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Abstract— Information quality plays a crucial role in every ap-
plication that integrates data from autonomous sources. However,
information quality is hard to measure and complex to consider
for the tasks of information integration, even if the integrating
sources cooperate. We present a systematic and formal approach
to the measurement of information quality and the combination
of such measurements for information integration. Our approach
is based on a value model that incorporates both extensional
value (coverage) and intensional value (density) of information.
For both aspects we providemerge functions for adequately
scoring integrated results. Also, we combine the two criteria to an
overall completenesscriterion that formalizes the intuitive notion
of completeness of query results. This completeness measure is
a valuable tool to assess source size and to predict result sizes
of queries in integrated information systems. We propose this
measure as an important step towards the usage of information
quality for source selection, query planning, query optimization,
and quality feedback to users.

I. I NTRODUCTION

With the increasing interconnection of information systems,
the integration of information from various autonomous and
independent data sources is becoming a more and more im-
portant topic. Many free applications can be found in the Web,
such as meta search engines, integrated stock information sys-
tems, or bibliographic services. Commercial applications in-
clude typical eBusiness applications such as marketplaces and
eProcurement systems—both relying on catalog integration—
and inter- or intra organizational projects for enterprise ap-
plication integration (EAI). A recent announcement of SAP,
stating that future versions of SAP R/3 application will be
entirely based on aninformation integration layersupports
this claim [1]. No matter how the integrated data is stored, if
a virtual or a materialized integration approach is followed,
and what data models and schemas are used,information
qualityplays a crucial role. This emphasis is especially true for
independent and autonomous sources. Thus, the paradigm of
information querying is dramatically changed: Because users
assume a centralized database management system to always
have all the information, i.e., to provide acompleteresult
inherently, the merit of such a system is measured by its
speed or response time. But the assumption of completeness no
longer applies to integrated information sources. The response
time of an Internet source is less crucial compared to its
ability to provide the information queried for. For example,
most freely available stock information systems do not provide
data about all world-wide stocks. Also, these systems do not
provide all the information there is for a certain stock.

To gain the full advantage of multiple sources, a user must
query all available sources and integrate the results. Even if
automated, this is a tedious and often expensive task. Some
measure is needed to determine which sources are to be
preferred over others. This measure must take into account
both the number of objects provided by the source, and the
amount of information per object it provides. For the example
of stock information systems, these numbers include the
number of stock quotes covered by the source and the number
of attributes per stock quote it provides (such as current score,
days range, company profile etc.). In this paper, we describe
a complete framework for dealing with the specification and
integration of the quality of information provided by a single
data source or by a set of data sources. We consider the
intensional character of information quality (called density)
and the extensional character of information quality (called
coverage). In essence, the coverage measure describes how
many objects an information source can provide; the density
measure describes how much data for each of those objects the
source can provide. When data from sources are merged, the
scores for coverage and density of the merged result must be
estimated. For both quality dimensions we therefore provide
merge functions. Finally, we combine the two aspects to an
overall completenesscriterion. This completeness measure is
a handy and valuable tool to assess the quality of data sources
and of combinations of data sources, which leads to various
applications such as source selection, query optimization,
bounding result sizes, etc.

a) Related work: Some other projects have strived to
model the “size” of information sources. Chen et al. men-
tion the criteria “Size of result” and “Number of documents
accessed” but neither define them, nor point out the difference
of the two, nor show how to integrate the two into a general
value model [2]. Motro and Rakov define a “completeness”
criterion [3]. The criterion matches our coverage criterion.
However, their research does not go beyond the mere defini-
tion, whereas we enhance the model by defining the coverage
of combinations of sources. Also, we combine coverage with
the density criterion and only then capture the true value of
information sources. To the best of our knowledge the density
criterion as we define it has never before been addressed in
literature. Florescu et al. quantitatively describe the content of
distributed autonomous document sources using probabilistic
measures [4]. In their model, the authors calculate two values:
“Coverage” of data sources, determining the probability that a
given document is found in the source, and “overlap” between



two data sources, determining the probability that an arbitrary
document is found in both sources. These probabilities are cal-
culated with the help of word-count statistics. Their coverage
measure is similar to theprecisionmeasure of the information
retrieval field and determines the query dependent usefulness
of a source. Their overlap measure expresses ideas similar to
ours, but the authors do not consider different types of overlap,
such as independence or disjointness.

b) Structure of this paper:What follows is a general
definition of data merging operators. On top of these operators,
we provide a thorough definition and analysis of the two
criteria coverageand density. For each criterion we show
how to merge scores of different sources with varying overlap
situations. Finally, we combine the two criteria into the general
completenesscriterion. A “stock information system” example
guides the reader through our approach.

