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ABSTRACT 
Information integration is often faced with the problem that dif-
ferent data sources represent the same set of the real-world ob-
jects, but give conflicting values for specific properties of these 
objects. Within this paper we present a model of such conflicts 
and describe an algorithm for efficiently detecting patterns of 
conflicts in a pair of overlapping data sources. The contradiction 
patterns we can find are a special kind of association rules, de-
scribing regularities in conflicts occurring together with certain 
attribute values, pairs of attribute values, or with other conflicts. 
Therefore, we adapt existing association rule mining algorithms 
for mining contradiction patterns. Such patterns are an important 
tool for human experts that try to find and resolve problems in 
data quality using domain knowledge. We present the results of 
applying our method on a real world data set from the life science 
domain and show how it helps to generate clean data for inte-
grated data warehouses. 

1. INTRODUCTION 
Collecting, manipulating, and analyzing data has become simple 
and valuable for many companies and organizations. Thus, a huge 
number of data collections exist. There are various scenarios 
where overlapping data collections are maintained, i.e., data 
sources that overlap in the set of real-world objects or facts repre-
sented. Overlapping data sources may be maintained in a con-
trolled manner, such as replication of important data on different 
machines for load balancing or at different sites for security rea-
sons, or uncontrolled, such as data being copied from websites or 
data being produced independently at different locations. Exam-
ples for uncontrolled overlaps are customer data collected by 
competing companies, census data managed by different govern-
mental organizations, or scientific data produced and managed by 
different research groups. In this paper, we concentrate on the 
latter case. 
Whenever data is distributed or generated without a control 
scheme enforcing consistency, there is a high probability that 
actual values will differ in the different data sets. Reasons can be 

processes on replicated data, modifying, filtering, or transforming 
the original values, errors in the replication mechanism, different 
levels of actuality of the data, or imprecision of measurement. 
Note that differences are not always errors; instead, an original 
might have contained errors which are corrected in one of the 
replicas.  
A system trying to integrate such data sets faces several problems. 
First, it must identify inconsistencies in an efficient manner. Sec-
ond, it must resolve these inconsistencies, e.g. by selecting a cer-
tain value due to a quality score of the data sources. This is usu-
ally pursued by scoring the sources according to data quality crite-
ria. Data quality may be assessed using different quality criteria 
(dimensions), such as accuracy, completeness, uniqueness, or 
uniformity (representational consistency) [1][2]. Alternatively, 
resolution functions can be applied which combine the conflicting 
values into an “average” value (this could be a simple concatena-
tion for conflicting character values). Third, the system will be 
interested in finding the source of the deviations to avoid such 
problems in future. 
In this paper we provide a method to aid the developer of inte-
grated systems in the first and the third task. We describe an algo-
rithm for comparing pairs of overlapping data sources. The algo-
rithm specifically searches and finds interesting conflicts in this 
comparison, i.e., inconsistencies that occur in some sense system-
atically or that follow a certain pattern. We call those cases con-
tradiction patterns. Contradiction patterns are a very quick way to 
find quality hotspots in two data sets, since they help to ignore 
spurious problems. On the other hand, these patterns give to a 
human expert having the necessary domain knowledge valuable 
clues to possible reasons for data inconsistencies.  
The method we present was developed in the course of the 
COLUMBA project which aims at integrating data on protein 
structures into a single, uniform data warehouse [3]. Data replica-
tion is very common in the life sciences. For example, the three 
databases GenBank [4], EMBL Nucleotide Sequence Database 
[5], and DNA Data Bank of Japan (DDBJ) [6] forming the Inter-
national Nucleotide Sequence Collaboration claim to manage 
identical sets of information about DNA sequences, which is se-
cured by nightly data exchange. An example of data that is dis-
tributed and modified due to different policies are protein struc-
tures. The global repository for protein structures is the Protein 
Data Base (PDB) [7]. However, two data cleansing projects exist, 
the PDB uniformity project [8] and the Macromolecular Structure 
Database (E-MSD) [9] that work independently to improve vari-
ous aspects of the data in the PDB.  

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
IQIS 2004 Maison de la Chimie, Paris, France. 
© 2004 ACM 1-58113-902-0/04/0006 $5.00. 



