Storing and Querying Historical Texts in a
Relational Database

Lukas C. Faulstich!, UlIf Leser!, und Anke Ll'ideling2

l{faulstic,leser}@informatik.hu—berlin.de
Institut fiir Informatik, Humboldt-Universitit zu Berlin
2Anke.Luedeling@rz.hu—berlin.de
Institut fiir deutsche Sprache und Linguistik,

Humboldt-Universitit zu Berlin

28th February 2005

Abstract

This paper describes an approach for storing and querying a large corpus of lin-
guistically annotated historical texts in a relational database management system.

Texts in such a corpus have a complex structure consisting of multiple text
layers that are richly annotated and aligned to each other. Modeling and managing
such corpora poses various challenges not present in simpler text collections. In
particular, it is a difficult task to design and efficiently implement a query language
for such complex annotation structures that fulfills the requirements of linguists
and philologists. In this report, we describe steps towards a solution of this task.
We describe a model for storing arbitrarily complex linguistic annotation schemes
for text. The text itself may be present in various transliterations, transcriptions,
or editions. We identify the main requirements for a query language on linguistic
annotations in this scenario. From these requirements, we derive fundamental
query operators and sketch their implementation in our model. Furthermore, we
discuss initial ideas for improving the efficiency of an implementation based on
relational databases and XML techniques.

Contents

1 Introduction

1.1 DeutschDiachronDigital

1.2 Workflow
1.2.1 Header
1.22 Body

2 Requirements for Managing Linguistic Corpora
2.1 Data Model Requirements
2.2 Requirements for Querying Annotated Texts

22.1
222
223
224
225
2.2.6

Query Language
Complex SearchResults
Corpus Selection
Single TextSpans
Single Elements
Correlation of Spans and Elements

2.3 Transformation Requirements

3 The ODAG Approach for Managing Linguistic Corpora
3.1 Architecture
32 DataModel

3.3 Storage
3.3.1
332

Exchange Format
Storing ODAGS in a Relational Database System

34 SearchOperators

3.4.1
34.2
343
344
345
3.4.6
3.4.7

Character Sequences
Prefixes or Suffixes of Text Layers
Single Elements and Attributes
Spans
Spatial Predicates
Hierarchical Navigation
Boolean Operators

10
10
11
11
12
12
12
13

3.4.8 Sequence Operators 30

349 Advanced Operators 31

35 QueryExamples.o oL 31
3.5.1 Searching for word forms 31

3.5.2 Querying aligned texts 32

3.5.3 Querying Linguistic Trees 33

3.6 Transformation 34

4 Related Work 35
4.1 QueryLanguage. 35
4.1.1 Corpus Query Processor (CQP) 35

412 TigerSearch 36

413 XPath/XQuery. 36

4.2 LinguisticDataModels 38

5 Conclusions and Future Work 41

Chapter 1

Introduction

This paper describes an approach for storing and querying a large corpus of lin-
guistically annotated historical texts in a database. It is being developed in an
interdisciplinary project of linguists of historical German, corpus linguists, com-
putational linguists, and computer scientists. In the field of computer science,
our work touches the areas storage/retrieval of XML in databases, Information
Retrieval and Multimedia Databases.

1.1 DeutschDiachronDigital

DeutschDiachronDigital1 (henceforth DDD) is an endeavor of about 15 German
research groups to establish a large corpus of older German texts (described in
more detail in [Liideling et al., 2005]). There exist various notions of “corpus”;
DDD has adopted the following definition due to Sinclair[Sinclair, 1996]:

A corpus is a collection of pieces of language that are selected ac-
cording to explicit linguistic criteria in order to be used as a sample of
the language [...] A computer corpus is a corpus which is encoded in
a standardised and homogeneous way for open-ended retrieval tasks.
Its constituent pieces of language are documented as to their origin
and provenance.

The emphasis of DDD lies on creating a diachronic corpus that — in contrast
to a synchronous corpus — documents the evolution of a language (or a group of
languages) over a range of time, in our case from the earliest Old High German or
Old Saxon texts from the 9th century up to Modern German at the end of the 19th
century.

"http://www.deutschdiachrondigital.de/

http://www.deutschdiachrondigital.de/

Note that a linguistic corpus is more than a collection of transcribed texts: its
main value arises from a rich system of annotations enabling automated statis-
tical analyses and making texts accessible for research not only to specialists of
particular dialects or language stages but also to a broader range of scholars such
as historical linguists, theoretical linguists, philologists, historians, philosophers,
etc. However, although many older texts (manuscripts and early prints) have been
digitized and transcribed in a number of projects (for example, TITUS?, Biblio-
theca Augustana’, MHDBDB?), a large linguistic corpus of older German is still
missing (cf., [Kroymann et al., 2004]).

Historical texts are available in form of manuscripts such as the “Heidelberger
Sachsenspiegel™ (cf. Fig. 1.1) or as early prints.

Figure 1.1: Detail from page 1r of the “Heidelberger Sachsenspiegel”.

A linguistic corpus of historical texts such as DDD must go well beyond dig-
itization. It must organize texts in several aligned text layers together with a rich
system of annotations. The workflow for producing this complex representation
is discussed next.

1.2 Workflow

To add a text to the corpus, the following processing steps sketched in Fig. 1.2
have to be carried out. Most of them require manual work by experts with some
computer support (mainly editor programs and annotation tools). All data (texts
and annotations) are uploaded to the DDD-Server and stored in a database from
where they can be retrieved for the next processing step.

1.2.1 Header

The first step is to produce a bibliographic description of the source manuscript
(or original print) using available catalog information. This description together

http://titus.uni-frankfurt.de/

3http://www.fh-augsburg.de/~harsch/augusta.html

“http://mhdbdb.sbg.ac.at:8000/index.html

>The “Sachsenspiegel” is the earliest code of common law written in German. The Heidelberg
manuscript, a Middle High German version of the “Sachsenspiegel”, is available at http://
digi.ub.uni-heidelberg.de/cpgl64d

4

http://titus.uni-frankfurt.de/
http://www.fh-augsburg.de/~harsch/augusta.html
http://mhdbdb.sbg.ac.at:8000/index.html
http://digi.ub.uni-heidelberg.de/cpg164
http://digi.ub.uni-heidelberg.de/cpg164

with other metadata describing the text as a whole constitutes the so-called header
of the text. The header has a complex structure and may contain very detailed
information on the physical state, provenance, processing, encoding etc. of the
physical source and its text (cf. [Sperberg-McQueen and Burnard, 2002] for the
TEI Header format and the TEI Web site for the activities on Manuscript Descrip-
tion®).

Sources Text/Image Layers Annotation Layers Storage
Manuscript/ | describe: ————
~ 7| Original Print [= Header |

Digital convert
‘ﬁ

|
|
‘
| imi :
| Facsimile Facsimile 3
‘ N
l Wm
‘ 9
| transliterate : _
1 |
| transliterate DDD-Server
| Printed
! Facsimile
|
! - Printed
™~ Edition : — :
| ucture’ Logical Organization M
|
: igi lemmatize
L] Digital :
Edition ana/yzé

‘””>“ Al/gnment r”””%”*

Figure 1.2: Production workflow of the DDD project.

Shttp://www.tei-c.org/Activities/MS/

http://www.tei-c.org/Activities/MS/

1.2.2 Body

Diplomatic level. To produce the text body, a so-called diplomatic translitera-
tion of the text is needed as a base text layer. In a linguistic context, diplomatic-
ity refers to the closeness of an edition to the original manuscript. For instance,
there often exist different variants of the same letter (so-called allographs). For
instance, the small letter “s” has a round form used at the end of words and a
long form used within words (c.f., the words “dis” and “alrest” in the second line
of Fig. 1.1). These two forms are represented in the diplomatic layer using the
Unicode characters 0073 and 017F, respectively.

Several logical words may be written as one graphical word (e.g., in Fig. 1.1,
“Swerlenrecht” = “Swer”+ “lenrecht”) while a single logical word may be dis-
tributed to several graphical words (e.g., in the case of a line break). Abbrevia-
tions are very common in manuscripts. The diplomatic layer tries to follow the
original as closely as possible in representing graphical words and abbreviations.

There are several ways of how to arrive at the diplomatic text layer. Access
to the manuscript itself or to a high-quality facsimile of it is indispensable. If
digital facsimiles exist or can be produced, they will be made available to the user
if possible, including an alignment of image regions with the corresponding text
spans in the diplomatic text layer.

The diplomatic transliteration is an unstructured text encoded in the Unicode
character set (extended with special characters in the Private Use Area). For in-
stance, the “u” with a ring on top of it in the first line of Fig. 1.1 can be encoded in
Unicode using the character “u” plus a combining diacritic “°”” (Unicode 0302).
Since manuscripts have many graphical features (such as ligatures, colors, ini-
tials, indentation, super-/sub-scripts etc.) that are important for a proper interpre-
tation, an additional annotation layer documents graphical features visible in the
manuscript and aligns them with text spans in the diplomatic text layer.

