 A2 A3 A4 A5
 1 3 7 7 3 1 3 7 7 7
 2 3 8 8 3 2 3 8 8 8
 3 3 9 9 3 3 3 9 9 9
 4 1 1 1 1 4 3 3 3 3
 5 2 2 2 1 5 3 3 3 3
 6 4 4 4 1 6 3 3 3 3
 7 5 5 5 0 → 7 3 3 3 3
 8 6 6 6 0 8 3 3 3 3
 9 7 3 10 3 9 7 3 10 10
 10 8 3 11 3 10 8 3 11 11
 11 9 3 12 3 11 9 3 12 12
 12 10 10 3 7 12 10 10 3 13
 13 11 11 3 8 13 11 11 3 14
 14 12 12 3 9 14 12 12 3 15

Figure 11: An example for enhancing the selectivity of existing patterns in order to find an

optimal solution.

4.2.2 The Set of Valid Selection Patterns
Let P(r) denote the set of patterns ρ that select at least one tuple from r, i.e., ρ(r) ≠ ∅. If we
regard a tuple t as a set of terms (A, t[A]) with one term for each attribute A ∈ R, P(r) is effi-
ciently computable using existing frequent itemset mining algorithms [AS94, HPY00]. Obvi-
ously this set very likely contains pairs of patterns ρ1, ρ2 with ρ1 ≠ ρ2 and ρ1(r) = ρ2(r). Using
the patterns in P(r) when enumerating modification operations would result in operations with
equal effect. Avoiding this redundancy is accomplished by restricting P(r) to the set of closed
patterns, denoted by PC(r). The following definition is taken from [Bay98][PBTL99].

DEFINITION 13 (CLOSED PATTERN): Given a database r, a pattern ρ with ρ(r) ≠ ∅ is a closed
pattern for r if there does not exist a pattern ρ’ ⊃ ρ with ρ’(r) = ρ(r).♦

A closed pattern ρ represents exactly those terms that occur within every tuple of ρ(r) (when
viewing the tuples as sets of terms as described above). Following this definition there are no
two patterns ρ1, ρ2 ∈ PC(r), ρ1 ≠ ρ2, that select equal subsets of r.

1 The shown numbers for the example in Figure 6 reflect a situation, where proxies are not allowed. If proxies
are allowed, the number of operations executed (and database generated) for the first three levels are 164 (153),
25,051 (11,755), and 1,989,604 (624,659).

On the Distance of Databases
__

__

 21

LEMMA 5: Given a database r. For each pattern ρ ∈ P(r) there exists a pattern ρ’ ∈ PC(r) with
ρ(r) = ρ’(r).
PROOF: We view the tuples as sets of terms. Let ρcommon denote the set of terms common to
the tuples in ρ(r). This set forms a closed pattern for ρ(r). All tuples in ρ(r) satisfy ρcommon and
if we add a term to ρcommon the pattern will no longer be satisfied by all tuples in ρ(r). There-
fore, ρcommon equals ρ’ ∈ PC(r) with ρ(r) = ρ’(r).♦
Based on LEMMA 5 it is sufficient to use PC(r) extended by the empty pattern instead of P(r) as
the set of valid modification patterns. We add the empty pattern to PC(r) in order to allow
modifications of the complete database at once. To determine the set of closed patterns, we
start with a single scan of the database. Each tuple is a closed pattern due to the primary key
constraint. While scanning the database we determine the set of terms for each attribute and
maintain a list of tuples, in which these terms occur. We then prune all terms having a sup-
port, i.e., a tuple list size, of 1, since they only occur in the closed patterns already represented
by single tuples. We than use any of the existing methods for mining closed itemsets like
CHARM [ZH02], CLOSET+ [WHP03], or FARMER [CTX+04].Within our implementation
we currently use CHARM [ZH02].

4.2.3 Filtering Valid Modification Operations
A modification operation has no effect if the modification term τ also occurs within the modi-
fication pattern. In this case, all selected tuples already possess the new value in the modified
attribute. We remove these operations. The set of valid modification operations for database r1
of Figure 5 is shown in Figure 12. There are 8 closed patterns (including the empty pattern). If
we assume proxy(A2) = {9}, proxy(A3) = {9}, and proxy(A4) = {9}, 10 modification terms.
As a result we receive a total of 65 valid modification operations.

r1 A1 A2 A3 A4 r2 A1 A2 A3 A4
 1 2 1 1 1 2 1 3
 2 1 2 1 2 2 2 3
 3 1 2 0 3 2 2 3
 4 1 2 1 4 2 2 3

 Operations ψ18 = ((A2, 9), ρ7) ψ37 = ((A3, 9), ρ7)
Patterns ψ19 = ((A2, 9), ρ8) ψ38 = ((A3, 9), ρ8)
 ψ1 = ((A2, 1), ρ1) ψ20 = ((A3, 1), ρ2) ψ39 = ((A4, 0), ρ1)

ρ1 = { (A1, 1) (A2, 2) (A3, 1) (A4, 1) } ψ2 = ((A2, 1), ρ6) ψ21 = ((A3, 1), ρ3) ψ40 = ((A4, 0), ρ2)
ρ2 = { (A1, 2) (A2, 1) (A3, 2) (A4, 1) } ψ3 = ((A2, 1), ρ7) ψ22 = ((A3, 1), ρ4) ψ41 = ((A4, 0), ρ4)
ρ3 = { (A1, 3) (A2, 1) (A3, 2) (A4, 0) } ψ4 = ((A2, 1), ρ8) ψ23 = ((A3, 1), ρ5) ψ42 = ((A4, 0), ρ5)
ρ4 = { (A1, 4) (A2, 1) (A3, 2) (A4, 1) } ψ5 = ((A2, 2), ρ2) ψ24 = ((A3, 1), ρ6) ψ43 = ((A4, 0), ρ6)
ρ5 = { (A2, 1) (A3, 2) } ψ6 = ((A2, 2), ρ3) ψ25 = ((A3, 1), ρ7) ψ44 = ((A4, 0), ρ7)
ρ6 = { (A4, 1) } ψ7 = ((A2, 2), ρ4) ψ26 = ((A3, 1), ρ8) ψ45 = ((A4, 0), ρ8)
ρ7 = { (A2, 1) (A3, 2) (A4, 1) } ψ8 = ((A2, 2), ρ5) ψ27 = ((A3, 2), ρ1) ψ46 = ((A4, 1), ρ3)
ρ8 = { } ψ9 = ((A2, 2), ρ6) ψ28 = ((A3, 2), ρ6) ψ47 = ((A4, 1), ρ5)

 ψ10 = ((A2, 2), ρ7) ψ29 = ((A3, 2), ρ7) ψ48 = ((A4, 1), ρ8)
 ψ11 = ((A2, 2), ρ8) ψ30 = ((A3, 2), ρ8) ψ49 = ((A4, 3), ρ1)

Terms ψ12 = ((A2, 9), ρ1) ψ31 = ((A3, 9), ρ1) ψ50 = ((A4, 3), ρ2)
 ψ13 = ((A2, 9), ρ2) ψ32 = ((A3, 9), ρ2) ψ51 = ((A4, 3), ρ3)

A2: (A2, 1) (A2, 2) (A2, 9) ψ14 = ((A2, 9), ρ3) ψ33 = ((A3, 9), ρ3) ψ52 = ((A4, 3), ρ4)
A3: (A3, 1) (A3, 2) (A3, 9) ψ15 = ((A2, 9), ρ4) ψ34 = ((A3, 9), ρ4) ψ53 = ((A4, 3), ρ5)
A4: (A4, 0) (A4, 1) (A4, 3) (A4, 9) ψ16 = ((A2, 9), ρ5) ψ35 = ((A3, 9), ρ5) ψ54 = ((A4, 3), ρ6)

 ψ17 = ((A2, 9), ρ6) ψ36 = ((A3, 9), ρ6) …

Figure 12: The set of valid modification operations for database r1.