As a result, there are currently three overlapping relational data-
bases managing protein structure information, each containing 
roughly the same set of protein structures, but with many devia-
tions in various properties of these structures. In the COLUMBA 
project, if there are conflicts in the data, we need to decide which 
of the values we should take into our warehouse. This task is non 
trivial; already finding all conflicts requires the generation of a 
large set of SQL queries. However, we quickly found that the 
amount of errors is overwhelming, and that we therefore need to 
focus on the most interesting (= most annoying) patterns in the 
errors. Using the algorithm presented in this work, we achieved 
this focusing, which lead to the detection of various parser errors, 
different understanding of data in the two cleansing projects, and, 
especially, truly conflicting data. 
The paper is structured as follows. In Section 2 we present related 
work regarding the comparison of different data sets as well as the 
resolution of conflicts in overlapping data sources. Section 3 gives 
an introduction into contradictions and characteristics in contra-
dictions using an example. We present a formal description of 
patterns in contradicting data in Section 4. Section 5 describes the 
algorithm for mining for patterns in contradicting data. Section 6 
gives our results and experiences on applying our algorithm on a 
real data set, i.e., protein structure databases. We conclude in 
Section 7 and give an outlook into our further plans regarding the 
presented topic. 

2. RELATED WORK 
The areas of related work to our approach are assessment of data 
quality (regarding accuracy and uniformity), resolution functions, 
statistical comparison of data sets, and association rule mining. 
The later will be discussed in Section 5, together with our own 
algorithm for mining patterns in contradictions. 
Assessing scores for the quality of data sources is a complex task 
as data quality is not a well-defined concept that can be measured 
and tracked with a crisp set of numbers. Assessing data quality 
has many subjective aspects [10]. Usually, quality is measured in 
various dimensions, such as accuracy, uniformity, timeliness, 
reliability, or consistency. Our approach mainly detects problems 
in accuracy and representational consistency by finding differ-
ences in overlapping data sources. This does not necessarily mean 
that non-contradicting values are always correct and consistent. 
However, verification of correctness is beyond the scope of our 
work.  
Conflict resolution requires the definition of appropriate resolu-
tion functions [1][11]. These functions are usually defined indi-
vidually for each of the attributes of the overlapping sources. Our 
work does not deal with resolution functions in itself, but can give 
valuable clues to the definition of such functions. Finding patterns 
in data errors helps the domain expert to concentrate on the most 
promising resolution functions covering the largest fraction of 
inconsistencies. Furthermore, specialized functions can be devel-
oped including the instance level of the data once patterns on this 
level are detected. However, conflict resolution must still fall back 
to general, i.e., instance-independent, resolution functions for 
those contradictions which are not covered by any of our patterns. 
In some cases the specification of a particular resolution function 
might also be impossible for a pattern because of the irregularity 
within the values (see Section 6). 

The comparison of data sets using statistical methods is described 
in [10]. Other than with our approach the authors do not compare 
overlapping data sources representing the same real-world objects. 
They are not interested in the actual values causing the differences 
between the data sets. Using set comparison techniques they try to 
identify trends or other noticeable problems. For example, com-
paring customer data from different branches can reveal customer 
preferences and behavior by region, by group, or by month. 

3. CONTRADICTIONS IN OVERLAPPING 
DATA SOURCES 
Using two relation instances (short relations) r1 and r2 as shown in 
Figure 1, we illustrate contradicting data and characteristics in 
contradicting data. Both relations follow the simple schema 

EXPERIMENT(ID, VOLUME, TEMP, METHOD, RESULT) 
managing information about identical experiments performed by 
two laboratories or scientists both storing their results in individ-
ual relations. Each experiment has a unique identifier. Also re-
corded are the experimental method used, the volume of the sam-
ple, the temperature the experiment was performed at, and the 
result obtained. The primary key attribute ID allows a simple 
identification of identical experiments across the two relations. 
We are aware that this is a strong simplification, as object identi-
fication remains a major challenge in many overlapping real world 
data sets. However, in this paper we focus on finding mismatch 
pattern and deliberately ignore the problem of duplicate detection. 
 

r1 

ID VOL. TEMP. METHOD RESULT 

1 5.2 17 X-RAY 20.3 

2 4.3 19 NMR 15.6 

3 2.1 21 X-RAY 12.8 

4 2.1 21 NMR 13.2 

5 4.0 15 NMR 15.0 
 

r2 

ID VOL. TEMP. METHOD RESULT 

1 5.2 63 X-RAY 25 

2 4.3 66 NMR 15.6 

3 2.1 70 X-RAY 18 

4 2.1 70 NMR 13.2 

5 40 59 NMR 15.0 

6 3.4 68 NMR 17.2 
 

Figure 1. Data about identical experiments from different 
laboratories or scientists. Contradicting values are highlighted 