II. QUERYING COOPERATIVE INFORMATION SYSTEMS

This section gives a general introduction to our setting with
special attention to our application example of an integrated
stock information service. We describe the type of information
we query, the ways of accessing the information at multiple
sources, and how results from the sources are merged to
present the query response to the user.

A. The information model

• Global schema: We assume a global schema that consists
of only one relation. This relation contains a globally
unique ID and the union of all attributes delivered by
sources. Auser queryis a selection of different attributes.
A source is described as a view on the global schema that
projects out any attribute not delivered by the source.
Each source must deliver the ID attribute. We assume
heterogeneity to be resolved elsewhere, e.g. through spe-
cialized data wrappers (see below).
Having only one global relation seems overly restrictive,
but is in many cases a convenient and sufficient model
(see work on theuniversal relationby Maier et al. [5]).

• Globally consistent IDs: We assume that each object has a
globally unique identifier that is stored at the sources. The
identifier is consistent across sources, i.e., if two sources
present an object with the same ID, then the we consider
these objects to represent the same real-world entity. IDs
are merely used to merge information; we do not require
that they define functional dependencies, nor that each
source stores at most one object per ID. IDs are called
“merge attributes” in [6].
Although this assumption may seem overly strong, it is
true for many domains: Stocks have their symbol as a
global ID, books have an ISBN, persons have a passport
number etc. If no such ID is available, we assume that one
can be constructed. For instance, if complete information
is present, a person ID could be the combined name and
address fields (see [7] for further techniques).

• Overlap: We assume that source contents overlap to
various degrees with each other regarding the objects

they store information about. In an extreme case one
source can be a mirror of another source, i.e., they totally
overlap1. Other degrees of overlap are

– Containment: The IDs in one source are a subset
of the IDs in another source; the contained source
stores only information about objects that the other
source also stores information about. Nevertheless,
the actual information (the attribute values) might
differ.

– Independence: There is no (known) dependency be-
tween the IDs of two sources. This means that there
is some coincidental overlap, which we estimate
using the size of the sources and the size of the real
world they model. Whenever there is no knowledge
about containment or disjointness, we assume inde-
pendence.

– Disjointness: The sources provide no ID in common.

In general, querying several sources with little overlap
retrieves a larger number of distinct objects with only
some attribute values. Querying several sources with large
overlap retrieves a smaller number of objects but likely
with more attribute values.

Example.We use a meta stock information service (MSIS) as
an example to guide intuition to our completeness approach.
An MSIS is a system that provides information on stock
quotes. Unlike ordinary stock information systems (SIS), the
MSIS combines information from several systems. A search
request is sent to a whole set of SISs, the results are merged
and presented to the user in a homogeneous way. The results
of SISs and MSISs alike are typically lists of stock symbols,
their current quotes, and some additional information like the
trade volume or the quote change. A query forIBM on a
typical SIS may have the result shown in Figure 1.

This SIS delivers the symbol, time, last quote, change of
quote, change percentage, and volume2. We ignore the links
to more information. Other SIS may provide other information.
To capture it all, we use the union of all attributes of all sources
as global schema. In our examples, we consider the following
7 SIS:

• Yahoo finance (finance.yahoo.com )
• Yahoo Finanzen (German version,finanzen.de.

yahoo.com )
• CNN stock quote service (qs.cnnfn.com )
• New York Stock Exchange (www.nyse.com )
• e*trade (www.etrade.com )
• AltaVista Money section (money.altavista.com )
• Merrill Lynch (www.ml.com )

Whenever an attribute is not provided by a source, the cor-
responding field is left empty (null -value) for all objects.
Our global relation for SIS results is shown in Table I. The
global IDs of SIS results are the stocksymbols. The name

1Mirroring implies complete intensional and extensional equality. Our
overlap definition applies only to extensional overlap.

2We used the Yahoo finance system for this example. The detailed table
provides many more fields.