On the Distance of Databases
__

__

 22

4.3 Handling Delete and Insert Operations
To conclude the description of the TRANSIT-algorithms we now describe the handling of
insert and delete operations. We start with the case of restricted operations as defined in Sec-
tion 3.2 and then describe the extension for sequences of arbitrary update operations.

4.3.1 Delete Operations as Special Case of Modifications
In case of restricted update operations the execution of necessary insert operations is per-
formed after solving existing conflicts. Delete operations are handled as special cases of
modification operations. We therefore need to slightly alter given database. The set of tuples
from ro to be deleted is given by U(ro, rt). We add a special attribute AD to schema R and set
t[AD] = 0 for each t ∈ U(ro, rt). We also insert the tuples from U(ro, rt) to rt changing the value
of t[AD] to 1. For all other tuples in databases ro and rt attribute AD is undefined.
The attribute AD acts as a delete flag and the values are altered using modification operations.
Terms for attribute AD are excluded when enumerating valid selection patterns. However, AD
is allowed as attribute in modification terms. The only valid modification value in these terms
is 1. A modification operation ψµ = (τ, ρ) with τ = (AD, 1) represents a delete operation ψδ =
(ρ). A tuple t with t[AD] = 1 then represents a deleted tuple. Following the definition of feasi-
ble update operations, in Section 3.2 we additionally have to restrict ρ to select only tuples
from U(ro, rt). In the resulting modification sequences the modification operations with
τ = (AD, 1) are replaced by the appropriate delete operations.

4.3.2 Handling Arbitrary Sequences of Update Operations
The described algorithm for enumerating valid modification operations is easily extended to
allow arbitrary insert and delete operations within update sequences. When enumerating
modification operations for a database r we (i) add an insert operation for every tuple in rt / r,
and (ii) add a delete operation for every valid modification pattern.
The TRANSIT-algorithms operate independently of the set of allowed update operations. Al-
lowing insert and delete operations enables the application of TRANSIT on database pairs
that do not completely overlap. However, including insert and delete implies changes to the
definitions for the upper and lower bounds from Section 3.2. For every pair of databases r1
and r2 there always exists a trivial transformer Ψ(r1) = r2 that (i) deletes all tuples from r1 and
(ii) successively insert all tuples from r2. Therefore, the upper bound is now given by
min(∆R(r1, r2), |r2| + 1). The calculation of the lower bound must consider the possibility of
missing tuples in r1. Furthermore, the number of tuples in r2 may by lower than the number of
conflict groups in K(r1, r2). The lower bound is now defined by min(K(r1, r2) + |r2/r1|, |r2| + 1).

5 Heuristics and Problem Variations

The described TRANSIT-algorithms are only applicable for small databases. For larger data-
bases the search space of derivable databases is enormous. Despite pruning over 95% of the
generated databases immediately (see Section 6) processing the remaining databases is still to
expensive. Within this section we describe heuristics which do not necessarily find the best
(exact) solution, but instead are able to handle databases of almost arbitrary size. We analyze
the quality of the computed results in Section 6.

On the Distance of Databases
__

__

 23

5.1 A Classification of Modification Operations
A first approach is to reduce the number of valid modification operations. As Figure 12 sug-
gests, the number of modification operations can become very large for databases even of
mediocre size. We therefore restrict the valid modification operations based on the effect they
have when applied on the given database. Again, we only consider databases r1 and r2 which
with complete overlap.
Given a pair of databases r1 and r2 and a modification operation ψµ(τ, ρ). When ψµ is applied
on r1 we divide the set of affected tuples, i.e., ρ(r1), into four disjunctive subsets, based on the
effect the modification operation has on them:

• NEUTRAL (wu): The set of selected tuples, which remain unchanged by the modifi-
cation operation, as they already poses the new value in the modified attribute, i.e.,

wu = {t | t ∈ ρ(r1) ∧ t[attr(τ)] = value(τ)}.

• NEW (wn): The set of selected tuples currently not in conflict with their matching
partner in the modified attribute attr(τ), that will contain a conflict in this attribute af-
ter execution of the modification operation, i.e.,

wn = {t1 | t1 ∈ ρ(r1) ∧ ∃ t2 (t2 ∈ r2 ∧ t1[ID] = t2[ID] ∧ t1[attr(τ)] = t2[attr(τ)] ∧
t1[attr(τ)] ≠ value(τ))}

• CHANGED (wc): The set of selected tuples with an existing conflict between them
and their matching partner in the modified attribute that are altered by the modifica-
tion operation, i.e.,

wc = {t1 | t1 ∈ ρ(r1) ∧ ∃ t2 (t2 ∈ r2 ∧ t1[ID] = t2[ID] ∧ t1[attr(τ)] ≠ t2[attr(τ)] ≠ value(τ))}

• SOLVED (ws): The set of selected tuples containing a conflict in the modified attrib-
ute that will be solved after execution of the modification operation, i.e.,

ws = {t1 | t1 ∈ ρ(r1) ∧ ∃ t2 (t2 ∈ r2 ∧ t1[ID] = t2[ID] ∧ t1[attr(τ)] ≠ t2[attr(τ)] ∧
t2[attr(τ)] = value(τ))}.

Based on this classification we define four different classes of modification operations:

CLASS 0: Set of all valid modification operations.

CLASS 1: Set of modification operations that reduce the overall number of conflicts, i.e.,
|ws| > |wn|. We call these modification operations conflict reducer.

CLASS 2: Set of modification operations that reduce the overall number of conflicts and do
not introduce any new conflicts, i.e., ws ≠ ∅ and wn = ∅. We call these operations
conflict solver.

CLASS 3: Set of modification operations that only solve conflicts or are neutral, i.e., ws ≠ ∅,
wn = ∅, and wc = ∅. We call these operations pure conflict solver.

It follows that CLASS3 ⊆ CLASS2 ⊆ CLASS1 ⊆ CLASS0. In order to reduce the number of
possible modification operations we change the problem definition and only allow operations
of a certain class within the process of determining the set of minimal transformers. A remain-
ing problem is the determination of the class of a given modification operation. While distin-
guishing valid from invalid operations is fairly easy (CLASS 0), as described in Section 4.2.3,

On the Distance of Databases
__

__

 24

determining whether an operation is of CLASS i, i = 1, …, 3, requires more effort. We actu-
ally have to test each of the tuples affected, as well as their respective matching partner, i.e.,
we virtually have to execute the operation in the worst case.

5.2 Greedy TRANSIT
Another simple heuristic is applying a greedy algorithm. Given a pair of databases ro and rt,
the greedy algorithm first determines the databases derivable from the origin by a single
modification operation. A score is assigned to each of these databases. The database with the
highest score is chosen as the starting point for the next level. For this database again all data-
bases derivable by a single modification operation are generated and assigned with a score
and so forth. This is continued until the target database is reached. Figure 13 shows the greedy
algorithm GREEDY-TRANSIT. The algorithm returns a single transformer ΨT. rs denotes the
current starting point. For each database directly derivable from rs the score, assigned by a
function ω, is compared to the current maximum. If the score exceeds the current maximum
the new database becomes the next starting point.

1 GREEDY-TRANSIT(ro, rt) {
2 ΨT := <>;
3 rs := ro;
4 while(rs ≠ rt) {
5 rnext := rs;
6 ψnext;
7 MDF := modifier(rs, rt);
8 for each ψ ∈ MDF do {
9 rnew := ψ(clone(rs));
10 if (ω(rnew) > ω(rnext)) {
11 rnext := rnew;
12 ψnext := ψ;
13 }
14 }
15 rs := rnext;
16 append(ΨT, ψnext);
17 }
18 return ΨT;
19 }

Figure 13: A greedy algorithm to calculate the update distance of a pair of databases.