The physical organization of the text in pages, lines, and graphemic words
is documented in a similar way as an annotation layer on top of the diplomatic
transliteration.

Semi-diplomatic level. The diplomatic layer is then transcribed into a text layer
we have termed “semi-diplomatic” by expanding abbreviations (e.g., d” in the first
line into der), splitting or connecting graphical words into logical words (tokens)
etc. The logical structure of the text in chapters, sections, paragraphs etc. is added
in form of annotations on top of this layer.

Linguistic annotations. Linguistic analyses such as lemma annotation, part-of-
speech (e.g., noun, verb, adjective), inflectional morphology (e.g., third person

singular, genitive plural), syntax trees, and possibly others, are further annotation
layers based on this semi-diplomatic layer.

Other text layers. There may be several other layers, e.g., a normalized tran-
scription (which uses a standardized spelling), a translation into Modern German,
and alignments with parallel texts. For instance, the same text is sometimes avail-
able in several manuscripts which may be incomplete (due to damages and loss)
and may differ in the overlapping parts. In this case, corresponding parts would
need to be aligned with each other to enable comparative studies.

Conversion. Several partners will contribute to DDD electronic texts produced
in earlier projects. For these texts conversion procedures need to be developed.
The output of automated conversion scripts always needs to be proof-read against
the manuscript and may need to be brought to a common standard corresponding
to the rest of the DDD corpus. This may for instance require that a diplomatic ver-
sion is created from a semi-diplomatic version by using facsimiles or the original
manuscript.

Chapter 2

Requirements for Managing
Linguistic Corpora

2.1 Data Model Requirements

Traditionally, linguistic corpora have been stored in unstructured files with rather
simple formats (e.g., part-of-speech tagged corpora). SGML and XML encodings
have been developed by the Text Encoding Initiative (TEI'. Databases are only
rarely used to store linguistic corpora, e.g., in the TIGER project>. To support
efficient search on a large text collection of approx. 100 million words, to ensure
independence from external file formats, to ensure data integrity, and to manage a
multitude of annotation levels together with multiple representations of text frag-
ments, a relational database system for storing text and annotations is foreseen.

In contrast to typical information retrieval corpora, linguistic corpora store
not only texts themselves, but also linguistic annotations, different aspects of a
text (text layers) and alignments between and within text layers. Hence the main
challenge in data modeling is to represent these annotations and their links with
the underlying texts.

Many linguistic corpora use graphical words (tokens) as the smallest address-
able unit. In historical texts, however, this is not sufficient since single characters
need to be addressed. For instance, medieval manuscripts make heavy use of
abbreviations, e.g. the character sequence “er” is often replaced by a so-called
title (sic) symbol (“*”), as in “d” (= “der” = Engl. ‘the’). Such abbreviations
will be expanded out in the normalized, unabbreviated word form. The alignment
between the diplomatic and the semi-diplomatic text layer should associate an ab-
breviation with its expansion. To support this, alignments are modeled as a set of

I[Sperberg-McQueen and Burnard, 2001], http: //www.tei-c.org
2[Brants et al., 2002], http://www.ims.uni-stuttgart.de/projekte/TIGER/

http://www.tei-c.org
http://www.ims.uni-stuttgart.de/projekte/TIGER/

links between substrings of text layers (called spans). An alignment can associate
spans from a single text layer or from different text layers.

An annotation is additional information that is attached to a span of a text layer.
The simple-most type of annotation marks a span of text to make a statement about
it, e.g., “this is a sentence”. Annotations may have attributes to specify certain
properties, e.g., “the grammatical case of this word is genitive, its grammatical
number is plural”. More complex annotations correlate different spans of text
(e.g., for alignments, co-references) or build nested structures such as syntax trees.
Annotations are organized into groups called annotation layers. An annotation
layer describes a certain aspect of a text layer (e.g., its syntax) by a hierarchy of
annotation elements corresponding to spans of this layer. Examples of annotation
layers in our approach are presented in Sec. 1.2.2.

Corpora aim at representing all constituent texts in a uniform and comparable
way to allow the computation of meaningful statistics. This means that a standard
set of text and annotation layers is defined for every text. On the other hand,
it is desirable to allow further layers to be added and to support extra layers on
sub-corpora in order to accommodate specialized or unforeseen research needs.

It must be possible to express each annotation layer independently of the other
layers. In general, each annotation layer can be represented as hierarchical (XML)
markup of a text layer. Due to their independence, these markup hierarchies may
be in conflict which prevents them from being merged into a single (XML) doc-
ument hierarchy. For instance, lines and sentences may arbitrarily overlap in a
text. In XML, this cannot be represented without resorting to tricks such as using
empty “milestone” elements or splitting annotation elements at the boundaries of
conflicting elements.

To cope with multiple text layers and conflicting hierarchies, stand-off anno-
tation techniques have been developed (mainly in the field of multi-modal cor-
pora) and have been standardized in XCES[Ide et al., 2000]. Stand-off annotation
means to separate annotations from the underlying texts and use references (e.g.
XLink/XPointer?) to specify the text spans or document elements to be annotated.
This means that one has to distinguish internal edges (parent-child relationships
within one annotation level) from external edges (links between different anno-
tation levels or between annotations and text spans) when navigating a corpus
annotated in this way. We require a separation of texts and annotations, too, but in
addition want to avoid the distinction between internal and external edges. Since
there can be cross-references between different texts within a corpus, the whole
corpus needs to form a single complex data object.

Historical texts often have to be reconstructed from several partly contradict-
ing manuscripts. Hence the data model must support the representation of such

Shttp://www.w3.org/XML/Linking

http://www.w3.org/XML/Linking

text variants.

Since texts and in particular historical texts often allow alternative linguistic
interpretations, the data model must support the encoding of alternative anno-
tations of the same text item. On the other hand, it must also allow for missing
annotations since there are cases in which it is not possible to assign an annotation
at all.

2.2 Requirements for Querying Annotated Texts

Fig. 2.1 shows a typical user session. The user enters a query, receives a list of re-
sults (“hit list”) in form of a keyword-in-context (KWIC) concordance from which
each result can be inspected by exploring the text surrounding the hit. In case the
user needs to further analyze or edit the text using local tools or to present the re-
sult as an example in a publication, the result or the whole text can be downloaded
in various formats.

submit! ' refine
| /

Lo
N
DDD-Server select| ! leave
— browse .-,
\
@ T Presentation (XHTML) | |
,

I
download |
!

v
Document (XML/PDF)

Figure 2.1: Typical user session.

Querying annotated texts hence comprises (i) formulating a query in an ap-
propriate query language (ii) executing this query to search for relevant docu-
ment elements and text spans and (iii) transforming the results into one of several
presentation formats that can be displayed on a Web browser or downloaded for
further analysis or processing.

2.2.1 Query Language

The query language should be intuitive for the users of the corpus, i.e., mainly lin-
guists and philologists. Hence it would be convenient to build on existing corpus
query languages such as TIGERSearch[Brants et al., 2002] or CQP[Christ, 1994].
The requirements for the expressiveness of the query language follow from the
search requirements discussed next.

10

2.2.2 Complex Search Results

In contrast to conventional information retrieval, it is not sufficient to search just
for whole texts. Rather users are looking for certain regions (spans) of a text.
Within these spans, they are interested in certain elements matching our query. For
instance, it is not sufficient to find all text spans matching a certain grammatical
structure (e.g., a sentence with a relative clause), but on top of these spans the
user might want to retrieve a pair of syntax tree nodes, one of which represents
a sentence and the other a relative clause within this sentence. In addition, users
might want aligned spans in other text layers to be retrieved as well.

2.2.3 Corpus Selection

Before a search within texts can be started, the user first has to define the corpus
on which the search has to be performed. In most corpus search tools, the only
choice of the user is between several pre-assembled corpora. Our approach is
more flexible since it allows texts to be selected from the whole DDD corpus
depending on conditions specified by the user. Such conditions can be posed for:

e Bibliographical data: texts in linguistic corpora typically have a very de-
tailed header containing not only basic information such as title or authors,
but providing much more data on the text as a whole such as details on the
authors, writers, editors, on the preparation of the texts, used languages and
dialects, genre, the social, historic, and geographic context etc.

e Automatically generated metadata: size of a text, existence of certain text
or annotation layers, existence of aligned digital facsimile images etc. This
is particularly important since the texts in the DDD corpus will be hetero-
geneous with respect to annotation depth and diplomaticity. A more homo-
geneous sub-corpus can be selected by specifying the minimum standard
required for investigating a particular research question.

o Aggregated linguistic properties: e.g., the number of occurrences of certain
lemmata or word forms or the frequency of certain linguistic features.