Mon Jan 17 10:29am ET - U.S. Markets Closed for Martin Luther King, Jr. Day.
Symbol Last Trade Change Volume More Info
IBM Jan 14 119 5/8 + 1 3/8 +1.16% 10,956,000 Chart, News, SEC, Profile

Fig. 1. An SIS query result

symbol name last trade date l.tr. quote change change % volume td’s high td’s low
. . . . . . . . . . . . . . . . . . . . . . . . . . .

TABLE I

GLOBAL RELATION FOR THE STOCK INFORMATION EXAMPLE.

attribute refers to the actual company name. The last trade
date and quote are provided by all SIS. The two attributes are
the most important information for typical users. The other
attributes provide additional and statistical information and are
available only in some of the 7 SIS. Some SIS provide much
more information such as company profiles, charts etc. For
simplicity we ignore those attribute in this report.

The results of SIS queries typically overlap; two systems
may return information for the same stock or symbol. How-
ever, the set of attributes provided by the different SIS may
differ. Also, the values of the attributes may differ from system
to system, causing data conflicts in the result. These conflicts
must be resolved by so called resolution functions. 2

B. Result merging

An cooperative information system (CIS) distributes a user
query to multiple information systems. After receiving the
individual results, it is the task of the CIS to compile the results
to a common response to the user. We call this processresult
merging. The merged result should be as consistent as possible
despite conflicting data, and as complete as possible, i.e.,
contain all retrieved information. In general, a result merged
from multiple sources contains objects where

1) some attribute value is not provided at all,
2) some attribute value is provided by exactly one source,
3) some attribute value is provided by more than one

source.

Result merging of the CIS in the first case is clear – the object
in the result has no value. How to merge information in the
second case is also clear – when constructing the result, the
one attribute value is used for the result object3. The third case
demands special attention. Several sources compete in filling
the result object with an attribute value. If all sources provide
the same value, that value is used in the result. If this is not the
case, there is a data conflict and some function must determine
what value appears in the result table.

Definition 1 (Resolution function):Let D be an attribute
domain andD+ = D ∪ ⊥, where⊥ represents thenull -
value. A resolution functionf is an associative functionf :

3We assume⊥ values as missing knowledge.

D+ ×D+ → D+ with

f(x, y) :=


⊥ if x = ⊥ andy = ⊥
x if y = ⊥ andx 6= ⊥
y if x = ⊥ andy 6= ⊥
g(x, y) else

where x, y ∈ D+ and g : D × D → D. Functiong is the
internal associative resolution function that is responsible for
resolving conflicting data. 2

The generalization of Definition 1 to more than two input
values is trivial. Resolution functions can be of various types,
depending on the type of attribute, the usage of the value, and
many other aspects as discussed by Yu and Meng [8]4. One
simple resolution function for strings might concatenate the
values and annotate them with the source that provided the
value. A resolution function for numerical values might be
to determine the average value. To formalize result merging
of entire query results and not single attributes, we define
two new relational operators, the join-merge-operator denoted
u and the union-merge-operator denotedt. Both operators
include resolution functions in case of data conflicts. We call
both operatorsmergeoperators, because multiple results are
merged to a common result. They are not simply concatenated,
but objects appear only once in the result, possibly with
attribute values from multiple sources. Missing values are
padded with nulls. First, we define the join-merge-operator
and show an example in Figure 2.

Definition 2 (Join-Merge,u): Let R = (A1, . . . , Am) and
S = (A1, Ai, . . . , An) be two relations with a common ID
attributeA1. The attributesAi, . . . , Am are common in both
relations; they are each mapped to the same attribute in the
global schema. Then

R u S :={tuple t | ∃r ∈ R, s ∈ S with

t[A1] = r[A1] = s[A1], (1)
t[Aj ] = r[Aj ], j = 2, . . . , i− 1 (2)
t[Aj ] = fj−i(r[Aj ], s[Aj ]), j = i, ..., m (3)
t[Aj ] = s[Aj ], j = m + 1, . . . , n} (4)

where (1) is the join condition, (2) are the values provided
only by R, (3) are the potentially conflicting values, and

4Information quality metadata can greatly enhance resolution functions, for
instance favoring the more recent value.