The scoring function should assign the highest score to the database having the highest poten-
tial of reaching the target first. We tested two different scoring functions. The first assigns the
highest score to the database with the smallest lower bound. For databases with equal lower
bound the database with the smaller upper bound receives the higher score. We call the
greedy TRANSIT-algorithm using this scoring function GREEDY-TRANSIT (LB). The sec-
ond scoring function uses the upper and lower bounds in an opposite way, i.e., assigning the
highest score to the database with the smallest upper bound, using the lower bound as a tie-
breaker. We call the greedy TRANSIT-algorithm using this scoring function GREEDY-
TRANSIT (UB). The scoring functions follow the assumption that either the database with
the lowest number of conflicts or the lowest number of conflict groups has the potential of

On the Distance of Databases
__

__

 25

reaching the destination first. The example in Figure 4 shows that neither assumption is al-
ways correct, as the resulting transformer for each of the greedy approaches has a length of
four.
Our scoring functions ensure that the database chosen as the next starting point always has
fewer conflicts with rt than any of the previous databases. Therefore, neither cycles nor dupli-
cated databases at different levels can occur. If a database is derivable by more than one
modification operation from rs, only the first operation, depending on the order in MDF, is
returned within the final transformer ΨT.

5.3 Approximation of the Update Distance
Another heuristic is based on solving the conflicts within each conflict group independently.
The sum of necessary operations for conflict solution of the individual conflict groups is an
approximation of the update distance. The result is equal or above the lower bound, as we still
need at least one modification operation per conflict group, and below or equal the upper
bound, as we are still able to solve each conflict individually with a single modification opera-
tion. This approximation completely disregards the possible impact that the modification of
values for some of the tuples may have on solving conflicts for other tuples.
Determining the minimal number of modification operations necessary to solve the conflicts
within a conflict group individually still is expensive, as shown in Section 6.1. Therefore, we
further restrict the set of valid modification operations for approximating the update distance
in order to keep the computational cost in reasonable bounds. This restriction is done by con-
sidering only modification operations of CLASS 3. Therefore, for solving the conflicts repre-
sented by a conflict group κ, only operations having κ as modification term are valid. The
modification patterns of these operations may only select tuples from ro that are part of a con-
flict represented by κ or that already possess value(κ) for attribute attr(κ). The former is
called solution target set, as these are the tuples that need to be modified for conflict solution,
and the later is called solution neutral set, as these tuples are neutral regarding the described
modification operations.

DEFINITION 14 (SOLUTION TARGET SET): Let κ ∈ K(r1, r2) be a conflict group between a
pair of databases r1 and r2. The solution target set of κ, denoted by ξ(r1, r2, κ), is the set of
tuples from r1, that contain the conflicts represented by κ, i.e.,

ξ(r1, r2, κ) = {t | t = tup1(m) ∧ m ∈ M(r1, r2) ∧ tup1(m)[attr(κ)] ≠ tup2(m)[attr(κ)] ∧
tup2(m)[attr(κ)] = value(κ)}.♦

DEFINITION 15 (SOLUTION NEUTRAL SET): Let κ ∈ K(r1, r2) be a conflict group between a
pair of databases r1 and r2. The solution neutral set of κ, denoted by η(r1, r2, κ), is the set of
tuples from r1 that are neutral regarding the solution of conflicts represented by κ, i.e.,

η(r1, r2, κ) = {t| t ∈ r1 | t[attr(κ)] = value(κ)}.♦

The cost for solving the conflicts represented by a conflict group κ is given by the minimal
number of patterns that together select the group target set at least and the union of group tar-
get and neutral set at most. This cost forms the basis of our update distance approximation.

DEFINITION 16 (SOLUTION COST): Given a database r and two disjoint subsets st , sn ⊆ r. The
solution cost, denoted by θ(r, st, sn), is the minimum number of patterns ρ1, …, ρq, that select
st completely and sc ∪ sn at most, i.e., sc ⊆ ρ1(r) ∪ … ∪ ρq(r) ⊆ sc ∪ sn.♦

On the Distance of Databases
__

__

 26

DEFINITION 17 (GROUP SOLUTION COST): Given a pair of databases r1 and r2. The group
solution cost, denoted by φ(r1, r2), is the sum of the solution cost for the conflict groups be-
tween the sources, i.e.,

φ(r1, r2) = ∑κ∈K(r1, r2)θ(r1, ξ(r1, r2, κ), η(r1, r2, κ)).♦

The group solution cost φ(r1, r2) is used as an approximation of the update distance ∆U(r1, r2)
of databases r1 and r2. Note that there are cases, where this approximation is above the actual
update distance or below. The first case occurs, whenever there are positive side effects of
solving conflicts in one attribute for solving other conflicts. The later occurs, whenever the
respective modification operations interfere with each other, i.e., after executing one of them,
the other is no longer executable or has a different result. The group solution cost for the ex-
ample in Figure 14 is 8.

r1 A1 A2 A3 A4 A5 A6 r2 A1 A2 A3 A4 A5 A6
t1 1 1 2 3 1 1 1 2 2 6 1 1
t2 2 1 3 3 1 0 2 2 3 6 1 0
t3 3 1 2 1 0 0 3 2 3 1 0 0
t4 4 1 2 2 1 0 → 4 2 3 2 0 0
t5 5 1 2 7 1 1 5 2 3 7 0 1
t6 6 1 2 6 1 1 6 2 3 6 0 1
t7 7 2 2 5 1 1 7 2 2 5 1 1
t8 8 0 2 6 1 1 8 0 2 6 1 1

κ1 = (A2, 2): θ(r1, ξ(r1, r2, κ1), η(r1, r2, κ1)) = 1
κ2 = (A3, 3): θ(r1, ξ(r1, r2, κ2), η(r1, r2, κ2)) = 3

κ3 = (A4, 6): θ(r1, ξ(r1, r2, κ3), η(r1, r2, κ3)) = 3
κ4 = (A5, 0): θ(r1, ξ(r1, r2, κ4), η(r1, r2, κ4)) = 1

Figure 14: The group solution cost for a pair of databases.

The group solution cost may also be used as a replacement for the lower bound within the
algorithms TRANSIT-BFS and TRANSIT-DFS. This may imply that the exact solution is
missed. However, in all our experiments presented in Section 6.2.2 this heuristic computed
the exact solution. The according algorithms are called TRANSIT-BFS (GS) and TRANSIT-
DFS (GS), respectively. We can also use the group solution cost as a weight function in a
greedy approach. We thereby enable the usage of proxies, which is omitted by the other
weight functions. The corresponding algorithm is called GREEDY-TRANSIT (GS).
Computing the exact solution cost for a given pair of databases r1 and r2 and a given conflict
group κ is expensive. We therefore implemented a greedy approach, shown in Figure 15. The
calculation starts by determining Pvalid, the subset of valid modification patterns that (i) only
select tuples from the union ξ(r1, r2, κ) ∪ η(r1, r2, κ), and (ii) select at least one tuple from
ξ(r1, r2, κ). Let ρe denote the empty pattern and st, sn denote ξ(r1, r2, κ), η(r1, r2, κ), respec-
tively. We then choose repeatedly the pattern that selects the largest subset from st (line 10).
This pattern is removed from Pvalid. We also remove from st those tuples that satisfy this pat-
tern. With each chosen pattern the solution cost is incremented by one. The algorithm termi-
nates when st is empty. The algorithm for computing the group solution cost for a pair of da-
tabases using the described solution cost algorithm is called TRANSIT-APPROX. Basically,
this algorithm calls GREEDY-SOLUTION-COST(r1, ξ(r1, r2, κ), η(r1, r2, κ)) for each conflict
group κ ∈ K(r1, r2) and summates the results.