Sub-corpora can be assembled in advance by tagging each member text with
a corpus identifier in its bibliographical data. For instance, one could prepare a
sub-corpus of Middle High German Bavarian texts from tailored for the needs of
a certain research area.

11

2.2.4 Single Text Spans

Text spans on a single text layer need to be searched by specifying

e literal substrings
e regular expressions

e intervals (e.g., characters 1 — 10,000 of a text)

2.2.5 Single Elements

Single annotation elements should be searchable by their type (tag name), by con-
ditions on their attribute values, and by position with respect to other elements
such as “the third chapter element of text #4711 or “the first 100 word elements
on page 17”. Positions can be specified relative to the beginning or the end of
some region that has to be specified within a subquery (e.g., “text layer #4711” or
“page 177); see the next section. Within this region, it needs to be specified what
has to be counted for determining the position. For instance, one could count ele-
ments satisfying a certain attribute condition or elements of the same type as the
result element.

2.2.6 Correlation of Spans and Elements

In queries it must be possible to combine conditions on the same items like “a
word element whose content matches the regular expression /. *keit /” and to
find items within other items, e.g., “a word element within the page element rep-
resenting page 31”. This is in particular important for querying syntax trees.

Sequences. Searches for sequences of items such as “an article directly followed
by a noun” or “the span between the first ‘) and the final ‘. within a sentence”
must be supported.

Use of alignments. A text may consist of several aligned text layers. This leads
to the requirement of correlation between elements or spans over different text
layers. Alignments need to be used to project spans to a common text layer where
they can be compared (e.g., for containment). In addition, the user may want to
align sequences of elements as well. Some example queries are:

1. find all occurrences of the word ‘der’ (within the semi-diplomatic text layer)
that correspond to a ‘d™ abbreviation (within the diplomatic text layer)

12

2. show all pairs of a line (an annotation on the diplomatic text layer) and an
intersecting verse (an annotation on the semi-diplomatic text layer)

3. show all pairs of a Latin word form and a corresponding German word form
in a bilingual (e.g, Latin, Old High German) text

2.3 Transformation Requirements

A powerful and flexible method for transforming a result set into XML/HTML
documents is needed to present search results to the user and to produce docu-
ments well-suited for printing or further processing. Requirements for this trans-
formation method are discussed in [Dipper et al., 2004]. They include projection,
selection, folding and rearrangements, deriving attributes, elements, and content,
interchange between element content and attributes, context-sensitivity, identi-
fier/URL generation, and encoding and decoding of conflicting hierarchies. This
issue will be studied in future work.

13

Chapter 3

The ODAG Approach for Managing
Linguistic Corpora

3.1 Architecture

DDD uses the Web-based three tier architecture on top of an object-relational
database management system (ORDBMS) depicted in Fig. 3.1. The Web interface
is used for searching, browsing, and downloading texts as well as for uploading
new or revised texts to the database. Texts are edited and annotated using external
XML-based tools. The Web interface offers import and export modules that con-
vert between the internal representation in the database system and the particular
XML formats of these tools.

When the user issues a query or navigates the HTML representation of a text,
the user’s Web browser sends HTTP requests to the Web interface. The appli-
cation logic layer translates these requests into database queries. The results of
these queries (i.e. tuples) are then transformed by one of the export modules into
HTML which is returned to and then displayed by the Web browser. For down-
load, documents in other formats such as PDF or TEI can be generated as well.

3.2 Data Model

In [Dipper et al., 2004], we have presented our logical ODAG (Ordered Directed
Acyclic Graphs) datamodel which is shown in Fig. 3.2 as a class diagram. A
Corpus consists of an open set of Text layers and a set of Nodes. A Node is either
a Span in one of the Text layers or an Element. Each Element is described by a
set of named Attributes. Optionally it refersTo a Span. The content of an Element
consists of an ordered list of child Nodes. We abuse the UML conventions slightly
by using an aggregation arrow for the m : n relationship isChildOf to stress that

14

External Tools ‘Editor ‘ Annotation,_,‘
Tool

Web Browser

Web Server
Vi
Application Logie
! i

Database

Figure 3.1: System Architecture of DDD

this relationship aggregates Nodes into an acyclic graph wherein each Node may
have multiple parent Elements. This ODAG must have an unique root Element
reachable from the Corpus object via the hasRoot association.

~
~

textlayerOf

N t\ *
<
* N _isChildOf
/ I N\
Text within Span e 1 N . AN
+id :int + start : int - N\ N
. _ . refersTo
+ text : string =1+ end : int _
1 * ~ + name : string
<

1
describes
Attribute

+ name : string
+ value : string

Figure 3.2: Meta-model of the DDD datamodel in form of an UML class diagram.

Just like DTDs or XML schemata specify the structure of conforming XML
documents, an ODAG schema specifies a class of ODAGs (called instances of the
schema) whose structure conforms to the schema.

For a particular corpus such as DDD, an ODAG schema needs to be devel-
oped to specify the structure of the corpus. The schema will be the result of a
comprehensive standardization effort involving all participating groups.

Currently we are developing a preliminary schema for DDD on prototypical
texts. Fig. 3.3 sketches a detail of such a text, the Sachsenspiegel (cf. Fig. 1.1).

15

The diagram shows the Physical hierarchy of the text (Volume / Page / Line /
(graphemic) Word) as annotations of the diplomatic text layer as well as the Log-
ical hierarchy of the text (Part / Chapter / Section / Paragraph / Sentence / Token
(=logical word)) as annotation of the semi-diplomatic text layer. Each element
in these hierarchies refers to a span on the underlying text layer (indicated by an
arc).

Lexicon

Structure Annotations

‘ Physical ‘ ‘ Logical ‘ ‘Alignment‘ ‘FIexMorphLayer‘ ‘Lemmatization
‘ Page ‘ ‘Chapter ‘

‘ FlexMorph

Article
gender=m
case=nom
number=sing

Paragraph

g{

Align Align

role=dipl | |[role=sdpl

Swerlenrecht ku°nnen wil-{d~volgd... | | swer lenrecht ku°nnen wil} | der[volge... |
DiplomaticText Semi-diplomatic Text

Figure 3.3: Detail of a prototypical instance of the DDD schema (from the Hei-
delberger Handschrift of the Sachsenspiegel, early 14th century).

The diplomatic and semi-diplomatic text layers are aligned using an Alignment
element. Fig. 3.3 shows that the abbreviation “d™ is aligned with its expansion
“der” via a Link node containing two Align elements that refer to the spans to be
aligned.

Part-of-speech annotation and inflectional morphology information is orga-
nized in the FlexMorphLayer. A FlexMorph element associates a token and one or
more elements inheriting from FlexMorphTag (cf. Fig. 3.6). The part of speech in-
formation is represented by the tag name (e.g., Noun, Verb). Further information
is stored in form of attributes (e.g., number, case).

The encoding technique for alignments is further demonstrated in Fig. 3.4 for

16

a bilingual Latin / Old High German text (Tatian). Corresponding spans in Latin
and in Old High German are referenced by the Align children of a common Link
element, distinguished by their role attribute. For instance, the Align elements in
Fig. 3.4 that point to the Latin text have role="lat” whereas those pointing to the
Old High German text have role="goh”.

Alignment|

[Link | [Link | [Link] [Link | [Link | [Link]

[Align|[Align| [Align|[Align][Align][Align| [Align|[Align| [Align|[Align| [Aligr][Align]

[role=lat || role=goh| | role=lat || role=goh| [role=lat || role=goh| | role=lat || role=goh| | role=lat || role=goh| |role=lat || role=goh|

M% onati sugt|ordinargrharratj

Figure 3.4: Alignment of corresponding text spans for a bilingual Latin / Old High
German text, Tatian

1th1u uuant:

Instead of aligning spans in a text, an alignment can align (sequences of)
elements. Fig. 3.5 shows an alternative alignment for the Tatian example from
Fig. 3.4 where each Align element has one or more Token elements as children.

Alignment

[Link] [Link | [Link | [Link | [Link] [Link |

Align|| Align| |Align|| Align| | Align|| Align Align|| Align| Align|| Align| | Align|| Align|
role=lat || role=goh| | role=lat || role=goh role=lat || role=goh role=lat || role=goh role=lat || role=goh role=lat || role=goh

Token| [Token| [Token| [Token|Token|[Token| [Token Token] [Token| [Token|Token] [Token] [Token]

w gﬁm{ﬁl I M

Figure 3.5: Alignment of token elements for a bilingual source text (Latin - Old
High German), Tatian

The preliminary schema of the DDD corpus is shown as an UML class model
in Fig. 3.6. The model is a refinement of the data model shown in Fig. 3.2. Its
nodes define subclasses of Element. The schema specifies how elements such

17

as Token can be included within several other parent elements, i.e., Sentence,
Lemma, FlexMorph.