Both relations differ in the number of experiments performed as 
well as in the attribute values. In this paper we do not consider 
differences concerning the number of objects represented in each 
of the relations, i.e., we do not assess the completeness of the 
individual relations. Instead, we only consider the subset of ex-
periments performed by both laboratories. Tuples with matching 
primary key values from each of the relations are called matching 
pairs. Contradictions or conflicts occur within matching pairs 
when they have different values for the same attribute. The shaded 
cells in the relations of Figure 1 depict the contradicting values. 

3.1 Reasons for Contradictions 
There may be several reasons for the existence of contradictions 
in overlapping data, affecting different data quality criteria [12]. 
Common examples are: 
- Different data production strategies (workflows): Different 

proceeding in data collection and analysis often leads to differ-
ent values for a certain property. This affects accuracy of the 
integrated data because one of the values is probably incorrect. 

- Different value representations: Different sources may repre-
sent the same fact using different values, for example because 
they use different measure units. One example is the represen-
tation of an employees salary using $ in one source and € in 
another leading to different values for the same fact (the per-
sons salary). This affects uniformity of the values between the 
sources, but not necessarily within each of the sources. Still, 
when integrating the sources we have to decide which of the 
representations to use. 

- Transformations or manipulations: In the case of replicated 
relations, transformations or manipulations performed on one 
source may remain unnoticed by the other source. In other 
cases we take an existing relation as basis and perform differ-
ent transformation sequences and receive different relations as 
result. Depending on the transformations performed, the result-
ing relations either differ in their accuracy or their uniformity. 
They might also differ in their completeness, i.e., tuples have 
been added or deleted, and their timeliness, i.e., missed up-
dates result in relations contain data of different timeliness. 

- Systematic errors: Systematic errors are introduced during data 
collection or analysis, for example by equipment malfunction. 
Systematic errors result in inaccuracies. They might also be 
connected to special conditions on the values in other attrib-
utes. For example, as described below, when using different 
experimental methods one laboratory might have a malfunc-
tioning equipment which leads to differences in the result val-
ues each time this particular experimental method is used. 

- Arbitrary errors: Arbitrary errors (noise) may be introduced by 
chance while collecting, manipulating or analyzing data. Ex-
amples include human errors or imprecision of measurements. 
They also lead to inaccuracies. 

For conflict resolution we aim to identify characteristics in the 
values regarding the occurrence of contradictions within each of 
the attributes (except the primary key attribute). We call these 
characteristics patterns in contradicting data (short contradiction 
pattern). These patterns help in providing answers to questions 
like “Which are the conflict-causing attributes, values, or value 
pairs?” and “What kind of dependencies exists between the occur-
rence of contradictions in different attributes?”. A pattern is there-

fore a characteristic combination of values occurring with a cer-
tain frequency in conjunction with contradictions in a certain 
attribute. For a pattern to be of interest regarding the explanation 
of the contradictions it should not occur in combination with 
matching pairs that do not have a conflict in this exact attribute. 
Using the identified patterns, a domain expert can identify reasons 
for contradictions and specify proper actions for conflict resolu-
tion. 
To highlight the usefulness of this concept we give examples. 
Consider again Figure 1. Obviously, there is a contradiction in 
each matching pair within attribute Temperature. A good guess 
is that this high contradiction frequency results from different 
representations used for experimental temperature in both rela-
tions. In the first relation Celsius is used as temperature scale 
while the second relation uses Fahrenheit. For further assessment 
of value accuracy we can transform one of the representations into 
the other and again determine existing contradictions (inaccura-
cies). Regarding the characteristics concerning the conflicts in 
attribute Result, some inspection shows that, every time a contra-
diction occurs within this attribute, the experimental method used 
by both sources is ‘X-RAY’. The domain expert might conclude 
that one of the laboratories or scientist uses erroneous equipment 
or makes errors in determine the result using the accordant 
equipment. On the other hand, the contradiction in attribute Vol-
ume in experiment 5 appears to result from an arbitrary error, in 
this case probably a typographic error. Rare contradiction patterns 
like this one are likely to be left out by the pattern mining algo-
rithm, depending on the parameter values used as described be-
low. 