(4) are the values provided only byS; and wherefi(), i =
0 . . .m−i are attribute-specific resolution functions as defined
in Definition 1. 2

r : A1 A2 A3

1 2 ⊥
2 5 ⊥
3 ⊥ z

s : A1 A3 A4

1 x g
3 y ⊥
4 x i

r u s : A1 A2 A3 A4

1 2 x g
3 ⊥ f0(z, y) ⊥

Fig. 2. The Join-Merge-operator

The union-merge operator is an extension of the join-merge
operator. The union-merge-operator guarantees that every tuple
from any source enters a join. An example is shown in
Figure 3.

Definition 3 (Union-Merge,t): Let R = (A1, . . . , Am)
and S = (A1, Ai, . . . , An) be two relations with a common
ID attributeA1 and common attributesAi, . . . , Am. Then

R t S := (R u S)
∪ (R \ (R u S)[R]× {(⊥m+1, . . . ,⊥n)})
∪ (S \ (R u S)[S]× {(⊥2, . . . ,⊥i−1)})

2

r : A1 A2 A3

1 2 ⊥
2 5 ⊥
3 ⊥ z

s : A1 A3 A4

1 x g
3 y ⊥
4 x i

r t s : A1 A2 A3 A4

1 2 x g
2 5 ⊥ ⊥
3 ⊥ f0(z, y) ⊥
4 ⊥ x i

Fig. 3. The Union-Merge-operator

The union-merge operator is in nature similar to the full
outer-join operator [9], but differs in one crucial aspect:
The outer join does not allow the merging of columns from
separate input relations into a single output column. Therefore,
it does not deal with the issue of resolving conflicts and
presenting a merged view of multiple sources. LaCroix and
Pirotte defined a similar operator, the “generalized natural join
operator”, denoted

+
1 [10]. Our merge operator differs from

their approach in two aspects: First, data conflicts are resolved
with a resolution functionf . Second, our join is not a natural
join; rather, the join predicate contains only one join attribute,
the global ID.
Example.Imagine two stock information services delivering
some results to a query for “IBM”. Each returns a set of results,
reflecting different IBM stock types traded at different markets.

Some of the results might be common to both result sets,
however with differing attributes and different attribute values.
Some other results might be distinct to one of the result sets.
To not lose any information, all results are merged with the
union-merge operator in the result table. Figure 4 shows the
two search results and the merged result for the user.

Observe that the first line of the merged result is not missing
any attribute value. The two original sources complement each
other in the information they provide, and combined they
provide richer information. Wherever they overlap, some res-
olution function decides which value to choose. For instance,
this is the case for the trade volume of IBM on that day.
Because CNN states a higher volume, we must assume that
that value is the more recent information and we choose it;
an appropriate resolution function for this attribute is MAX().
This insight about the recency of a value could be used to
decide upon conflicts among other attributes, such as ltq.
A simple extension to our current definition of resolution
functions would allow input other than the conflicting values.
2

The following sections describe a measure to quantify the
results of the join merge and union merge operators. The
measure considers the number of results (coverage) and the
number of attribute values in the result (density).

III. C OVERAGE

We definecoverageof a source to reflect the number of
objects that a source can potentially return, i.e., the percentage
of the real world the sourcecovers. In this sense, coverage
can be regarded as thesize of a source. Coverage of a set
of sources is the number of distinct objects that the set as
a whole can potentially return. Because sources overlap to
different degrees, it is a challenge to calculate the coverage
of that set. The following sections discuss this matter. There
is a strong relationship between coverage calculation and
set theory. Sources can be viewed as sets of objects of the
real world. The main difficulties of coverage calculation lie
in determining the intersections of combinations of sources.
Here, set theory can guide intuition and is used for proving
several results.

A. Coverage of a source.

We define the coverage of a source as the ratio of the size
of the source (number of distinct objects in the source) and
the size of theworld:

Definition 4 (The World):Given a global relationR of an
application domain, we defineW , called theworld, as the set
of all possible ID values ofR that pertain to a real world object
of the class modelled throughR. The number of real world
objects ofR is |W |. Note that the actual value of|W | and the
values inW are irrelevant for all further computations. Only
the size ofW must be greater than the size of any source.2

Definition 5 (Coverage):Let S be a source or some other
set of objects and letW be the set of real world objects. We



Yahoo finance:
symbol name ltd ltq change change % volume td’s high td’s low
IBM ⊥ 10:45 AM 112 1/8 +9/16 +0.50% 1,458,600 ⊥ ⊥
IBM SICO. ⊥ 9:47 AM 111 +8/16 +1.2% 677 ⊥ ⊥