On the Distance of Databases
__

__

 27

1 GREEDY-SOLUTION-COST(r, st, sn) {
2 scost := 0;
3 Pvalid = PC(r) ∪ {ρe};
4 for each ρ ∈ Pvalid do {
5 if ((ρ(r) ⊂ sn) || (ρ(r)/ (st ∪ sn) ≠ ∅)) {
6 Pvalid := Pvalid / {ρ};
7 }
8 }
9 while (st ≠ ∅) {
10 ρmax := max_select(Pvalid, st);
11 st := st/ρmax(st)
12 Pvalid := Pvalid / {ρmax};
13 scost++;
14 }
15 return scost;
16 }

Figure 15: A greedy algorithm for calculating the solution cost.

6 Experimental Results

Within this section we discuss some of the results of our experiments using the described al-
gorithms on different pairs of databases. We therefore mainly utilize the databases of Figure
1, named F1, the databases of Figure 4, named F4, the databases of Figure 7, named F7, and
the databases of Figure 14, named F14. We also performed experiments on larger databases
in conjunction with the heuristics described in the previous section. We start by describing
properties of the algorithms for finding exact solutions and compare them afterwards with the
implemented non-optimal algorithms. We implemented all algorithms using Java™ J2SE 5.0.
The experiments where performed on a Citrix MetaFrame™ Server containing two Intel Xe-
non 2,4 GHz processors and 4 GB main memory.

6.1 Algorithms for Finding Exact Solutions
The necessary effort to determine the set of minimal transformers for the four pairs of data-
bases is shown in Figure 16 a). We allow modification operations of CLASS 0 and proxies. In
the first two columns the number of databases processed and modification operations exe-
cuted for building the transition graph are shown. Also listed are the overall number of data-
bases added to the graph and the number of databases generated as duplicates. The final re-
sults, i.e., the size of the minimal transition graphs, the total number of minimal transformers
(|T|), and the update distances (∆U), are shown in Figure 16 c). Figure 16 b) shows the number
of valid modification operations that where executed when processing the origin database of
all four database pairs. Note that all experiments determined only the set T(r1, r2) of minimal
transformers (T(GROUP1.AMPHIBIAN, GROUP2.AMPHIBIAN) in the case of F1). Also shown in Figure
16 b) are the number of generated databases and edges when processing the origin database of
the four database pairs.

On the Distance of Databases
__

__

 28

a)

TRANSIT-BFS Databases
Tested

Operations
Executed

Databases
Added

Intra-
Duplicates

Inter-
Duplicates OT1 TG2 OG3

F4 279 38,006 3,026 2,832 968 136.22 0.09 12.56
F7 255 42,010 3,651 3,481 749 164.75 0.07 11.51
F14 32,695 12,524,800 317,076 686,454 269,075 383.08 0.1 39.5
F1 12,742 5,457,202 89,424 159,695 42,421 428.28 0.14 61.03

TRANSIT-DFS Databases
Tested

Operations
Executed

Databases
Added

Intra-
Duplicates

Inter-
Duplicates OT TG OG

F4 4,275 603,971 4,204 4,417 4,483 141.28 1.02 143.67
F7 1,433 226,655 1,609 1,625 871 158.17 0.89 140.87
F14 5,131 1,909,040 6,055 7,238 6,535 372.06 0.85 315.28
F1 95 36,986 1,134 373 32 389.33 0.08 32.62
1 OT The number of operations executed per tested database
2 TG Percentage of tested databases from those added to the graph
3 OG The number of operations executed per added database in the graph

b) c)

Initial
Database

Valid
Operations

Databases
Added

Edges
Generated Final

Graph Vertices Edges |T| ∆U

F4 124 106 110 F4 6 6 2 3
F7 164 149 159 F7 18 36 30 4
F14 386 320 386 F14 30 76 160 5
F1 451 398 441 F1 84 288 1,500 6

Figure 16: The results and effort of applying the TRANSIT algorithms

The number of executed modification operations is directly related to the number of tested
databases. It is the sum of the number of valid modification operations of all tested databases.
Comparing the average number of executed modification operations per tested database,
shown in column OT of Figure 16 a), with the number of valid operations for each of the ori-
gins of the four database pairs (shown in Figure 16b)) reveals, that this number is quite simi-
lar for each of the generated and tested databases. This implies an exponential growths of the
number of executed modification operations if no pruning is performed. The large number of
valid modification operation even for these small databases suggest, that for larger databases
the number of valid operations is going to explode.
For each of the tested databases, the complete set of databases derivable by a single modifica-
tion operation is generated. Each of these resulting databases is classified into one of four
classes:

• Rejected: The resulting database has a lower bound, which disqualifies it as an inter-
mediate state of any minimal transformer. These databases are rejected from further
consideration.

• Newly Added: The database has a sufficient lower bound and is added to the evolving
transition graph.

• Inter-Duplicate: The database has been generated before at a lower distance level.
This database represents an inter-level duplicate and no changes to the graph occur.

• Intra-Duplicate: The database has already been derived at the current distance level.
It therefore is an intra-level duplicate. This causes the generation of an additional edge
within the graph.

On the Distance of Databases
__

__

 29

The large difference between the number of executed modification operations and the number
of newly added and duplicate databases reveals, that most of the results from executing modi-
fication operations are pruned. The distribution of the generated databases on the four classes
is exemplarily shown in Figure 17 for the database pair F14. The distributions for the other
database pairs in our experiments are fairly similar to this. The figure indicates that by far the
largest portion of executed modification operations results in databases which are rejected.
This portion is up to 90% when using the Breadth-First approach, and even up to 99% for the
Depth-First approach. The figure also shows that a great portion of the not rejected databases
are duplicates. The large number of nearly 70% duplicates, for the remaining databases, justi-
fies the effort for detecting and removing duplicates while constructing the transition graph.

Figure 17: What happens to the results of executing the modification operations

The ability of pruning also is shown in Figure 18 for TRANSIT-DFS and F14. The total
number of databases added to the transition graph is far below the number of executed modi-
fication operations. On the other hand, pruning of databases once added to the graph is not
very effective. Therefore, the number of databases in the graph grows linearly with the num-
ber of added databases. This linear growth indicates that the number added databases is ap-
proximately equal for all tested databases. Thus, despite our quite effective pruning, the num-
ber of databases added to the generated transition graph remains large. This is especially true,
if we compare this number with the number of databases in the final transition graph (shown
in Figure 16 c)). This leads to the problem, that the memory requirement of the transition
graph is very large, which makes it impossible even for database pairs of mediocre size to
maintain the graph completely in main memory.
Comparing the two approaches shows, that each of them has their strength an weaknesses.
The depth-first approach is inferior for F4, where the optimal solution requires the insertion of
conflicts at first. In all other cases the depth-first performs better than the breadth-first ap-
proach with respect to the number of databases added and tested. The ratio of these numbers
(shown in column TG of Figure 16 a)) shows that the depth-first usually processes over 80%
of the added databases as candidates at the next distance level while the breadth-first approach
adds numerous databases to the transition graph that are never considered as candidates after-

On the Distance of Databases
__

__

 30

wards. A special case is the numbers of added and tested databases by the depth-first ap-
proach for F4, where the ration is above 1. This is due to those databases that are added once
but tested several times at different (decreasing) distance levels.
Figure 19 shows advantage of TRANSIT-DFS over TRANSIF-BFS. There we lists the num-
ber of added and tested databases for both approaches at each distance level for the pair of
databases F14. The breadth-first approach tends to peak at lower distance levels due to the
limited pruning ability of the overall bound at earlier stages of processing. On the other hand,
due to finding a first solution at an early stage, the depth-first approach has a better ability of
pruning databases at the lower distance levels. Still, the number of databases in the generated
transition graph is far above the number of databases in the minimal transition graph. This is
true for all experimental dataset as comparison of the respective values in Figure 16 a) and
Figure 16 c) shows.

Figure 18: Development of the transition graph for TRANSIT-DFS on dataset F14.

6.2 Accuracy of the Heuristic Approaches
This subsection compares the effort and accuracy of the described heuristics with the exact
algorithms. We start with restricting the set of valid modification operations.