4. CONTRADICTION PATTERNS 
In this Section we give a formal definition of contradiction pat-
terns between two relations containing an overlapping set of real-
world objects. As mentioned above we consider two relation in-
stances r1 and r2 following the relation schema R(ID, A1, …, An) 
with ID being the primary key. Values for the individual attributes 
for each of the tuples in the relations are denoted by t[Ai]. The set 
of matching pairs M is defined as 

M = {(t1, t2) ∈  r1 × r2 | t1[ID] = t2[ID]} 
i.e., a set of tuple pairs, one tuple from each relation, having equal 
values in their primary key and therefore representing the same 
real-world object. We use mi = (t1, t2) as an abbreviation for the ith 
element of M with mi[1] = t1 and mi[2] = t2. 
The Boolean function conflict(m, Ai) indicates whether contradic-
ting values exists in the matching pair m for attribute Ai. 

conflict(m, Ai) = 


 ≠

else,

]m[2][A]m[1][Aif, ii

false

true
 

For each of the attributes A1, …, An we define CAi as the subset of 
matching pairs having contradicting values for attribute Ai 

CAi ⊆  M = {m ∈  M | conflict(m, Ai) = true} 
As the complement, we define NAi as the subset of matching pairs 
not possessing a contradiction in attribute Ai 

NAi ⊆  M = {m | conflict(m, Ai) = false} 

Clearly, it holds that CAi ∪  NAi = M and CAi ∩ NAi = ∅ . 



Furthermore, we shall later use the conflict frequency for attribute 
Ai defined as 

cfAi = 
||

||

M
AiC

 

We now have all the tools together to define what a contradiction 
pattern is. First, we define what a pattern is. A pattern ρ is a Boo-
lean function over the matching pairs describing a specific data 
characteristic regarding the elements of M. We consider patterns 
that are conjunctions of terms, where each term has one of the two 
following forms: 

m[j][Ai] = x or conflict(m, Ai) = true | false 

where 1 ≤ j ≤ 2 and 1 ≤ i ≤ n. A matching pair m satisfies ρ if 
ρ(m) = true, and violates ρ if ρ(m) = false. 
Recall the occurrence of contradictions in the attribute Result in 
the example above. These contradictions can be described by the 
following pattern: 

ρ = m[1][METHOD] = ‘X-RAY’ ∧  conflict(m, RESULT) = true 
However, one is usually not only interested in patterns holding for 
a single matching pair. Instead, we are searching patterns holding 
for more than one pair. To define such interesting patterns, we 
need some more definitions. Note that we shall describe the rela-
tionships to the classical definitions of support and confidence in 
the next section.  

The support of ρ in set M, denoted by support(ρ, M), gives the 
relative frequency of matching pairs from M satisfying ρ in the 
total number of elements in M: 

support(ρ, M) = 
|M|

|}ρ(m)|M{m| true=∈
 

A pattern ρ is called a contradiction pattern for an attribute Ai , 
denoted by ρAi , if it has a support above a threshold min-inside-
support within the subset of contradicting pairs CAi , 

support(ρAi, CAi) ≥ min-inside-support, 
and a support below threshold max-outside-support in the subset 
of non-contradicting matching pairs NAi , 

support(ρAi, NAi) ≤ max-outside-support, 

i.e., the pattern ρAi describes a data characteristic occurring fre-
quently in matching pairs having contradictions in attribute Ai and 
rarely in matching pairs not having a contradiction in attribute Ai. 
Let P(Ai) denote the set of all contradiction patterns for attribute 
Ai for which these conditions hold. 

4.1 Contradiction Patterns as Association 
Rules 
A contradiction pattern ρAi can be seen as a special association 
rule A ↔ B with A being a term of type conflict(m, Ai) and B a 
contradiction pattern ρAi. The contradiction pattern B has to have 
a support above min-inside-support for CAi which is equal to 
confidence(A → B) ≥ min-inside-support with 

confidence(A → B) = 
|)}iAm,(|Mm{|

|B(m)})iAm,(|Mm{|

conflict

conflict

∈

∧∈
 

We therefore call min-inside-support the conflict relevance, i.e., 
the number of elements in CAi satisfying B. The contradiction 
pattern B is also not allowed to have support in NAi above max-
outside-support which is equal to confidence(B → A) ≤ 1 – max-
outside-support with 

confidence(B → A) = 
|)}m(B|Mm{|

|B(m)})iAm,(|Mm{|

∈

∧∈ conflict
 

We define conflict potential as 1 – max-outside-support, i.e., the 
probability (or potential) that a matching pair satisfying pattern B 
has a contradiction in attribute Ai. 