CNN:

symbol name ltd ltq change change % volume td’s high td’s low
IBM Intl. Business Machines ⊥ 111 9/16 −1/16 ⊥ 1,529,500 112 13/16 111

Merged result (Yahoot CNN):

symbol name ltd ltq change change % volume td’s high td’s low
IBM Intl. Bus. Mach. 10:45 AM 111 9/16 +9/16 +0.50% 1,529,500 112 13/16 111
IBM SICO. ⊥ 9:47 AM 111 +8/16 +1.2% 677 ⊥ ⊥

Fig. 4. Two results for the query “IBM” (from Yahoo finance and CNN) and the merged response

define thecoverageof a source as

c(S) :=
|S|
|W |

.

2

Coverage is in[0, 1] and can be regarded as the probability
that any given object of the real world is represented by some
object in the source. In the following, if not specified other-
wise, the coverage of a set of sources implies the coverage of
the merge-union of these sources.
Example.About 40,000 companies are listed at stock ex-
changes all over the world, i.e.,|W | = 40, 000. Currently
3,114 of these are listed at the New York Stock Exchange
and their quotes are available through their WWW information
system. Other stock information systems combine stock quotes
from several exchanges and thus gain a higher coverage.
Table II shows the number of stocks listed at the individual
systems together with their respective coverage scores. The
coverage scores are obtained by dividing the number of stocks
listed by 40,000. 2

Number Coverage
Stock information system stocks listed score
Yahoo finance 10,095 0.252
Yahoo Finanzen 3,571 0.089
CNN stock quote service 9,375 0.234
New York Stock Exchange 3,114 0.078
e*trade 11,401 0.285
AltaVista Money section 12,000 0.300
Merrill Lynch 2,500 0.063

TABLE II

STOCK INFORMATION SYSTEM COVERAGE

B. Coverage and overlap assessment

The coverage measure for sources and sets of sources is
based on timely and accurate coverage scores for individual
sources. These scores are sometimes not easy to obtain. Often
the sources themselves publish coverage scores as a means for
advertising their service. However, not always can these figures
be trusted. Another possibility to obtain coverage values is to
simply measure coverage, where possible. Such assessment
may be possible by downloading the source or querying the
source. If these assessment methods fail, coverage scores can
be estimated only by a domain expert. Overlap assessment is
even more difficult. Equality, subset, or disjointness relation-
ships can often be specified easily. But if none of the cases

apply, the actual overlap should be determined. If this is not
possible, one can assume independence5. Overlap information
can be stored in a matrix, for which consistency can be
checked.
Example.Overlap of two SIS is the number of companies that
are listed in both services. With SIS it is often the case that
one SIS is contained in another. For instance, Yahoo finance
covers several SIS, such as the New York Stock Exchange
SIS and the London Stock Exchange SIS. I.e., Yahoo finance
is in itself a meta SIS, just like the one we propose with
this example. Meta SIS can integrate other meta SIS and thus
greatly enhance the service (and save much work). 2

C. Coverage of a set of sources.

To respond to a user query in the best possible way, a
query must be translated and submitted to multiple information
sources. The results returned by these sources are sets of
objects of the real world. Some objects may be returned by
only one source but other objects may be returned by more
than one source. To calculate the coverage of the merged
result we must take into account the overlap between the
different participating sources. What follows is a collection
of intermediate results and the main result in Theorem 1. For
brevity we omit all proofs and refer to [11]. In particular, we
show how to calculate the coverage of the following terms,
whereS, Si, andSj are individual sources andP is a set of
already merged sources:

• c(Si t Sj) for different overlap cases (Lemma 1)
• c(P t S) for different overlap cases (Corollary 1)
• c(Si u Sj) for different overlap cases (Lemma 2)
• c(P u S) for the general case (Lemma 3)
• c(P t S) for the general case(Theorem 1)

Lemma 1 and its Corollary 1 motivate the different overlap
situations and the proof of the Theorem 1. Lemma 2 and
Lemma 3 show how to calculate parts of the result of the
theorem. Finally, Theorem 1 covers the general case, where
different kinds of overlap situations can occur simultaneously.
The section is concluded by an example calculation of the
coverage of a set of three search engines.