6.2.1 Different Operation Classes
Figure 20 shows the change in effort for TRANSIT-DFS with different classes of modifica-
tion operations. There is first drop-off in the number of databases tested and added when dis-
abling the insertion of proxy values (CLASS 0 – Proxies). This restriction reduces for each
attribute the number of valid modification operations by approximately the number of closed
patterns for the database. The operation classes 1 to 3 do not consider proxies by definition.
The largest improvement is gained by disallowing operations which increase the number of
conflicts.

On the Distance of Databases
__

__

 31

Figure 19: Comparing the exact algorithms for dataset F14.

TRANSIT-DFS
F4

Databases
Tested

Operations
Executed

Databases
Added

Intra-
Duplicates

Inter-
Duplicates

∆U

CLASS 0 + Proxies 4,275 603,971 4,204 4,417 4,483 3
CLASS 0 - Proxies 1,384 134,906 1,384 1,578 1,504 4
CLASS 1 36 104 36 38 10 4
CLASS 2 31 80 31 49 0 5
CLASS 3 31 80 31 49 0 5

TRANSIT-DFS
F7

Databases
Tested

Operations
Executed

Databases
Added

Intra-
Duplicates

Inter-
Duplicates

∆U

CLASS 0 + Proxies 1,433 226,655 1,609 1,625 871 4
CLASS 0 - Proxies 760 82,440 883 970 501 4
CLASS 1 105 1,012 115 102 73 4
CLASS 2 177 1,522 197 209 161 4
CLASS 3 177 1,522 197 209 161 4

TRANSIT-DFS
F14

Databases
Tested

Operations
Executed

Databases
Added

Intra-
Duplicates

Inter-
Duplicates

∆U

CLASS 0 + Proxies 5,131 1,909,040 6,055 7,238 6,535 5
CLASS 0 - Proxies 2,108 498,191 2,752 3,717 2,914 5
CLASS 1 458 7,960 498 631 359 5
CLASS 2 359 5,398 385 467 315 5
CLASS 3 359 5,398 385 467 315 5

TRANSIT-DFS
F1

Databases
Tested

Operations
Executed

Databases
Added

Intra-
Duplicates

Inter-
Duplicates

∆U

CLASS 0 + Proxies 95 36,986 1,134 373 32 6
CLASS 0 - Proxies 95 29,574 955 368 28 6
CLASS 1 112 1,377 165 259 0 6
CLASS 2 95 1,068 129 241 0 6
CLASS 3 63 696 97 147 0 6

Figure 20: Using the depth-first approach with different classes of modification operations.

On the Distance of Databases
__

__

 32

The gain of effort for the last two classes is not significant, as the number of valid modifica-
tion operations is only marginally reduced compared to class 1. The figure also shows, that in
some cases the banishment of valid modification operations may increase the effort, as some
paths disappear, that reach the solution faster. The drop-off in accuracy (shown in the last
column) is due to the fact, that the modification operations for an exact solution are no longer
valid in some cases (for example in F4, where we need class 0 operations and proxies).

6.2.2 TRANSIT-DFS (GS) and TRANSIT-BFS (GS)
In Figure 21 we show the necessary effort to determining the set of minimal transformers,
when allowing all operations and proxy values, but using the group solution cost as the lower
bound. In our experiments, these heuristics always computed the correct update distance. The
resulting transition graphs are in general smaller (the exception is F1, where the exact transi-
tion graph is found). The missing vertices and edges within the final transition graph result in
missing some of the minimal transformers (the total number is shown in the last column of
Figure 21).

TRANSIT-BFS
(GS)

Databases
Tested

Operations
Executed

Databases
Added

Intra-
Duplicates

Inter-
Duplicates

∆U |T|

F4 4 499 27 2 0 3 1
F7 22 3,685 172 31 12 4 24
F14 957 391,067 7,319 6,092 3,042 5 72
F1 5,049 2,232,558 31,956 54,843 22,657 6 1,500

TRANSIT-DFS
(GS)

Databases
Tested

Operations
Executed

Databases
Added

Intra-
Duplicates

Inter-
Duplicates

∆U |T|

F4 3 402 23 2 0 3 1
F7 16 2,648 124 25 0 4 24
F14 18 7,226 803 221 34 5 72
F1 83 32,221 1,009 329 26 6 1,500

Figure 21: The necessary effort with group selection cost as lower bound.

Compared to the numbers in Figure 16 a) for the exact solution, the effort for the heuristic
approach is lower than for the according exact approach. The improvement is especially sig-
nificant for the first three database pairs, where we are able to reduce the number of databases
tested and generated of up to 99%. The improvement is only marginal for the database pair
F1, where the lower bound equals the actual update distance, while the initial approximation
is greater. As a downside, the computation cost may increase due to the computation of the
group solution cost. This is especially true for TRANSIT-BFS (GS), where the number of
databases tested is larger than for TRANSIT-DFS (GS). Figure 22 compares the execution
time of the two exact approaches and of TRANSIT-DFS (GS). Despite the extremely high
accuracy, the computation cost (and not the memory requirements) prevents us from applying
this heuristic to larger databases.

 TRANSIT-BFS TRANSIT-DFS TRANSIT-DFS (GS)
DBP1 366 4,311 89
DBP2 399 1,490 645
DBP3 236,596 12,747 3,621
DBP4 40,329 282 16,836

Figure 22: Execution time (in ms) for the exact algorithms and TRANSIT-DFS (GS).

On the Distance of Databases
__

__

 33

6.2.3 GREEDY-TRANSIT and TRANSIT-APPROX
Figure 23 shows the resulting update distances for the four database pairs, when using the
greedy approaches with different scoring functions. The group solution cost approach again
determines the optimal update distance for each of the databases. This however is not always
the case, as for larger databases it sometimes is inferior to the other two approaches.

∆UG
GREEDY-
TRANSIT

(UB)

GREEDY-
TRANSIT

(LB)

GREEDY-
TRANSIT

(GS)

TRANSIT-
APPROX

F4 4 4 3 5
F7 5 5 4 6
F14 7 7 5 8
F1 7 7 6 6

Figure 23: The resulting update distance of the various greedy approaches.

In order to assess the accuracy of the greedy approaches and of the update distance approxi-
mation we used a database of 10 attributes and 100 tuples and modified it using arbitrary up-
date sequences of length between 5 and 50. We then computed the update distance between
the original and the resulting database using the three algorithms GREEDY-TRANSIT (LB),
GREEDY-TRANSIT (UB), and TRANSIT-APPROX. The results are shown in Figure 24.
The shown values are averaged over ten runs. The results of the greedy approaches
GREEDY-TRANSIT (LB) and GREEDY-TRANSIT (UB) are almost equal. Therefore,
GREEDY-TRANSIT (LB) is omitted form Figure 24. The dark area above the lower bound
highlights the location of the exact solution between the lower bound and the length of the
sequences that generated the contradicting databases. The greedy approach and the approxi-
mation are both surprisingly accurate for short update sequences. For longer update sequences
the accuracy decreases but remains in reasonable bounds. Overall, the greedy approach out-
performs the approximation in accuracy. On the other hand, the execution time for TRAN-
SIT-APPROX is only a few milliseconds for the tested database while for the GREEDY-
TRANSIT (UB) it is between 875 - 74,000 ms.

Figure 24: Comparing the accuracy of GREEDY-TRANSIT (UB) and TRANSIT-APPROX.