N _—

~ /
N —
2\ (7
IOERN
Y N\ <~
“ FurtherBibliographicalData...
| [Structure
| B2 <
“ \ \\‘n\\ Physical | [Volume | [Page Line Word
‘ ~ | <>+ | < | <+ | <> |
|
|
|
| Logical Part Section Chapter Paragraph Sentence \ Token \
\ 1 | < | < | < | < | < | < |
|
| /
| /
| /
1 /
Annolalions‘ AnnotationLayer i Link Align Node ‘ /
1 | < | < 1 | < | < | <—t P/
/
‘ 1.n \ ~
Noun Verb Adjective ‘ MorePOS... ‘
- number : int - tense : int - gender : int
- case : int - person : int - case : int
-etc: .. - number : int - number : int
° @38 w -etc: .. 1
()
Lemmatization Lemma
——— 1 ———

Ll.n
Lexicon—‘ Entry
f 1 <=

Figure 3.6: UML class model of preliminary DDD schema.

3.3 Storage

3.3.1 Exchange Format

As an external exchange format for ODAGs, we have developed the XML format
gXDF. It specifies attributes that allow elements to refer to text spans. Cases of
nodes having multiple parents are encoded by node references. This format is used
to import ODAGs into the database where they are converted into the relational
ODAG representation by resolving these node references.

18

3.3.2 Storing ODAGs in a Relational Database System

Methods for storing ODAGs in an RDBMS have been investigated in [Vitt, 2004].
The relational schema presented here is based on this work.

Text layers are stored in a table

text (id, content)

where content is a string (CLOB) storing the text of the text layer identified
by attribute id.

Text spans are modeled using a structured user-defined type Span with at-
tributes t id referring to the identifier of a text layer, 1eft specifying the start
position within this text layer, right the next position after the last position,
and score a similarity score used in inexact (fuzzy) searches. A new span from
position [to position r in text layer ¢ with score s is constructed in SQL by the
expression Span (t,[,r,s).

ODAG elements are stored in table

element (id, name, span)

The attribute span specifies an (optional) span associated with the element.

Since the ODAG data model is a generalization of XML, our storage concept is
based on a shredded interval-based storage scheme similar to [Grust et al., 2004].
In this model, each document node is stored together with its so-called pre-order
and post-order ranks. These ranks result from traversing the document tree in
a certain way (depth-first pre-order or depth-first post-order) and numbering all
nodes in the order of the traversal. This representation allows queries for the
XPath axes to be translated into simple conditions on rank-intervals.

The interval-based approach for storing XML is generalized to support the
ODAG data model. An ODAG element with multiple parents will be visited mul-
tiple times during a traversal. Hence several ranks can be attached to an element,
each of which corresponds to a different visit of this element:

rank (element, pre, post, parent)

Attribute pre stores a pre-order rank of the element referenced by attribute
element and attribute post stores the corresponding post-order rank. The
parent attribute references the parent element from which this visit described
by the rank tuple came.

The attributes of ODAG elements are stored in table

attribute (element, name, value)

An attribute is uniquely identified by the id of the element it describes (re-
ferred to by attribute e lement) and its name.

19

3.4 Search Operators

The semantic building blocks of a query language are operators. We take the ap-
proach to define such operators as first-order logic predicates. The semantics of
such an atomic predicate is specified in terms of a conceptual SQL implementa-
tion, i.e., a parameterized SQL template. A concrete implementation in a partic-
ular database system will be semantically equivalent, but may be more efficient
(for instance, by taking advantage of vendor-specific features).

The meaning of a whole query can be specified then as a logic formula over
these atomic predicates. This formula is translated into SQL by replacing each
occurrence of an atomic predicate with an instance of its SQL template. The
resulting formula of SQL queries is then transformed into a single SQL query
(see Sec. 3.4.7) and sent to the database where it will be optimized further and
finally executed.

The definition of a query language syntax on top of this semantic basis is
subject to future work.

As discussed in Sec. 2.2.2, the results of a search are structured, i.e., each hit
may be an association of several text spans or annotation elements. Hence the
result set of a search is modeled as a sequence of tuples whose attributes store
spans, element references, or scalar values (e.g., attribute values).

3.4.1 Character Sequences

Character sequences within a text layer can be searched by the following predi-
cates:

Exact string match. The predicate that binds s to every span in text layer ¢
marking an occurrence of string ¢ is denoted string(¢,c, s).

In SQL:1999 this predicate can be implemented naively using the function
POSITION (. IN .). Predicate string(z,c,s) finds all spans s in a given text
layer ¢ containing the given string c.

string(+¢,+c¢,—s) =
(s) € (
SELECT Span (t,p.pos,p.pos + length(c), 1)
FROM (SELECT POSITION (¢ IN content) AS pos
FROM text WHERE id=f) p
)

Note that the binding modes are indicated by attaching signs to the parameters:
+ indicates a parameter that must be bound before calling the predicate and —
indicates a parameter that is bound as a result of executing the predicate.

20

A more efficient implementation would require a positional full text index.

Fuzzy string match. Predicate fuzzy(+t,+c, —s) binds s to every span the con-
tent of which is similar to the string c. The similarity score is returnedins. score.

Standard SQL does not support proper fuzzy string matching. An Oracle-
based implementation might take advantage of the fuzzy () search operator of
Oracle Text.

Regular expression match. SQL:1999 supports regular expression matching
withthe (. SIMILAR TO .) function. However, this specification is not avail-
able in all commercial DBMS. Oracle offers the REGEXP_INSTR () operator
instead (since version 10g). However, the linear complexity of regular expres-
sion matching is quite costly for large texts. Index support for regular expression
matching is subject of research, see for instance [Cho and Rajagopalan, 2002].

3.4.2 Prefixes or Suffixes of Text Layers

A span referring to the prefix or suffix of length n of a text layer ¢ can be retrieved
using the predicates firstN(z,n,s) and lastN(+z, +n, —s), respectively:

firstN(+1,+n,—s) =
(s) € (
SELECT Span (f,0, LEAST (n, LENGTH (content)), 1)
FROM text
WHERE 1id=t

)

lastN(+t, +n,—s) =
(s) € (
SELECT Span (¢,
GREATEST (0, LENGTH (content)- n),
LENGTH (content), 1)
FROM text
WHERE id=t

3.4.3 Single Elements and Attributes

Elements within an annotation layer can be specified only by name. Predicate
element(z, e) is satisfied iff e is an element with name :

21

element(+7, —e) =
(e) € (
SELECT e.id
FROM element e
WHERE e.name= ft

)
Attributes are specified by their name. Predicate attribute(e,a,v) is satisfied
iff the attribute named a of element e has value v:

attribute(?e, 2a, —v) =
(e,a,v) € (
SELECT a.element, a.name, a.value
FROM attribute a
WHERE 1=1
[AND a.element=e]yound(e)
[AND a.name= a]yound(a)
)
Note the notation ?p for a parameter p that is optionally bound and the notation
[...]c for an optional SQL fragment that is only included if condition c is satisfied

at the time the predicate is called.
Typically one searches for attributes within all elements with a given tag name.

This can be achieved by the combining operators discussed next.

3.4.4 Spans
The span s of an element e is retrieved by

elementSpan(+e, —s) =
(s) € (
SELECT e.span
FROM element e
WHERE e.id= e
AND e.span IS NOT NULL

)

The attributes of a span can be accessed using the predicate span:

span(—t,—Il,—r,—c,+s) =

{s) e (

SELECT s.tid, s.left, s.right, s.score

A new span can be constructed using the second definition of span:

22

span(+t,+1,+r,+c,—s) =
(s) €(

SELECT Span (t,[,r,c)
)

The content of a span can be retrieved using content:

content(+s, —¢) =
(c) € (
SELECT SUBSTR (t.content, s.left, s.right - s.left)
FROM text t
WHERE t.id= s.tid

)

The convenience predicate
elementContent(+e, —c) = elementSpan(e, s) A content(s, ¢)

returns the content of the span the element e is referring to:

elementContent(+e, —c) =
() e
SELECT SUBSTR (t.content,
e.span.left,
e.span.right - e.span.left)
FROM element e, text t
WHERE e.id= e
AND e.span IS NOT NULL
AND e¢.span.tid = t.id

3.4.5 Spatial Predicates

In addition to the equality predicate . = . there are more general predicates on
pairs of spans that test for spatial relationships within the positions of a text layer.
These predicates are defined as boolean conditions to be used in a SQL WHERE-
clause. However, every boolean condition ¢ can be rewritten into the equivalent
condition (SELECT 1 WHERE c¢) # 0 on a stand-alone SQL query.

e contains(s,s’) =
s.tid = §.tid AND
s.left <= §'.left AND
s'.right <= s.right

23

Span s is contained in span s’.