Lemma 1 (c(Si t Sj)): Let Si and Sj be the two sources
to be union-merged (Si t Sj). We distinguish the following
cases:

5We assume independence if none of the other cases apply. Future research
will deal with quantified overlap situations.



1) Si andSj are disjoint
⇒ c(Si t Sj) = c(Si) + c(Sj)

2) Si andSj are independent
⇒ c(Si t Sj) = c(Si) + c(Sj)− c(Si) · c(Sj)

3) Si ⊆ Sj

⇒ c(Si t Sj) = c(Sj)

2

Once we compute the coverage of the merged resultSitSj ,
we can estimate the number of objects inSi t Sj as c(Si t
Sj) ·W .

Corollary 1 (c(P t S)): Let P = {S1, . . . , Sk} be a set of
already union-merged sources andS /∈ P be the source to be
added.

1) ∀Sj ∈ P : S andSj are disjoint
⇒ c(P t S) = c(P ) + c(S)

2) ∀Sj ∈ P : S andSj are independent
⇒ c(P t S) = c(P ) + c(S)− c(P ) · c(S)

3) ∃Sj ∈ P, S ⊆ Sj

⇒ c(P t S) = c(P )

2

We briefly discuss the statements of the individual cases of
Corollary 1.

1) Case 1 (disjointness): Adding a source to a set that
is disjoint to all sources already queried, provides the
highest coverage gain. To calculate overall coverage, we
simply add the individual scores.

2) Case 2 (independence): To determine the overall cover-
age we add the scores and subtract the probable overlap
between the new source and the already queried sources.
Due to the independence assumption of this case, we can
quantify this overlap as the product of the two scores.

3) Case 3 (subset/equivalence): When the new source is
a subset or equal to one already queried, it does not
contribute to coverage in any way. However, it might
still be worthwhile to query such a source, as it may
well contribute to the overall density score (see below).

If none of the cases applies, coverage calculation is more
complicated. Suppose someSi has mixed overlaps with dif-
ferent sources. These sources in turn may also have mixed
overlaps among them. Thus, calculation of the overall coverage
score is not straight-forward as in the previous cases, but must
be performed recursively as stated in Theorem 1. Note that
Theorem 1 includes cases 1 and 2 of Corollary 1. To apply the
theorem for coverage calculation, one must first identify the
sets of disjoint (D), independent (I), and subset sources (SB).
For the independent sources and the subset sources we must
calculatec(I), c(SB), andc(I uSB). The first two terms can
be determined again using Theorem 1 in a recursive manner.
The last term can be solved with the help of Lemma 2 and
Lemma 3:

Lemma 2 (c(Si u Sj)): Let Si andSj be two sources to be
join-merged. We distinguish the following cases:

1) Si andSj are disjoint
⇒ c(Si u Sj) = 0

2) Si andSj are independent
⇒ c(Si u Sj) = c(Si) · c(Sj)

3) Si ⊆ Sj

⇒ c(Si u Sj) = c(Si)
2

Lemma 3 (c(P u S)): Let P = {S1, . . . , Sk} be a set of
union-merged sources andS /∈ P be the source to be join-
merged. LetD be the set of sources inP to whichS is disjoint.
Let I be the set of sources inP to which S is independent.
Let SB be the set of sources inP that are subsets ofS. If
there are no supersets ofS in P , i.e., @Sj ∈ P, S ⊆ Sj , then

c(P u S) = c(S) · c(I) + c(SB)− c(I u SB).

If there is a superset ofS in P , i.e., ∃Sj ∈ P, S ⊆ Sj then

c(P u S) = c(S).

2

Note that the setD of sources disjoint toS does not appear
in this result, as their content is not part of the result ofP uS.

Theorem 1 (Multiple source coverage):Let P =
{S1, . . . , Sk} be a set of already union-merged sources
and letS /∈ P be the source to be added. Then

c(P t S) = c(P ) + c(S)− c(P u S).