It is important to note that for a contradiction pattern ρAi we only 
want to include terms Ti that are relevant or interesting in con-
junction with the occurrence of a certain type of contradiction in 
the attribute Ai. This means that we do not want to combine terms 
with largely differing conflict relevancies, as their combination 
might not yield any important information for the domain expert 
evaluating the computed contraction patterns afterwards. There-
fore, we use a support-deviation threshold. Let T1,…,Tq be the set 
of terms contained in a contradiction pattern ρAi. Then we require 
the following condition to hold ρAi: 

support-deviation ≤ 
))AiC,i(T(

))AiC,i(T(

supportmax

supportmin
, 1 ≤ i ≤ q 

Following the definition in [13] we call this the contradiction-
cross-support-property, which is useful for avoiding patterns 
containing terms with widely differing support levels. 

5. MINING FOR CONTRADICTION PAT-
TERNS 
In this Section we describe the algorithm developed by us for 
mining contradiction patterns as defined above. We start by dis-
cussing why the common data mining algorithms as first de-
scribed in [14] are not applicable to our problem. 

5.1 Common Frequent Itemset Mining 
Contradiction patterns are special cases of association rules. This 
suggests the usage of existing association rule mining algorithms. 
However, in contrast to the common basket data example, we do 
not solely have binary attributes in our relations, but our attributes 
are primarily quantitative. This problem can be bypassed by trans-
forming for each attribute Ai each occurring value x into a binary 
attribute named “Ai=x” of a resulting relation rbin. Within rbin each 
tuple t’ has t’[Ai=x] = 1 if the according tuple t ∈  r has value x in 
attribute Ai , i.e., t[Ai] = x, or 0 if t[Ai] ≠ x. Figure 2 shows a sec-
tion of the resulting relation rbin1 for transforming relation r1 from 
the example above. 
After transforming relations r1 and r2 into relations rbin1 and rbin2 , 
we can define M, denoted as the view of matching pairs, as a view 
over relations rbin1 and rbin2 with each matching pair m becoming 
one tuple in the resulting view. Within this view we also introduce 
for each attribute Ai from R a contradiction indicator CI[Ai] with 

CI[Ai] = 




 =

else,0

if,1 true)iA,m(conflict
 



As a result we receive a view M containing only binary attributes. 
This approach has a main disadvantage: For attributes containing 
many different values the transformation leads to relations with a 
large amount of attributes containing only sparse data, i.e., very 
few “1” values. Introducing the contradiction indicator CI[Ai] 
results in dense attributes for those Ai having a high contradiction 
frequency cfAi. Using the common support threshold to prune the 
combinatorial search space when applying association rule mining 
algorithms on these relations poses the problems as outlined in 
[15][13]: (i) if the minimum support threshold is too low, many 
uninteresting patterns involving items with substantially different 
support levels are extracted, and (ii) if the minimum support 
threshold is too high, many strong affinity pattern involving items 
with low support levels are missed. Using intervals instead of 
quantitative attribute values as described in [15] solves this di-
lemma. However, for our problem, value intervals are unsatisfac-
tory because we are interested in the actual values causing the 
mismatches. 
 

rbin1 

ID … METHOD=X-RAY METHOD=NMR … 

1 … 1 0 … 

2 … 0 1 … 

3 … 1 0 … 

4 … 0 1 … 

5 … 0 1 … 
 

Figure 2. Transformation of relation r1 into a binary relation 
rbin1, exemplified for attribute METHOD 

 

5.2 View of Matching Pairs 
We decided to use the quantitative attributes within the view of 
matching pairs. In SQL, our view M is defined as 
CREATE VIEW M AS
SELECT
r1.ID AS ID,
r1.A1 AS r1[A1],
r2.A1 AS r2[A1],
CASE r1.A1 = r2.A1 THEN 0 ELSE 1 AS CI[A1],
...