On the Distance of Databases
__

__

 34

When generating the contradicting databases for the accuracy experiments we randomly chose
one operation from the set of valid modification operations for the current database. The accu-
racy of GREEDY-TRANSIT (UB) and TRANSIT-APPROX decreases if we restrict the cho-
sen modification operation to affect a minimum of n tuples.
Figure 25 shows the update distances computed by GREEDY-TRANSIT (UB) when allowing
only modification operations whose patterns select at least 5, 10, or 20 tuples (results are de-
noted by GREEDY-TRANSIT (UB) (n)). Also shown is the resulting upper bound, i.e., num-
ber of conflicts, for the generated databases. Using patterns with higher selectivity increases
the number of conflicts between the resulting databases without increasing the length of the
generating sequences. While the accuracy decreases, the results are still closer to the actual
update distance then the upper bound.
The decrease in accuracy is even larger for TRANSIT-APPROX. This is shown by Figure 26
where we list the computed distance values for GREEDY-TRANSIT (UB) and TRANSIT-
APPROX for sequences using operations with selectivity of at least 2, 5, 10, and 20.

Figure 25: Accuracy of GREEDY-TRANSIT (UB) for update sequences with operations
having different pattern selectivity

We also applied the greedy and the group solution cost to an artificial, randomly generated
database of 20 attributes and 1,000 tuples in order to validate the applicability of the algo-
rithms to larger databases. The accuracy is similar to the accuracy values shown in Figure 24,
while the execution time is now between 3 and 9 minutes for update sequences of length 5 to
10. Application of the described algorithms on larger databases is limited by the currently
used algorithm for determining the set of closed patterns. The number of patterns increases
drastically as the number of tuples and especially attributes increases. We therefore need to
employ a database-based mining algorithm.

On the Distance of Databases
__

__

 35

Figure 26: The accuracy of GREEDY-TRANSIT (UB) compared to TRANSIT-APPROX for
sequences with operations having pattern selectivity 2, 5, 10, and 20.

7 Further Distance Measures
We motivated our definition of an update distance between two databases by an analogous
definition of the edit distance in sequence analysis. Based upon the update distance, we define
two additional distance measures for pairs of contradicting databases. These definitions are
motivated by the following two questions:

a) How did a pair of databases evolve from a common ancestor? This question is related
to the phylogeny of organisms in biology.

b) How can we transform a pair of databases into a common descendant? This question
is related to the problem of integrating a pair of databases.

The databases and modification processes surrounding these questions are depicted in Figure
27. The first question follows the assumption that a given pair of databases r1 and r2 evolved
as modified copies of a common ancestor ra. The modifications where performed by applying
sequences of update operations ΨL1 and ΨL2 to copies of the ancestor ra. This approach is re-
lated to the phylogeny of organisms, i.e., the evolution from a common ancestor by evolution-
ary events like the modification of the DNA sequence. Similar to this evolutionary process,
we describe the process of divergence of r1 and r2 from ra by the triple (ra, ΨL1, ΨL2), with
ΨL1(ra) = r1 and ΨL2(ra) = r2.

On the Distance of Databases
__

__

 36

Figure 27: The evolution of a given pair of related data sources r1 and r2.

In [CWO+04] the phylogenetic distance between two organisms is defined as the total number
of intermediate organisms along the lines of descent leading to their most recent common an-
cestor. For overlapping databases, the phylogenetic distance describes the minimal number of
intermediate states for their divergence from a common, but probably unknown, ancestor.
Based on LEMMA 1 any database r from ℜ(R), i.e., the infinite set of databases following
schema R that satisfy the primary key constraint, is a common ancestor for a pair of data-
bases, as there exists at least one transformer, which transforms r into any other database from
ℜ(R). We again assume the simplest, i.e., shortest transformers to be the most likely explana-
tions of the observed differences.

DEFINITION 18 (PHYLOGENETIC DISTANCE): For a pair of databases r1 and r2, the phyloge-
netic distance, denoted by ∆P(r1, r2), is defined as the minimal number of update operations
necessary to derive r1 and r2 from any of the possible ancestors by independent application of
a pair of update sequences, i.e.,

∆P(r1, r2) = ∀ ra ∈ ℜ(R) : min(∆U(ra, r1) + ∆U(ra, r2)).♦

The challenge with determining the phylogenetic distance is to find those databases from
ℜ(R), for which the sum of the update distances is minimal. We leave algorithms for calculat-
ing the phylogenetic distance as well as finding the common ancestor for a pair of databases
as future work.

On the Distance of Databases
__

__

 37

The second question results from the problem of data integration. When integrating or merg-
ing two databases, we need to solve the conflicts between them. We thereby assume a pro-
ceeding where we derive an integrated database by retaining existing values from each of the
original databases. Therefore, the resulting database contains within each tuple and each at-
tribute one of the possibly two values for this attribute from the matching partners. Tuples
without a matching partner are added to the merged database as they are.

DEFINITION 19 (MERGED DATABASE): For a pair of databases r1 and r2, a merged database
rm is defined as (i) the union of the tuples without a matching partner from either source and
(ii) the overlapping part of r1 and r2 with conflicts solved by a set of resolution function F that
chose context-dependently one of the conflicting values, i.e.,

rm = U(r1, r2) ∪ U(r2, r1) ∪ F(C(r1, r2)).♦

In general, a resolution function f ∈ F takes two or more values from a certain domain and
returns a single value of the same domain [NH02]. Examples are well-known aggregation
functions like min(), max(), etc.. Any of these resolution functions completely solves the con-
flicts within an attribute when applied on the whole database. In this paper we focus on con-
text dependent conflict resolution. Context dependent conflicts represent systematic differ-
ences, which are the consequence of conflicting assumptions or interpretations in data produc-
tion [FLMC01]. We adopt the assumption from [MLF04], that the conflict causing context is
represented by patterns derivable from the given databases. The resolution function which we
consider here are modification operations as defined above. Therefore, for rm it holds, that

1. Each tuple to contained in one of the databases r1 and r2 is also contained in rm, i.e.,

∀ to ∈ r1 ∪ r2 ∃ tm ∈ rm : tm[ID] = to[ID].

2. The attribute values for tuples in rm are derived from the values of the corresponding
tuples in r1 or r2, i.e.,

∀ tm ∈ rm ∀ A ∈ R ∃ to ∈ r1 ∪ r2 :tm[ID] = to[ID] ∧ tm[A] = to[A].

We describe the transformation of each of the databases r1 and r2 into rm by update sequences.
The process of merging a pair of databases r1 and r2 into rm is defined by the triple (rm, ΨM1,
ΨM2), where rm is a common descendant of r1 and r2 and ΨM1 and ΨM2 describe the transfor-
mation of r1, respectively r2, into rm, i.e., ΨM1(r1) = rm and ΨM2(r2) = rm.

Several databases from ℜ(R) fulfill the described constraints of a merged database for a pair
of databases. We again regard the databases requiring the shortest sequences of update opera-
tions to describe the merging as the most likely ones. This results in the following definition.
DEFINITION 20 (INTEGRATION DISTANCE): The integration or merge distance of a pair of
data sources r1 and r2, denoted by ∆M(r1, r2), is defined as the minimal number of update op-
erations necessary in order to transform the sources into a merged database. Let ℜvalid(r1, r 2)
denote the set of databases fulfilling the constraints of a merged database of r1 and r2. The
integration distance is then defined as

∆M(r1, r2) = ∀ rm ∈ ℜvalid(r1, r 2): min(∆U(r1, rm) + ∆U(r2, rm)).♦

The development of an algorithm for calculating the integration distance of a pair of databases
and for determining the most likely merged database for them is also considered as future
work.