This predicate could be used for instance to find all word elements within a
certain page element.

prefix(s,s’) =
s.tid = §.tid AND
s.left = §.left AND
s.right <= §.right

Span s is a prefix of span s'.

suffix(s,s’) =
s.tid = s.tid AND
s'.left <= s.left AND
s.right = §.right

Span s is a suffix of span s’.
overlaps(s,s’) =
s.tid=s'.tid AND
s'.1left < s.right AND
s.left < §.right
Span s overlaps with span s’'.
immediatelyPrecedes(s,s’) =
s.tid=s'.tid AND
s.right=s.left
Span s is immediately followed by span s’.
precedes(s,s’) =
s.tid=s'.tid AND
s.right <= §.left
Span s ends before span s’ starts.
startsBefore(s,s") =
s.tid=s'.tid AND

s.left < §.left

Span s starts before span s’ starts.

24

Although span operators such as contained() and overlaps() can be computed
by a simple comparison of the span boundaries, joins on intervals are not sup-
ported very efficiently by current RDBMS because they are designed primarily
for efficient equijoins on single attributes. In [Enderle et al., 2004], an approach
for supporting efficient interval-joins on top of an ORDBMS is presented.

Spans can be combined using the following predicates which are defined as
SQL expressions. An SQL expression e can be turned into the stand-alone query
SELECT e.

e concat(+sy,+s52,—5) =
s = CASE
WHEN immediatelyPrecedes(sy,s2)
THEN Span (s;.tid, sj.left, s».right, 1)
END

Computes s as the concatenation of 51 and s, or NULL if s; does not precede
57 directly.

e intersection(+sy,+s2,—5) =
s = CASE

WHEN overlaps(sy,s2)

THEN Span (s;.tid,
GREATEST (s;.left, s.left),
LEAST (sy.right, sp.right),
1)

END

3.4.6 Hierarchical Navigation

Hierarchical relationships between elements are supported by the following oper-
ators.

e parent(?e,?’) =
(e,e) € (
SELECT r.parent, r.element
FROM rank r
WHERE 1=1
[AND r.element= €' Jpound(e)
[AND r.parent= e]bound(e)

)

Element e is a parent of element ¢’ in the context of a rank r of ¢'.

25

e ancestor(?e,?') =
(e,¢) € (
SELECT a.element, d.element
FROM rank a, rank d
WHERE d.pre BETWEEN a.pre AND a.post
[AND d.element= €' |yound(e)
[AND a.element= e |pound(e)

Element e has a rank a that is an ancestor of a rank n of element ¢’.

This predicate uses the pre-/post-order rank encoding technique described
for instance in [Grust et al., 2004] to avoid a costly recursive traversal of the
ODAG.

Note that an element may cover the same span as some of its ancestors. Hence
the contains() relation (on the spans of elements) is coarser than the ancestor() re-
lation. The ancestor() relation is used in querying syntax trees since it formalizes
the linguistic concept of syntactic dominance which cannot be expressed properly
in terms of the contains() relation.

3.4.7 Boolean Operators

A conjunction / disjunction of conditions is expressed as a join / union on the
tables specified by the constituent conditions.

A Normal Form of Atomic Predicates. All definitions of search operators
given so far can be rewritten into the following normal form:

PV, vy) =
Vi, yvm) € (
SELECT ¢1,..., ¢,
FROM R; AS r{,...,R;, AS r;
WHERE C(7{,...,7,Viy---,Vp)

)

Binding modes are ignored by this form. Only input variables are actually
used in condition C(). For every input variable v;, the corresponding column
expression e; is v;.

Conjunction. A conjunction p(uy,... Uy, Vi, V) AGQV1, .o, Vay Wi, ..oy Wo)
with shared variables vy, ..., v, where predicate p is defined as
p(X] PR 7xm+n) =

<x17' .- 7xm+n> € (

26

SELECT aj, ..., dmtn
FROM R AS r{,...,R, AS 1,
WHERE C(71,...,Fn, X1y Xmin)

)

and predicate ¢ is defined as

V1, Ynto) =

<y17---7yn+0> G(
SELECT by,..., bn+0

FROM S| AS s1,...,5 AS g
WHERE D(Sla'°'7sluy17"°7yn+0)

)
yields a condition of the same form which combines the two definitions, re-
places the shared variables vy, ..., v, by the column expressions by, ..., b, in the
conditions C() and D() and adds join conditions a,,+; = b; for the column expres-
sions of those shared variables vy,...,v, that are output variables of both predi-
cates (i.e., v; & {am+i, bi}):
Py, .oty Viye o Vi) AGVL, oo Vi Wy W) =
(U1y e Uy Vi e Vi Wy We) € (
SELECT di,..-;Qu,Cly---1Cnrbust, . .rbpio
FROM R; AS r{,...,R; AS ry,
S1 AS si,...,5 AS s
WHERE C(71,...,7 U, ,Up,b1,....Dy)
AND D(S],...,Sl,bl,...,bn,wl,...,wo)
AND [dmi1 = D1]yg{ap.ibn}
AND dwin = buly,g{aninby)
)
where ¢; = ap; if anyi Z vi, ¢c; = b;, otherwise. (Without loss of generality
we assume {ry,...,r} and {sy,...,r;} to be disjoint.)
This joint condition forms the definition of a predicate equivalent to the con-
junction p(uy, ..., U, Vi, V) AG(Viyeeey Vs Wiy e e, Wo).
Disjunction. A disjunction p(uy,...,up,vi,...,va)Vg(Vi,...,vp,W1,...,W,) With
shared variables vy,...,v, where predicates p and g are defined as above yields
predicate based on a SQL UNION query:
plut, .. umyViy e V) Vi, Vi, Wiy W) =
(U1 Uy Vi Yy Wy Wo) € (

(
SELECT a;,...,dp+n, NULL, ..., NULL
FROM R| AS r{,...,R; AS 1,

27

WHERE C(71,...,Fp, Ul Umy V.- Vi)
UNION

SELECT NULL, ..., NULL, bi,..., byio
FROM S; AS si,...,5 AS g
WHERE D(S1,...,8,V1,- s VisWi,- ..y Wo)

)

Using structural induction, we conclude:

Corollary 3.4.1 Every query consisting of conjunctions and disjunctions of atomic
predicates in normal form as defined above can be rewritten as an SQL query
which is an UNION of SELECT statements.

Negation. Let p be a predicate in normal form. Without loss of generality, we
assume that all parameters are input parameters (mode +). This can be achieved
by omitting all parameters with other modes. Then the negation p is defined as:

Pvis .. v) =
(Viyeeyvm) € (
SELECT vq,...,v,
WHERE NOT EXISTS (
SELECT 1
FROM R; AS ri,...,R; AS r;
WHERE C(71,...,75, Vi, ey Vp)

)

This is again a predicate in normal form.
Using structural induction, we conclude:

Corollary 3.4.2 Every query consisting of conjunctions, disjunctions, and nega-
tions of atomic predicates in normal form as defined above can be rewritten as an
SQL query which is an UNION of SELECT statements.

Examples. For instance, query Q(z,a,e,v) which retrieves the value v of at-
tribute a for every element e named ¢ can be specified as

0Oi(t,a,e,v) = element(t,e) Aattribute(e,a,v)

which expands to:

28

0i(t,a,e,v) =

(t.e) € (
SELECT e.name, e.id
FROM element e
WHERE e.name= ft

YA {e,a,v) € (
SELECT a.element, a.name, a.value
FROM attribute a
WHERE 1=1
AND a.element=e
AND a.name= a

)

This conjunction translates into the following SQL query:
0i(t,a,e,v) =
(t,a,e,v) € (
SELECT e.name, e.id, a.name, a.value
FROM element e, attribute a
WHERE e.name= ¢
AND e.id= a.element
AND a.name= a

)

To find all word elements e whose content equals the string “lenrecht” in text
layer ¢ one can use the query Q> defined as

O(t,e) =ds: string(s,” lenrecht’ ,s)A

element(’ word’ ,e) AelementSpan(e,s)

which expands to:

O (t,e) =
(s) € (
SELECT Span(f{,p.pos,p.pos + 8, 1)
FROM
(SELECT
POSITION ('’ lenrecht’ IN content) AS pos
FROM text WHERE id=t) p
) A (e) € (
SELECT e.id
FROM element e
WHERE e.name= 'word’
JALs) € (
SELECT e.span
FROM element e

29

WHERE c.id= e
)

This formula can be rewritten into a membership condition on a single SQL
query which can be simplified further into the following definition:

O(t,e) =
(e) € (
SELECT e.id
FROM element e
WHERE e.name= ’'word’
AND e.span IN (
SELECT Span(f,p.pos,p.pos + 8, 1)
FROM (
SELECT POSITION (' lenrecht’ IN text.content) AS pos
FROM text WHERE id= f) p