FROM r1, r2
WHERE r1.ID = r2.ID

The resulting view has the following schema: 
M (ID, r1.A1, r2.A1, CI[A1], …, r1.An, r2.An, CI[An]) 

The subsets CAi can now be expressed as views on M: 
CREATE VIEW CAi AS
SELECT * FROM M WHERE CI[Ai] = 1

Figure 3 shows a fraction of the resulting view of matching pairs 
for attribute Result. The subset CRESULT of matching pairs show-
ing a contradiction for attribute Result is shaded. 

M 

ID … CI[RESULT] R1[RESULT] R2[RESULT] …

1 … 1 20.3 25 …

2 … 0 15.6 15.6 …

3 … 1 12.8 18 …

4 … 0 13.2 13.2 …

5 … 0 15.0 15.0 …

 
Figure 3. Fraction of view of matching pairs for attribute Re-

sult with CRESULT being highlighted 

5.3 Pattern Mining Algorithm 
The algorithm for contradiction pattern mining is depicted in Fig-
ure 4. It determines for each attribute Ai ∈  R the set of contradic-
tion patterns P(Ai). As we are not using solely binary attributes 
our items have the form of the pattern terms as defined in Sec-
tion 4. The algorithm uses the three parameters conflict relevance, 
conflict potential, and support-deviation and is composed of two 
main parts. In the first part we determine the initial set of candi-
date patterns for each attribute Ai, i.e., terms r1.Aj = x, r2.Aj = x, 
and CI[Ak] = [0, 1] with 1 ≤ j ≤ n and 1 ≤ k ≤ n ∧  k ≠ i, having 
support in CAi above the given threshold conflict relevance and a 
conflict potential above the specified conflict potential threshold. 
 
cr: conflict relevance; cp: conflict potential, sd: support deviation 
FOR EACH CI[Ai] ∈ M
P(Ai) := ∅ ; CandAi := ∅
-- First part

FOR EACH Bi ∈ M, Bi ≠ CI[Ai]
FOR EACH T HAVING support(T, CAi) ≥ cr
if (confidence(T → CI[Ai]) ≥ cp)
CandAi := CandAi ∪ {ρAi = (Ai, T)}

END FOR
END FOR

-- Second part

WHILE CandAi ≠ ∅
NewCandAi := ∅
FOR EACH ρi ∈ CandAi
FOR EACH ρj ∈ CandAi; ρi ≠ ρj
if (support_deviation(ρi, ρj) ≥ sd)

ρm := merge(ρi, ρj)
if (support(ρm, CAi) ≥ cr)
NewCandAi := NewCandAi ∪ {ρm}

END FOR
if (NOT was_merged(ρi))
P(Ai) := P(Ai) ∪ ρ I

CandAi := NewCandAi
END FOR

END WHILE
END FOR

Figure 4. Conflict Pattern Mining Algorithm 



The first part can be implemented using two types of aggregation 
queries against the view of matching pairs. For the determination 
of terms having sufficient support within CAi the query is 
SELECT R1[Ai], COUNT(CI[Ai])
FROM M
WHERE CI[Ai] = 1
GROUP BY R1[Ai]
HAVING COUNT(CI[Ai]) > min-tuple-count

with 

min-tuple-count = 
|

relevanceconflict

M|Aicf

100

∗

∗
 

For calculation of the confidence values confidence(T → CI[Ai]) 
we execute for each of the terms resulting from the first query a 
second query 
SELECT COUNT(*) FROM M WHERE R1[Ai] = x

 
In the second part of the algorithm we successively extend the 
number of terms of the candidate patterns by merging them. We 
thereby adhere the contradiction-cross-support-property by only 
merging patterns if their terms have a support deviation within the 
given threshold. If the merged pattern still has support within CAi 
above the conflict relevance threshold it is used as candidate pat-
tern in the next iteration. Candidate pattern, which could not be 
further extended, are added to P(Ai). With this approach P(Ai) 
contains only maximized patterns, i.e., contradiction patterns not 
being a subset of another pattern from P(Ai). The second part of 
the algorithm resembles the application of the Hyperclique Miner 
Algorithm [13] to the subset of contradiction matching pairs CAi, 
with our support deviation threshold being analogous to the h-
confidence. 