On the Distance of Databases
__

__

 38

8 Related Work

To the best of our knowledge the problem of finding minimal sequences of set-oriented opera-
tions for relational databases has not been considered before. There exist various distance
measures for other objects, like the well-known Hamming distance [Ham50] or the Leven-
shtein distance [Lev65] for binary codes and strings. Our update distance follows the Leven-
shtein distance, defined as the minimum number of edit operations necessary to transform one
string into another. There are three main areas of related work: consistent query answering for
inconsistent databases, finding patterns in conflicting data, and representing differences of
databases.
The only other distance measure for databases, which is related to our definition, is defined in
[ABC99]. Here, the distance of two databases is defined as the number of tuples from each of
the databases without a matching partner in the other database. This definition coincides with
our definition of the resolution distance when disregarding existing conflicts and regarding
only the existing uncertainties. This definition is used in the area of computing consistent
query answers for inconsistent databases [ABC99][CM05][Wij03]. The problem here is,
given a query Q, a set of integrity constraints IC, and a database r, which violates IC, deter-
mine the set of tuples that satisfy Q and are contained in each possible repair for database r. A
repair for database r is defined as a database r’, which satisfies IC and is minimal in distance
to r in the class of all databases satisfying IC [ABC99]. While the approaches
[ABC99][CM05] only allow insertion and deletion of tuples in order to find the repairs,
[Wij03] also considers the modification of existing values. Opposed to these approaches, we
do not rely no integrity constraints for the identification of contradicting values. Instead, in
our model the repair is already given by the target database. We therefore are not interested in
finding the nearest database in a plethora of possible repairs for an inconsistent database, but
in identifying update sequences that transform a given database into another given database.
The manipulation of existing database values to satisfy a given set of integrity constraints is
also considered in [BFFR05]. In this approach modification as well as insertion of tuples is
allowed. A certain cost is assigned with each modification and insertion operation. For a
given database and a set of integrity constraints, which are violated by the database, the prob-
lem then is to find a repair, i.e., a database satisfying a given set of constraints, with minimal
cost. Again, in our approach we are not interested in determining the optimal value modifica-
tions in order to solve a set of conflicts, as the solutions of existing conflicts are predeter-
mined by the target database. Our focus is rather on how to perform the (apriori known) nec-
essary modifications with minimal effort in terms of the number of SQL-like update opera-
tions. All other approaches described so far do not consider this problem, as they implicitly
expect to modify the values one at a time, after they determined a conflict solution.
Methods for finding patterns in contradictory data to support conflict solution are for instance
presented in [FLMC01] and [MLF04]. In [FLMC01], the authors discern between context
dependent and context independent conflicts. Context dependent conflicts represent system-
atic disparities, which are consequences of conflicting assumptions or interpretations. Context
independent conflicts are idiosyncratic in nature and are consequences of random events, hu-
man errors, or imperfect instrumentation. In this sense, we are considering context dependent
conflicts. However, in contrast to [FLMC01], we do not consider complex data conversion
rules for conflict resolution, but always use one of the conflicting values as the solution. Dis-
covering conflict conversion rules is considered as future work in the following section. On
the other hand, we do consider the conflict causing context to be identifiable as data patterns.
Therefore, this work is a continuation of our work on mining patterns in contradictory data. In
[MLF04] we adopt existing data mining methods to identify patterns in overlapping databases
occurring in conjunction with conflicts between them, i.e., the context in which the conflicts

On the Distance of Databases
__

__

 39

occur. The update operations that transform a given data source into another can be under-
stood as a different kind of difference explaining patterns. A determined sequence of update
operations for a pair of data sources may also be used as retrospective documentation of
modifications performed to cleanse, standardize, or transform one of the sources into the
other. The lack of documentation often hinders the interpretation of existing differences and
therefore the assessment of the quality of the resulting data source.
So called “update deltas” are used in several applications to represent differences between
databases. In database versioning they are used as memory effective representation of differ-
ent database version [DLW84]. However, versioning collects the actual operations during
execution instead of having to reengineer them from two given versions. In [LGM96] se-
quences of insert, delete and update operations are used to represent differences between da-
tabase snapshots. In contrast to our approach, only operations that affect a single tuple are
considered. Since databases are manipulated with (set-oriented) SQL commands, we consider
our problem as more natural than a tuple-at-a-time approach. The detection of minimal se-
quences of update operations is considered in [CGM97] for hierarchically structured data. The
authors consider an extended set of update operations to meet the requirements of the manipu-
lation of hierarchically structured data. The data is represented as a tree structure and there are
operations that delete, copy, or move complete sub-trees. However, the corresponding update
operation, i.e., to manipulate single data values, considered in [CGM97] is tuple (or node)-at-
a-time.
A main prerequisite of our approach is the ability to identify entries within the databases that
represent the same real-world entity. This is known as duplicate detection or record linkage
(see for example [HS95][ME97][Win99]). We assume the existence of a source-spanning
object identifier for duplicate identification (the ID attribute) and therefore do not considered
this problem within this paper. This identifier may be assigned to the data entries by a preced-
ing duplicate detection step.

9 Conclusions & Outlook

We defined a distance measure for contradicting databases, based on the concept of minimal
sequences of SQL-like update operations that transform one database into the other. If con-
flicts between two databases are due to systematic manipulation, the operations within update
sequences are valuable to domain experts interested in solving the conflicts. Minimal se-
quences may also be used as retrospective documentation of manipulations performed on a
given database.
The experimental results show, that the calculation of update distances is only practical for
smaller databases, as the number of databases maintained while determining the minimal
transformers growth linear, thus requesting large amounts of memory. We therefore defined
several heuristics, which give up on the claim of finding the exact solution, but in turn are
able to process larger databases. We performed several experiments to evaluate the accuracy
of these heuristics. We found that described heuristics have a reasonable accuracy to be used
as an replacement of algorithms for determining exact solutions.
In our current research work we investigate several directions. A major challenge is to reduce
the computational cost and the memory requirements of our algorithms. A considerable cost
factor is the necessary computation of the complete set of closed patterns for each tested data-
base. However, since database vary only very little from their predecessors, deriving the set of

On the Distance of Databases
__

__

 40

closed patterns from the set of closed patterns from the parent database using some incre-
mental approach could be highly advantageous.
There are several approaches for reducing the memory requirement of the algorithms. For
instance, instead of holding entire databases in main memory, one could represent a database
by its generating operations plus the hash key. This reduces memory consumption but in-
creases the execution time for duplicate checks. We therefore investigate the possibility of
efficiently detecting duplicate databases based on comparing their generating transformers
from a given origin. Another approach is geared towards enhancing the pruning ability by
finding upper and lower bounds that are closer to the actual update distance. However, these
bounds must be computable very efficiently, as they are calculated for very many databases.
A different problem concerning the memory requirement due to the overabundance of exe-
cuted operations and generated databases comes with larger databases. It is well-known, that
the number of closed patterns grows immensely, as the number of tuples and the number of
attributes in a database growths. A number over a million valid modification operations is not
uncommon for larger databases, which in turn generates an abundance of resulting databases
at each level, even in the greedy approaches. In our current experiments we where unable to
compute the complete set of closed patterns for databases having over 30 attributes and
10,000 tuples. We are able to limit the number of closed patterns to those which have a sup-
port above a certain threshold. This would allow only modification operations that select a
large number of tuples. As a downside, this approach is not able for any pair of databases to
transform them into each other, as the modifiability of single values is no longer guaranteed
(i.e., unlike in LEMMA 1 there is no guaranteed transformer for a given pair of databases). We
therefore have to include those closed patterns that select the individual tuples. Limiting the
number of valid modification operations by support thresholds for closed patterns eliminates
the ability of find the optimal solution in some cases.
In Section 5.3 we describe an approach for approximating the actual update distance. Using
this approximated update distance in a branch and bound algorithm shows promising results
in terms of the accuracy of the calculated distance. However, computing the approximation
currently is too costly. Finding an efficient method for group solution cost computation would
yield a significant runtime improvement.
There are other variations of the described greedy approaches that enhance the accuracy of the
calculated update distance. In a so-called top-k greedy approach we chose more than a single
database at each distance level as the starting point for the next level. Given a pair of data-
bases ro and rt, and an integer k, with k ≥ 1. We start with the origin as the solely starting
point. After determining the set of valid modification operations, we chose those k different
databases, which receive the highest score by the applied scoring function. These databases
are the starting points for the next distance level. We then build the union of databases deriv-
able by a single operation from these databases. From this union we again chose the k data-
bases receiving the highest weights. This process is continued until the target is reached.
Enhancing the expressiveness of update operations, including modifications like SET A =
f(A) as described in [FLMC01], would be very important; yet the cost of finding such func-
tions is probably prohibitive. Another variation is to assign different weights to the edges in
the transition graph. These weights for example reflect the number of tuples actually modified
by the respective operation. Using only the number of modified tuples as a weight and deter-
mining those paths of minimal weight would always result in a update distance equal with the
resolution distance. While such a sequence is minimal in the number of tuples affected, it is
maximal in the number of update operations executed. We therefore need to add additional
cost for the execution of an update operation. This for example could be the overall number of
tuples in the database, which have to be scanned while executing the selection statement of
the modification operations.