3.4.8 Sequence Operators

There are many linguistic queries where sequences of elements must be matched.
For instance, one might want to find all sequences of an article followed by one or
more adjectives and finally a noun. This could be specified using a regular expres-
sion such as Article Adjective™ Noun. When searching e.g., syntax trees, one may
want to match sequences of elements that are not necessarily siblings, but whose
spans are adjacent. Hence sequence operators for matching and combining spans
are needed. Sequence operators are defined here as second-order logic predicates
which combine zero or more sequence operators. At compile-time these defini-
tions can be expanded into (recursive) first-order logic predicates. A sequence
operator takes a span s as first run-time argument and returns as its second argu-
ment a span that is the concatenation of s and a span s’ matched by the sequence
operator.
The trivial sequence operator just returns the input span:

empty(+s,?s') =s =1

The most basic sequence operator is the concatenation of two spans. Predicate
concat,, 4(s,s”) is satisfied if and only if span s” is the concatenation of s with a
match for predicate p and a match for predicate g:

concaty, o(+s,?s") =35 : p(s,s") Aq(s',s")

An alternative e|f in a regular expression can be expressed by a disjunction of
two predicates p, g that implement e and f, respectively:

30

alt, o(+s,2") = p(s,s") Vq(s,s)

To offer the full expressiveness of regular expressions over spans, the Kleene
star operator must be supported. The regular expression e* can be expressed as
a recursive predicate that is parameterized with a predicate p implementing the
regular expression e. This predicate p is used in the definition of predicate star),
for detecting subsequent matches of e:

star,(+s,2s") = empty(s,s”) V (p(s,s’) Astar,(s',s"))

In SQL the star operator translates into a recursive self join, a rather costly
operation (if it is supported by the underlying database system at all). A more
efficient method to compute this may be to sort a table by the left border of the
span attribute and then use an external or stored procedure to sequentially aggre-
gate consecutive tuples having adjacent spans. The span attributes are aggregated
to the concatenation of all contributing spans, all other attributes can be combined
using the usually available SQL aggregation operators. As an alternative, one
could just add the aggregated span as a new attribute to each contributing tuple.
Note, that every tuple may contribute to multiple aggregations and would have to
be replicated in this case.

3.4.9 Advanced Operators

Further query operators whose definition is postponed to future work are:
e alignment operators for projecting spans across aligned text layers
e operators for selecting / combining text variants
e statistical aggregation operators for counting, averaging, etc.

e operators for computing collocations'

3.5 Query Examples

3.5.1 Searching for word forms

Sentences s where verb ‘‘sagen’ occurs in second person singular This query
combines a condition on the logical text structure (a token ¢ within a sentence s)

lsee www.collocations.de

31

www.collocations.de

with conditions on the lemma annotation (lemma name n equals “sagen”) and the
inflectional morphology f. Fig. 3.7 shows an example of an ODAG subgraph
matching this query.

Q.(s) = element(’ Sentence’,s) A element(’ Token’ ,t) A ancestor(s,t) A
element(’ Lemma’ ,l) A parent(l,t) A
element(’ Entry’,e) A parent(/,e) A
element(’ LemmaName’ ,n) A parent(e,n) A
elementSpan(n,s,) A string(s,.tid,’ sagen’,s,) A
element(’ FlexMorph', f) A parent(f,t) A
element(’ Verb’ ,v) A parent(f,v) A

attribute(v, ' person’,2) A attribute(v,” number’,’ sing’)

‘ FlexMorph ‘ ‘ Lemma ‘

Verb

person=2
numBer:smg

LemmaName

[.--Und du schéne bunte Kuh, Was[sagst|du dazu ?..] [.-pagen]. |

Figure 3.7: A match for query O, in a hypothetical DDD edition of
[Grimm and Grimm, 1812].

3.5.2 Querying aligned texts

How is “pulcher” (lat.) translated into Old High German? An alignment in
the representation shown in Fig. 3.4 is assumed. Query Q), binds variable s, to all
spans that are aligned in role ' goh’ (i.e., German Old High) with a span in role
" lat’ that contains “pulcher” as content of a token ¢.

Op(sy) = element(’ Token’,t) A elementSpan(z,s;) A
string(s,.tid, pulcher’ s,) A
element(’ Align’,a;) A attribute(q;,” role’,” lat’) A
elementSpan(a;,s;) A contains(s;,s;) A
parent(/,a;) A element(’ Link’,l) A
parent(/,ag) A element(’ Align’,ag) A

32

attribute(ag,” role’,” goh’) A
elementSpan(ag, sq)

3.5.3 Querying Linguistic Trees

The following sample queries are taken from [Bird et al., 2005]. To facilitate com-
parisons, the query identifiers and the XML representation used there are adopted
here: words are represented by elements named with the part-of-speech informa-
tion (e.g., noun = N, verb= V); phrases are represented by elements whose name
ends in a P (noun phrase = NP, verb phrase = VP etc.).

Noun phrases np that immediately follow a verb v.

QOi(np,v) = element(’V’,v) A element(’ NP’ ,np) A
elementSpan(v,s,) A elementSpan(np,s,,) A

immediatelyPrecedes(s,, s,)

Noun phrases np which are the rightmost descendent of a verb phrase vp:

Qs(np,vp) = element(’ VP’ vp) A element(’ NP’ ,np) A
ancestor(vp,np) A
elementSpan(vp,s,,) A elementSpan(np,s,,) A

suffix(spp, Svp)

Verb phrases vp comprised of a verb v, a noun phrase np, and a prepositional
phrase pp:

O7(vp,v,np,pp) = element(’ VP’ vp) A element(’ V' ,v) A
element(’ NP’ ,np) A element(’ PP’ ,pp) A
ancestor(vp,v) A ancestor(vp,np) A ancestor(vp,pp) A
elementSpan(vp,s,,) A elementSpan(v,s,) A
elementSpan(np, s,,) A elementSpan(pp,s,,) A
prefix(s,, syp) A immediatelyPrecedes(sy, sup) A

immediatelyPrecedes(sy,,s,p) A Suffix(syp, syp)

33

3.6 Transformation

To present the result of a query to the user they must be transformed into a format
such as (X)HTML or PDF. We advocate a combined approach where the nec-
essary data is exported from the database in a generic XML format and is then
transformed using an XSLT stylesheet that is compiled or parameterized from the
user query.

34

Chapter 4
Related Work

4.1 Query Language

Numerous linguistic query tools have been developed in the last years. While
some tools just provide a graphical user interface for entering search terms and
conditions, others require the user to formulate queries in a specialized query lan-
guage. Here we discuss the linguistic query languages CQP, Tiger, and LPath as
well as the general-purpose XML query languages XPath and XQuery as a possi-
ble basis for building a query language for DDD. Other linguistic query languages
that are not discussed here but should also be considered include for instance
tgrep!, CorpusSearch?, the NITE Query Language [Evert and Voormann, 2002],
and Emu®[Cassidy and Harrington, 2001]. Corpus query tools without query lan-
guage are for instance SARA / Xaira*, or COSMAS / COSMAS II >,

4.1.1 Corpus Query Processor (CQP)

As part of the Corpus Work Bench, CQP [Christ, 1994] is well-known in the cor-
pus linguistics community.

e Simple queries for literal strings or regular expressions can be expressed
without syntactic overhead (e.g., "example", "walk (ed) ?").

e Positional annotations are represented as token attributes (e.g., [pos="NN"]).
Queries for literals or regular expressions (see above) are actually syntac-

"http://www.ldc.upenn.edu/ldc/online/treebank/

http://www.ling.upenn.edu/~dringe/CorpStuff/Manual/Contents.
html

3http://emu.sourceforge.net/

Yhttp://www.oucs.ox.ac.uk/rts/xaira/

Shttp://www.ids-mannheim.de/cosmas2/

35

http://www.ldc.upenn.edu/ldc/online/treebank/
http://www.ling.upenn.edu/~dringe/CorpStuff/Manual/Contents.html
http://www.ling.upenn.edu/~dringe/CorpStuff/Manual/Contents.html
http://emu.sourceforge.net/
http://www.oucs.ox.ac.uk/rts/xaira/
http://www.ids-mannheim.de/cosmas2/

tic sugar for conditions on the word attribute (e.g., [word="example"]
and [word="walk (ed)?"]).

e Conditions on tokens can be combined to specify sequences (e.g., "give"
[1{0,3} "up" specifies a sequence of the word “give”, followed by zero
to three arbitrary tokens, followed by the word “up”).

e Since CQP is token-based, it cannot be used to return sequences whose
boundaries do not coincide with token boundaries.

e [t provides rudimentary support for restricting search to hits co-occuring
within certain XML elements (e.g., "give" []* "up" within sre-
stricts the search to matches within the same s element), but does not sup-
port more complex structural conditions (such as path expressions).

e Sentence-aligned corpora are supported (e.g., :french "neuf"
:english != "new" finds all occurrences of “neuf” in the french
corpus within a sentence being aligned with a sentence in the english
corpus that does not contain the word “new”). However, conditions on
characterwise alignments cannot be expressed.