6. EXPERIMENTAL RESULTS AND RE-
MAINING PROBLEMS 
We implemented the algorithm described using the Java  Pro-
gramming Language and IBM DB2  as the relational database 
management system. The experimental data was protein structure 
data from PDB. We used two different versions of the data which 
are available from the COLUMBA-project [3]: (i) the original 
PDB data available in flat file format, denoted as PDB, and (ii) 
data in macromolecular Crystallographic Information File format 
(mmCIF) from the PDB uniformity project at the University of 
California San Diego (UCSD), denoted as MMS. We currently 
utilize the BioPython parser for PDB flat-files and the OpenMMS 
Toolkit, containing software for parsing and loading mmCIF files 
into a relational database. 

6.1 Experimental Results 
From the described data sources we used the relation 
PDB_ENTRY containing information about entries in PDB like 
the entry name, the entry deposition date and year, the resolution 
of the protein structure described as well as the experimental 
method used for resolution determination. Identification of match-
ing tuples is trivial since both sources use the original PDB_ID 
for all entries in this table. 
Table 1 shows the attributes of the relation PDB_ENTRY and 
some statistic information about (i) the number of contradictions 
within the attribute, (ii) the number of distinct values in 

PDB ∪  MMS, (iii) the number of distinct values in PDB, and (iv) 
the number of distinct values in MMS. Relation PDB_ENTRY 
has 23,649 tuples in source PDB and 24,200 in source MMS. The 
number of matching pairs is 23,570. 
 

Table 1. Statistics about the attribute and their values in the 
view of matching pairs resulting from PDB and OPENMMS.  

Attribute |CAi| 
# 

 Values  

# Val-
ues 

PDB 

# Val-
ues 

MMS 
NAME 23,570 39,669 19,056 20,613 

YEAR_DEPOSIT 72 34 32 32 

DEPOSIT_DATE 118 4,048 4,012 4,041 

RELEASE_DATE 11,024 1,592 1,469 1,249 

METHOD 23,520 111 46 87 

RESOLUTION 9,742 405 310 375 

R_VALUE 23,558 1,016 1 1016 

PROGRAM 23,570 416 1 415 
 
Table 2 shows the number of generated contradiction patterns for 
each of the attributes using different thresholds for conflict rele-
vance and conflict potential. The support deviation is 95% in all 
of these experiments. 
 
Table 2. Experimental results showing the number of contra-
diction patterns per attribute for different parameter values 

(conflict relevance / conflict potential). 

Attribute 2% / 
95 % 

25% / 
95%  

2% / 
50% 

25% /
50% 

NAME 136 66 400 290 

YEAR_DEPOSIT 8 0 9 1 

DEPOSIT_DATE 7 1 12 1 

RELEASE_DATE 0 0 19 0 

METHOD 136 66 384 274 

RESOLUTION 17 3 34 4 

R_VALUE 136 66 400 290 

PROGRAM 136 66 400 290 

Total Number 576 268 1,658 1,150 
 
In the following we show some of the contradiction patterns gen-
erated by our various experiments and try to give an interpretation 
for them1: 

ρYEAR_ DEPOSIT : MMS[YEAR_ DEPOSIT] = '1900' 

                                                                 
1 We use MMS[Ai] = x and PDB[Ai] = x as short form for the 

appropriate m[j][Ai] = x terms 



This pattern has a conflict relevance of about 50%. Each time the 
value '1900' occurs in attribute YEAR_DEPOSIT in MMS the 
according value in PDB is '2000'. This probably results from a 
parsing error as the values in the original PDB flat-files are repre-
sented in format DD-MMM-YY. This gives an important hint to a 
possible resolution of the problem. Another example is the pattern 

ρDEPOSIT_DATE : CI[YEAR_DEPOSIT] = 1 
This follows directly as YEAR_DEPOSIT is the year fraction of 
DEPOSIT_DATE. Having determined this, we can follow that the 
conflicts in YEAR_DEPOSIT can be ignored since the problem 
must be resolved in the DEPOSIT_DATE. A particularly interest-
ing pattern is the following: 

ρRESOLUTION : MMS[METHOD] = 'NMR' 
When taking a closer look at the values involved in attributes 
RESOLUTION and METHOD we see that neither sources stores 
meaningful values for RESOLUTION if METHOD is 'NMR'. 
However, the sources represent this fact differently:  PDB uses the 
value 0.0, while MMS uses a NULL. This explains the contradic-
tion. 
However, not all contradiction patterns the algorithm reports 
make sense. Consider the following two rules:  

ρNAME : CI[RELEASE_DATE] = 0 
ρNAME : CI[RELEASE_DATE] = 1 

Both rules are found due to the reason that both terms 
CI[RELEASE_DATE] = 0 and CI[RELEASE_DATE] = 1 have 
high support within CNAME. However, taken together they clearly 
do not provide helpful clues to a human expert. 