On the Distance of Databases
__

__

 41

Literature

[ABC99] M. Arenas, L. Bertossi, J. Chomicki. Consistent Query Answers in Inconsistent

Databases. Proc. ACM Symposium on Principles of Database Systems (PODS),
Philadelphia, Pennsylvania, 1999.

[AS94] R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules, Proc.
Int. Conf. On Very Large Data Bases (VLDB), Santiago de Chile, Chile, 1994.

[Bay98] J. Bayardo, Jr. Efficiently mining long patterns from databases. Proc. ACM SIG-
MOD Int. Conf. on Management of Data, Seattle, Washington, United States,
1998, 85 – 89.

[BBF+01] T.N. Bhat, P. Bourne, Z. Feng, G. Gilliland, S. Jain, V. Ravichandran, B. Schnei-
der, K. Schneider, N. Thanki, H. Weissig, J. Westbrook and H.M. Berman. The
PDB data uniformity project, Nucleic Acid Research, Vol. 29(1), 2001, 214-218.

[BDF+03] H. Boutselakis, et al. E-MSD: the European Bioinformatics Institute Macromo-
lecular Structure Database. Nucleic Acid Research, Vol. 31(1), 2003, 458-462.

[BFFR05] P. Bohannon, W. Fan, M. Flaster, and R. Rastogi. A Cost-Based Model and Effec-
tive Heuristic for Repairing Constraints by Value Modifications. Proc. ACM
SIGMOD Int. Conf. on Management of Data, Baltimore, Maryland, United States,
2005.

[BWF+00] H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N.
Shindyalov, P.E. Bourne. The Protein Data Bank. Nucleic Acids Research, Vol.
28(1), 2000, 235-242

[CTX+04] G. Cong, A.K.H. Tung, X. Xu, F. Pan, and J. Yang. FARMER: finding interesting
rule groups in microarray datasets. Proc. ACM SIGMOD Int. Conf on Manage-
ment of Data, Paris, France, 2004, 143 – 154.

[CGM97] S. Chawathe, H. Garcia-Molina. Meaningful change detection in structured data.
Proc. ACM SIGMOD Int. Conf. on Management of Data Tucson, Arizona, May
1997.

[CM05] J. Chomicki, J. Marcinkowski. Minimal-change integrity maintenance using tuple
deletions. Information and Computation, Vol. 197, No. 1/2, pp. 90-121, 2005.

[Cod70] E.F. Codd, A Relational Model of Data for Large Shared Data Banks, Communi-
cations of the ACM, Vol. 13, No. 6, June 1970, pp. 377-387.

[CWO+04] S.S. Chow, C.O. Wilke, C. Ofria, R.E. Lenski, and C. Adami. Adaptive Radiation
from Resource Competition in Digital Organisms, Science, Vol. 305, Issue 5680,
2004, pp. 84-86.

[DLW84] P. Dadam, V.Y. Lum, H.-D. Werner. Integration of Time Versions into a Rela-
tional Database System. In Proc. of 10th International Conference on Very Large
Data Bases, Singapore, 1984, p.p. 509-522

[FLMC01] W. Fan, H. Lu, S.E. Madnick, and D. Cheung. Discovering and reconciling value
conflicts for numerical data integration. Information Systems, Vol. 26, 2001, 635-
656.

[GDN+03] L. Gao, M. Dahlin, A. Nayate, J. Zheng, A. Iyengar. Application Specific Data
Replication for Edge Services. In Proc. of International World Wide Web Confer-
ence (WWW2003), Budapest, Hungary, 2003.

[Ham50] R. W. Hamming. Error-detecting and error-correcting codes, Bell System Tech-
nical Journal Vol. 29, No. 2, 1950, pp. 147-160.

On the Distance of Databases
__

__

 42

[HPY00] J. Han, J. Pei, Y. Yin. Mining frequent patterns without candidate generation.
Proc. ACM SIGMOD Int. Conf. on Management of Data, Dallas, Texas, 2000

[HS95] M.A. Hernandez, S.J. Stolfo. The merge/purge problem for large databases. Proc
of ACM SIGMOD Int. Conf. On Management of Data, San Jose, California,
1995.

[INSDC] International Nucleotide Sequence Database Collaboration, http://www.insdc.org
[Lev65] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and

reversals, Doklady Akademii Nauk SSSR, 163(4):845-848, 1965 (Russian). Eng-
lish translation in Soviet Physics Doklady, Vol. 10, No. 8, 1966, pp. 707-710.

[LD60] A.H. Land, A.G. Doig. An automatic method of solving discrete programming
problems. In Econometrica 28, 1960, pp. 497-520.

[LGM96] W. J. Labio and H. Garcia-Molina. Efficient Snapshot Differential Algorithms for
Data Warehousing. Proc. Int. Conf. On Very Large Data Bases (VLDB), Bom-
bay, India, September 1996, pp. 63-74

[ME97] A.E. Monge, C.P. Elkan. An efficient domain-independent algorithm for detecting
approximately duplicate database tuples. Proceedings of the SIGMOD 1997
workshop on data mining and knowledge discovery, 1997

[MLF04] H. Müller, U. Leser, and J.-C. Freytag. Mining for Patterns in Contradictory
Data, Proc. SIGMOD Int. Workshop on Information Quality for Information Sys-
tems (IQIS'04), Paris, France, 2004.

[NH02] F. Naumann and M. Häussler. Declarative Data Merging with Conflict Resolu-
tion, Proc Int. Conf. on Information Quality (IQ 2002), Cambridge, MA.

[PBTL99] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering Frequent Closed
Itemsets for Association Rules. Lecture Notes in Computer Science, Vol. 1540,
1999, 398--416.

[RMT+04] K. Rother, H. Müller, S. Trissl, I. Koch, T. Steinke, R. Preissner, C. Frömmel, U.
Leser. COLUMBA: Multidimensional Data Integration of Protein Annotations,
Int. Workshop on Data Integration in Life Sciences (DILS 2004), Leipzig, Ger-
many.

[Vos91] G. Vossen. Data Models, Database Languages and Database Management Sys-
tems. Addison-Wesley Publishers, ISBN 0-201-41604-2, 1991

[WHP03] J. Wang, J. Han, and J. Pei. CLOSET+: searching for the best strategies for min-
ing frequent closed itemsets. Proc. ACM SIGKDD Int. Conf. on Knowledge Dis-
covery and Data Mining, Washington, D.C., 2003, 236 – 245.

[Win99] W. Winkler. The state of record linkage and current research problems. Techni-
cal report, Statistical Research Division, U.S. Bureau of the Census, Washington,
DC, 1999.

[Wij03] J. Wijsen. Condensed representation of database repairs for consistent query an-
swering. In Proc. of the 9th Int. Conf. on Database Theory Siena, Italy, 8 - 10
January 2003.

[ZH02] M.J. Zaki and C.-J. Hsiao. CHARM: An efficient algorithm for closed itemset min-
ing. In Proc. of the Second SIAM International Conference on Data Mining, Ar-
lington, VA, 2002.

[Ziegler] P. Ziegler. A directory of data integration projects world-wide, accessible at
http://www.ifi.unizh.ch/dbtg/Staff/Ziegler/IntegrationProjects.html.