2

The theorem is best illustrated as a Venn-diagram as in
Figure 5. SourceS is to be added, the other sets represent

Fig. 5. A Venn-diagram to illustrate coverage calculation

sources already inP . Some of them are disjoint toS (D),
some of them are independent (I), and some are subsets (SB).
Intuitively, the calculation of coverage first adds the coverage
scores ofP and S and then subtracts parts that are counted
twice. Finally, the parts that are subtracted twice must be added
again.
Example.Assume that Merrill Lynch (M) and e*trade (E) are
independent sources for stock quotes. Their coverage scores
are 0.158 and 0.239, respectively. Thus with Theorem 1, the
coverage of the union-merge of the two sources is0.158 +
0.239− 0.158 · 0.239 = 0.359. Assume further that the Yahoo
finance (Y) stock information system is (i) independent of
e*trade and (ii) a superset of Merrill Lynch; any stock listed
by Merrill Lynch is also listed by Yahoo finance. We can then



calculate the coverage of the union-merge of all three sources
as

c(M t E t Y ) = c(M t E) + c(Y )− c(Y ) · c(E)
− c(M) + c(E uM)

= 0.359 + 0.25− 0.25 · 0.239
− 0.158 + c(E uM)

= 0.391 + 0.158 · 0.239 = 0.429

To verify, we can show that the final score is equal to the
coverage of e*trade and Yahoo alone (c(E tY )), because the
Merrill Lynch source is subsumed by Yahoo. 2

IV. D ENSITY

Density is a measure for the ratio of non-null -values pro-
vided by sources6. Typically, information sources have many
missing values (null -values) in the attributes they provide,
i.e., sources often export attributes they do not completely
cover. For instance, book information sites do not provide
reviews for all books, an address information service does
not have the email address of all people listed, etc. The
missing values result in incomplete results, i.e., tables with
null -values. First, we define density of attributes and sources;
then we proceed as in the previous section and show how to
determine density of sets of sources.

A. Density of an attribute and density of a source.

Density is attribute specific, i.e., each attribute provided by a
source has a density score. In fact, even attributes not provided
by a source have a density score for that source. Thus, before
defining the density of a source we define the density of an
attribute of a source.

Definition 6 (Density):Let D be a domain andD+ = D∪
{⊥}. Let X be a multiset (bag) of valuesx ∈ D+. The density
of X is |{x ∈ D,x ∈ X}|/|{x ∈ D+, x ∈ X}|. 2

We apply this definition to measure the density of attributes
and sources. In accordance to this definition we can define the
density of attribute values of an attribute in a source:

Definition 7 (Attribute density):The density of attribute
a ∈ A in sourceS (dS(a)) is

dS(a) :=
|{t ∈ S|t[a] 6= ⊥}|

|S|
wheret are tuples of the real world andA is the global set of
attributes. 2

Definition 8 (Density vector):The density vectorD(S) is
the vector of the attribute density scores for each attribute of
the global schema.D(S) has length|A|. 2

Thus, an attribute that has a value for every object of the source
has a density of 1. An attribute that is simply not provided by a
source has density 0. Attributes for which a source can provide
some values have a density score in between.
Example.Consider the Yahoo finance table of Table III and
assume for this example that it represents the source in its en-
tirety. The density of an attribute is determined by counting the

6The termdensityis derived from the notion of dense vs. sparse matrices.

number of null values (⊥) in that column and dividing this by
the overall number of rows in the table. Thus,d(symbol) = 1,
d(name) = 0.9, etc. These scores are summarized in the den-
sity vectorD(Yahoo) = (1, 0.9, 1, 0.9, 0.8, 0.8, 0.4, 0, 0).
For typical stock information systems in the real world,
attribute density typically is either 0 or 1, depending on which
attributes are part of the output of the source. 2

Using Definition 6, we can prove that the overall density of
a source is the average density of its attributes:

Theorem 2 (Source density):The density of a sourceS
(d(S)) is the average density over all attributes:

d(S) =
1
|A|

∑
a∈A

dS(a)

2

Proof: Let the set of all data fields in sourceS be a bag
of valuesx ∈ D+. Thus, the size of the bag is|A| · |S|. Then

1
|A|

∑
a∈A

dS(a) =
∑

a∈A |{t ∈ S|a 6= ⊥}|
|A| · |S|

=
|{x ∈ D}|
|{x ∈ D+}|

= d(S)