6.2 Discussion and Remaining Problems 
We have presented an algorithm for finding patterns of contradic-
tions in semantically overlapping, yet different data sets. When-
ever such data sets are to be merged into a uniform databases with 
“a single truth”, conflicts need to be identified and resolved which 
usually requires costly expert inspection. Our algorithm helps in 
that it points the experts attention to the most prevalent patterns of 
mismatches. 
However, there remain a couple of possible improvements. A 
particularly difficult problem is the selection of appropriate pa-
rameters for the parameter of the algorithm, i.e., the thresholds for 
conflict relevance and conflict potential. Choosing low values for 
conflict relevance identifies patterns containing rarely occurring 
values. For example, in MMS the value '?' occurs four times in 
attribute YEAR_DEPOSIT causing a conflict within the view of 
matching pairs. This information is found when using low conflict 
relevance. On the other hand, low conflict relevance has a draw-
back regarding attributes having high conflict frequencies result-
ing from differing values or heterogeneous representations within 
the sources being compared. One such case in our example is the 
NAME attribute. NAME has a high divergence in its values, 
which causes a conflict where each value occurs only a few times 
(as can be see in Table 1). Each of the contradicting value pairs is 
identified a contradiction pattern when using low conflict rele-
vance resulting in a large amount of rather uninteresting patterns. 
A second problem concerns a low conflict relevance threshold in 
the presence of attributes having a high contradiction frequency In 
the result we receive many patterns include values that appear 
several times within other attributes but normally do not have any 

relationship to a conflict cause (see the last example in Section 
6.1). Ideally, we would find a strong correlation for them with 
terms using only the values of the attribute under concern. An-
other approach would be to relate the conflict relevance value 
with the conflict frequency of the attribute. 
The choice of a higher conflict potential usually leads to larger 
number of identified contradiction patterns because values are 
included as pattern terms, which also occur outside the subset of 
conflicting matching pairs CAi. In some cases this still can yield 
interesting information as shown in the following example where 
the patterns returned do not contain all the relevant information 
concerning the cause for the contradiction. The pattern 

ρYEAR_ DEPOSIT : MMS[YEAR_ DEPOSIT] = '1900' 
does not reveal that PDB[YEAR_DEPOSIT] is always '2000' 
in these contradiction cases, because there are several matching 
pairs with year 2000 as deposition year outside of CYEAR_DEPOSIT. 
Finding such regularities requires manual inspection of the pri-
mary results or lower conflict potential values. Anyway, the algo-
rithm clearly tells the user where it is worthwhile to look into the 
details. 
Another problem remains with the number of candidate patterns 
generated and tested within the second part of the algorithm. The 
number is very large if there are many attributes with high conflict 
frequency, or many attributes with very few but frequent values. 
These attributes form very long patterns when the attribute under 
concern also has a high contradiction frequency, which hinders 
pruning using the method and parameters described. A possible 
solution would be to exclude attributes from the mining process, 
which obviously differ because of their value representations. 
These kind of attributes normally are not involved in meaningful 
contradiction patterns. This can be done within a preprocessing 
stage in which the domain expert evaluates statistics about the 
single attributes and flags those to be excluded. 

7. CONCLUSIONS AND OUTLOOK 
Within this paper we presented our idea of mining for characteris-
tic patterns in contradicting data. Those patterns give valuable 
clues for subsequent steps for dealing with and improving data 
quality. We formally defined contradiction patterns, their proper-
ties, and their relation with association rules. By adapting existing 
association rule mining algorithms, we described an algorithm for 
contradiction pattern mining. The algorithm was implemented and 
we showed some preliminary results we obtained on a real-world 
data set taken from the domain of life science databases. We dis-
cussed some of the remaining problems with our algorithm and 
proposed possible solutions. 
In this paper we focus solely on comparing two data sources. An 
intended extension of our method is the comparison of n data 
sources. Another planned future work concerns 1:n- and n:m-
relationships between relations in a database. We plan on extend-
ing the algorithm to also mine contradiction patterns between the 
sets of related tuples. 
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