The DDD query language should inherit from CQP the easy specification of
searches for literals, regular expressions, and token sequences.

4.1.2 TigerSearch

TigerSearch [Brants et al., 2002, Lezius, 2002] has been designed for querying
syntax trees in the Tiger tree-bank. It uses a syntax similar to CQP for specifying
token attributes (e.g., [word="Abend" & pos="NN"])and extends it to non-
terminal nodes (e.g., [cat="NP"] for searching for a noun phrase). Variables
can be assigned to nodes (e.g., #np: [cat="NP"]). To express relationships
between nodes, it introduces several operators for direct dominance (parent-child
relationship, e.g., #nl > #n2), labeled dominance (allows to specify the edge
label; e.g., #n1 >HD #n3), dominance (ancestor-descendent relationship, e.g.,
#nl >* #n3), textual precedence (e.g., direct #nl1 . #n2 or with arbitrary
distance #nl .* #n2)and several other linguistically motivated operators (e.g.,
left corner dominance).

4.1.3 XPath/XQuery

XPath provides an intuitive and standardized way to express navigational queries.
However, the schema of the corpus must be known in detail even for basic queries

36

such as searching for occurrences of a string. This also holds for XQuery which
uses XPath expressions to specify paths.

XQuery 1.0 and XPath 2.0 Full-Text © adds information retrieval operators
to XPath expressions which can be used in XQuery or XSLT. The boolean oper-
ator NodeSequence ftcontains FTSelection is satisfied if the NodeSequence con-
tains at least one node whose text content matches the FTSelection. The latter
is essentially a boolean expression over string literals (e.g., "dog" || "cat")
with additional options for stemming, regular expressions etc. By wrapping a
ftcontains condition with a £t : score () function, one can retrieve a score
for a match instead of a boolean value. The specification does not allow to retrieve
the positions of matching substrings. This is a severe limitation in the linguistic
context. However, this emerging standard should be leveraged as much as possible
in defining the DDD query language.

LPath[Bird et al., 2005] is an extension of XPath for querying tree banks. It
introduces the new navigation axes immediate-following/preceding and to access
nodes whose text span immediately follows the text span of the current node.
Subtree scoping allows to restrict all navigations within a subquery to the tree
rooted in the current node. This is important since several axes leave this subtree
by default. Finally, there are operators ~ and $ for edge alignment that can be used
to find nonterminals whose left/right border coincides with the left/right border
of a surrounding nonterminal. We consider LPath as an important step towards
a linguistic query language based on XML standards. For our purposes, XPath
needs further extensions to

e cope with elements having multiple parents

e access the span an element refers to

e find elements referring to a span

e project a span on one text layer to a span on an aligned text layer

e test for spatial relationships of spans (overlap, inclusion, precedence, etc.)

e specify regular expressions on node sequences

Shttp://www.w3.org/TR/xquery-full-text/

37

http://www.w3.org/TR/xquery-full-text/

XQuery. In [Cassidy, 2002] several use cases for XQuery queries over a multi-
modal speech corpus are discussed. XPath expressions in XQuery are found to
be useful to express hierarchical queries while sequential constraints cannot be
expressed as easily as in the query language AGQL[Bird et al., 2000] proposed for
annotation graphs. A use case is presented where a correlated subquery with an
V-quantifier (EVERY ... 1IN ... SATISFIES) is needed. This cannot
be expressed in XPath.

While we understand that a general purpose query language such as XQuery
provides the most expressive basis for a linguistic query language, we feel that first
XPath should be extended to yield a basic linguistic query language that could be
used later as a component within a linguistic extension of XQuery.

4.2 Linguistic Data Models

A data model based on ordered, acyclic graphs (ODAGs) has been proposed in
[Dipper et al., 2004] for DDD. Our approach has been inspired by prior work in
the field of multi-modal corpora, namely the NITE Object Model. The data model
of the speech database Emu is also similar to our ODAG data model. These and
other data models for linguistic corpora are presented here.

Annotation Graphs (AG) [Bird and Liberman, 2001] and NITE Object Model
(NOM) [Carletta et al., 2003] There are two popular data models for multi-
modal corpora: the annotation graph (AG) model [Bird and Liberman, 2001] and
ordered directed acyclic graphs (ODAGs), such as the NITE object model (NOM)
[Carletta et al., 2003]. Annotation graphs model annotations as arcs that connect
time points on the time axis of a signal. Annotation graphs can be stored easily
in relational databases and searched efficiently by translating queries into SQL.
However, the AG model has some shortcomings. For instance, parent-child re-
lationships cannot be represented in AGs without extending the data model with
special child/parent arcs [Teich et al., 2001]. Without this extension, the domi-
nance relation between a non-branching node and its only child is not encoded.
Meta-annotations or alignments cannot be represented directly but need to be ex-
pressed by introducing equivalence classes (i.e., annotations are linked by assign-
ing them identical attribute values).

The ODAG-based NOM does not share these limitations. Annotations are rep-
resented by nodes. Annotation values are stored in form of node attributes. The
domination relation between nodes is modeled explicitly by parent-child relation-
ships. Each node may refer to a span of the underlying text. In this case, the child
nodes must refer to non-overlapping text spans contained in the span of their par-
ent node. The order of child nodes must correspond to the order of their spans in

38

the underlying text.

Multi-colored Trees. In [Jagadish et al., 2004] the multi-colored tree (MCT)
model, a new logical data model based on the XML data model
[Fernandez and Robie (Eds), 2003] is introduced. MCT allows nodes to be shared
by multiple document trees distinguished by colors. A shared node may have dif-
ferent children and attributes in each tree. Hence the same data elements can be
organized in different hierarchies.

The MCT model is motivated with modeling considerations: it is convenient to
organize document elements in a single hierarchy. However, to avoid redundancy,
hierarchies have to be broken up by introducing references that are less convenient
to handle. By supporting multiple XML trees over the same data, MCT avoids this
tradeoff.

MCT could be used to represent conflicting hierarchies in linguistically an-
notated texts. Each hierarchy would be labeled with a different color. Corre-
spondences between nodes of different hierarchies would be expressed in another
color.

Directed acyclic graphs can be encoded in MCT by introducing different colours
for different parents of a node. However, the number of colors depends on the con-
crete graph and may grow exponentially in the number of nodes having multiple
parents. Moreover, to retrieve all parents of a node, one would have to enumerate
all colors, an operation that is not supported by the multi-colored XQuery exten-
sion described in [Jagadish et al., 2004].

XTE (eXternal Text Encoding) [Simonis, 2004] is an XML format that sup-
ports the storage of multiple parallel text layers and multiple conflicting annota-
tion hierarchies over these text layers within a single file. This is very similar to
the gXDF XML format, an exchange format for the ODAG model. Text layers are
stored separate from the annotations. Each annotation element may refer to a span
in a text layer. The XTE format is the storage format of the LanguageExplorer’
and LanguageAnalyzer tools for presentation and editing of parallel texts.

Emu [Cassidy and Harrington, 2001] is a speech database system. It orga-
nizes a set of utterances (e.g., spoken sentences) each of which consists of a set
of annotation levels. Each annotation level stores a set of tokens that may carry
timing information. Tokens can be associated with each other by sequential, hi-
erarchical, and user-defined relations. The sequential relation defines a partial
ordering of tokens that must be consistent with their timing information. Hierar-
chical relations (linguistic dominance) associate a parent token with an ordered

"http://www.language—explorer.org/

39

http://www.language-explorer.org/

sequence of child nodes. They must be acyclic and can exist both within or across
levels but must not induce ambiguities in the sequential ordering.

40

Chapter 5

Conclusions and Future Work

In this report, we have investigated methods for querying multi-layered richly-
annotated linguistic corpora such as the planned DDD corpus. We have identified
requirements, have defined basic query operators as first-order logic predicates,
and have provided a conceptual implementation in SQL.

These query operators provide a basis for defining a powerful linguistic query
language. The constructs of this language will be defined in terms of logic formu-
las over the defined query operators. The query language should be both intuitive
for the intended user community and easy to learn for users familiar with existing
standards such as XPath and XQuery.

As future work we plan to extend the DDD query language with operators for
handling alignments and text variants, for statistical analysis and for collocation
analysis.

An optimizing translation of queries represented as logic formulas over the
defined query operators into efficient SQL is needed. The resulting SQL queries
should take advantage of existing functionality for full-text retrieval and manage-
ment of XML. In addition, special indexing techniques for substring matching,
regular expressions, and interval joins need to be reviewed more closely.

To assess the feasibility and scalability of the methods proposed in this work,
performance evaluations on prototype corpora are planned.

Other topics that need to be investigated in future studies are the transforma-
tion between the internal ODAG format and external XML and non-XML formats
and in particular the online-presentation of texts. This will require not only re-
search on format conversion techniques, but will also raise ergonomic issues.

41

Bibliography

[Bird et al., 2000] Bird, S., Buneman, P., and Tan, W.-C. (2000). Towards a query
language for annotation graphs. In 2nd intl. Conf. on Language Resources and
Evaluation (LREC 2000), pages 807-814.

[Bird et al., 2005] Bird, S., Chen, Y., Davidson, S., Leea, H., and Zheng, Y.
(2005). Extending xpath to support linguistic queries. In Workshop on Pro-
gramming Language Technologies for XML (PLAN-X), Long Beach, Califor-
nia.

[Bird and Liberman, 2001] Bird, S. and Liberman, M. (2001). A formal frame-
work for linguistic annotation. Speech Communication, 33(1,2):23-60. http:
//arxiv.org/abs/cs/0010033.

[Brants et al., 2002] Brants, S., Dipper, S., Hansen, S., Lezius, W., and Smith, G.
(2002). The TIGER treebank. In Proceedings of the Workshop on Treebanks
and Linguistic Theories, September 20-21, Sozopol, Bulgaria.

[Carletta et al., 2003] Carletta, J., Kilgour, J., O’Donnell, T., Evert, S., and Voor-
mann, H. (2003). The NITE object model library for handling structured lin-
guistic annotation on multimodal data sets. In Proceedings of the EACL Work-

shop on Language Technology and the Semantic Web (3rd Workshop on NLP
and XML, NLPXML-2003).

[Cassidy, 2002] Cassidy, S. (2002). Xquery as an annotation query language: a
use case analysis. In Proceedings of LREC 2002.

[Cassidy and Harrington, 2001] Cassidy, S. and Harrington, J. (2001). Multi-
level annotation in the Emu speech database management system. Speech
Communication, 33:61-77.

[Cho and Rajagopalan, 2002] Cho, J. and Rajagopalan, S. (2002). A fast regular
expression indexing engine. In ICDE’02, pages 419—.

[Christ, 1994] Christ, O. (1994). A modular and flexible architecture for an inte-
grated corpus query system. In COMPLEX 94, Budapest.

42

http://arxiv.org/abs/cs/0010033
http://arxiv.org/abs/cs/0010033

[Dipper et al., 2004] Dipper, S., Faulstich, L. C., Leser, U., and Liideling, A.
(2004). Challenges in modelling a richly annotated diachronic corpus of ger-
man. In Workshop on XML-based richly annotated corpora, Lisbon, Portugal.

[Enderle et al., 2004] Enderle, J., Hampel, M., and Seidl, T. (2004). Joining in-
terval data in relational databases. In SIGMOD, pages 683—-694.

[Evert and Voormann, 2002] Evert, S. and Voormann, H. (2002). Nite query lan-
guage version 2.0. http://www.ltg.ed.ac.uk/NITE/documents/
NiteQL.v2.0.pdf.

[Fernandez and Robie (Eds), 2003] Fernandez, M. and Robie (Eds), J. (2003).
“XQuery 1.0 and XPath 2.0 Data Model”. W3C Working Draft. http:
//www.w3.0rg/TR/2003/WD-xpath-datamodel-20031112/.

[Grimm and Grimm, 1812] Grimm, J. and Grimm, W. (1812). Kinder- und
Hausmdirchen, chapter 169: Das Waldhaus. Berlin: Realschulbuchhand].

[Grust et al., 2004] Grust, T., Keulen, M. V., and Teubner, J. (2004). Accelerating
XPath evaluation in any RDBMS. ACM Transactions on Database Systems,
29(1):91-131.

[Ide et al., 2000] Ide, N., Bonhomme, P., and Romary, L. (2000). XCES: An
XML-based standard for linguistic corpora. In Proceedings of the Second Lan-
guage Resources and Evaluation Conference (LREC), pages 825-830.

[Jagadish et al., 2004] Jagadish, H. V., Lakshmanan, L. V. S., Scannapieco, M.,
Srivastava, D., and Wiwatwattana, N. (2004). Colorful xml: One hierarchy
isn’t enough. In SIGMOD Conference, pages 251-262.

[Kroymann et al., 2004] Kroymann, E., Thiebes, S., Liideling, A., and Leser, U.
(2004). Eine vergleichende analyse von historischen und diachronen digitalen
korpora. Technischer Bericht 174, Institut fiir Informatik der Humboldt Uni-
versitit zu Berlin.

[Lezius, 2002] Lezius, W. (2002). Ein Suchwerkzeug fiir syntaktisch annotierte
Textkorpora. PhD thesis, Institut iir maschinelle Textverarbeitung (IMS), Uni-
versitit Stuttgart.

[Liideling et al., 2005] Liideling, A., Poschenrieder, T., and Faulstich, L. (2005).
DeutschDiachronDigital, ein diachrones Korpus des Deutschen. Jahrbuch fiir
Computerphilologie. In Print.

[Simonis, 2004] Simonis, V. (2004). A framework for processing and presenting
parallel text corpora. PhD thesis, Universitit Tiibingen.

43

http://www.ltg.ed.ac.uk/NITE/documents/NiteQL.v2.0.pdf
http://www.ltg.ed.ac.uk/NITE/documents/NiteQL.v2.0.pdf
http://www.w3.org/TR/2003/WD-xpath-datamodel-20031112/
http://www.w3.org/TR/2003/WD-xpath-datamodel-20031112/

[Sinclair, 1996] Sinclair, J. (1996). Eagles. preliminary recommendations on cor-
pus typology. http://www.ilc.cnr.it/EAGLES96/corpustyp/
corpustyp.html.

[Sperberg-McQueen and Burnard, 2001] Sperberg-McQueen, C. M. and
Burnard, L., editors (2001). Guidelines for Text Encoding and Inter-
change, chapter 31: Multiple Hierarchies. Text Encoding Initiative.
http://www.tei-c.org/P4X/NH.html.

[Sperberg-McQueen and Burnard, 2002] Sperberg-McQueen, C. M.
and Burnard, L., editors (2002). Guidelines for Text Encoding
and Interchange, chapter 5: The TEI Header. TEI Consortium.
http://www.tei-c.org/P4X/HD.html.

[Teich et al., 2001] Teich, E., Hansen, S., and Fankhauser, P. (2001). Represent-
ing and querying multi-layer corpora. In Proceedings of the IRCS Workshop
on Linguistic Databases, pages 228-237, University of Pennsylvania, Philadel-
phia.

[Vitt, 2004] Vitt, T. (2004). Speicherung linguistischer korpora in daten-
banken. Studienarbeit, Institut fiir Informatik, Humboldt Universitit zu
Berlin. http://www.informatik.hu-berlin.de/Forschung.
Lehre/wbi /research/stud._arbeiten/finished/2004/vitt_
041114 .pdf.

44

http://www.ilc.cnr.it/EAGLES96/corpustyp/corpustyp.html
http://www.ilc.cnr.it/EAGLES96/corpustyp/corpustyp.html
http://www.tei-c.org/P4X/NH.html
http://www.tei-c.org/P4X/HD.html
http://www.informatik.hu-berlin.de/Forschung_Lehre/wbi
http://www.informatik.hu-berlin.de/Forschung_Lehre/wbi
/research/stud_arbeiten/finished/2004/vitt_041114.pdf
/research/stud_arbeiten/finished/2004/vitt_041114.pdf

	Introduction
	DeutschDiachronDigital
	Workflow
	Header
	Body

	Requirements for Managing Linguistic Corpora
	Data Model Requirements
	Requirements for Querying Annotated Texts
	Query Language
	Complex Search Results
	Corpus Selection
	Single Text Spans
	Single Elements
	Correlation of Spans and Elements

	Transformation Requirements

	The ODAG Approach for Managing Linguistic Corpora
	Architecture
	Data Model
	Storage
	Exchange Format
	Storing ODAGs in a Relational Database System

	Search Operators
	Character Sequences
	Prefixes or Suffixes of Text Layers
	Single Elements and Attributes
	Spans
	Spatial Predicates
	Hierarchical Navigation
	Boolean Operators
	Sequence Operators
	Advanced Operators

	Query Examples
	Searching for word forms
	Querying aligned texts
	Querying Linguistic Trees

	Transformation

	Related Work
	Query Language
	Corpus Query Processor (CQP)
	TigerSearch
	XPath / XQuery

	Linguistic Data Models

	Conclusions and Future Work