B. Density assessment

Like coverage scores, density scores can be assessed in
several different ways, depending on the ability and willing-
ness of the information sources to cooperate. In some cases,
information sources readily give away the scores. Statements
like “We provide reviews for more than 10 percent of all
available books” (d(review) = 0.1) or “All search results
include a page size” (d(size) = 1) are not uncommon. As
in the latter case, density scores are often 0 or 1. They are 0
whenever a source simply does not provide the corresponding
attribute of the global relation. The score is 1 whenever the
source always provides information for that attribute. For
instance, we always require the ID attribute to have a density
score of 1. When exact measurement is not possible, sampling
techniques can be applied. Certain amounts of information are
retrieved, their density is determined and extrapolated to the
density of the source. This score can be updated whenever a
new result is retrieved from the source. With this continuous
update the density score becomes more accurate over time.
Example.Table IV shows the density vectors of the 7 SIS in
our example. The scores were assessed by simply examining
the search results of an exemplary query, assuming that the
values of this result are available for all other queries (and no
others). The overall score is the average density score of the
attributes. 2

C. Density of a set of sources

As for the coverage score we must determine the density
of a set of sources to be able to find the best combination.
As discussed in Section II, an object in the combined result
of two sources has a value in an attribute if either one or
both sources provide some value providing that a resolution



Yahoo finance:
symbol name ltd ltq change change % volume td’s high td’s low
ACN Accenture 10:41 AM 18.07 -0.43 -0.10% ⊥ ⊥ ⊥
BEAS BEA Systems 10:42 AM 10.98 -0.18 -0.50% 6,292,500 ⊥ ⊥
CAJ Canon 10:30 AM ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
CSCO Cisco Systems Inc 9:01 AM 14.09 +0.01 +0.05% 47,259,900 ⊥ ⊥
DELL Dell Computer Corp 12:00 PM 28.36 -0.25 -1.50% ⊥ ⊥ ⊥
HPQ HP 11:11 AM 19.16 +0.01 +0.50% 7,821,800 ⊥ ⊥
IBM ⊥ 12:45 PM 112.20 +1.02 +0.50% ⊥ ⊥ ⊥
MSFT Microsoft Corp 13:49 PM 57.89 -0.63 -1.20% ⊥ ⊥ ⊥
ORCL Oracle Corp 10:31 AM 11.68 ⊥ ⊥ 29,201,700 ⊥ ⊥
TOSBF Toshiba 9:15 AM 4.35 +0.45 +3.04% ⊥ ⊥ ⊥

TABLE III

THE YAHOO FINANCE STOCK INFORMATION SOURCE

SIS overall symbol name ltd ltq change ch.% vol. td’s high td’s low
Yahoo fin. 6/9 1 0 1 1 1 1 1 0 0
Yahoo Fin. 7/9 1 1 1 1 1 1 1 0 0
CNN 7/9 1 1 0 1 1 0 1 1 1
NYSE 9/9 1 1 1 1 1 1 1 1 1
e*trade 7/9 1 1 0 1 1 0 1 1 1
AltaVista 8/9 1 1 0 1 1 1 1 1 1
Merrill Lynch 7/9 1 1 0 1 1 0 1 1 1

TABLE IV

DENSITY SCORES FOR STOCK INFORMATION SYSTEMS.

function does not nullify not-null results. As before, we first
distinguish several special cases before proving the general
result (againS is an information source andP is a set of
already merged sources):

• dSiuSj (a) for different overlap cases (Lemma 4)
• dPuS(a) for different overlap cases (Corollary 2)
• dSitSj

(a) for different overlap cases (Lemma 5)
• dPtS(a) for different overlap cases (Corollary 3)
• dPtS(a) for the general case (Theorem 3)

Please note that the individual overlap cases refer to the
objects and not to the attribute values of objects. Our definition
of overlap concerns only object IDs. For an object represented
in more than one source, we do not require the same attribute
values or even the same attributes in each source.

Lemma 4 (dSiuSj
(a)): Let Si andSj be the two sources to

be join-merged and leta be an attribute of the global schema.
We distinguish the following cases:

1) Si andSj are disjoint: Because the intersection of two
disjoint sources is the empty set, we do not define
density of an attribute.

2) Si and Sj are independent:dSiuSj
(a) = dSi

(a) +
dSj

(a)− dSi
(a) · dSj

(a)
3) Si ⊇ Sj (same as previous case):dSiuSj (a) = dSi(a)+

dSj (a)− dSi(a) · dSj (a)

2

The proofs of Lemma 4 and the following Lemma 5
are straightforward by applying definitions and performing
algebraic transformations. For details, see [11].

Corollary 2 (dPuS(a)): Let P = {S1, . . . , Sk} be a set of
already union-merged sources andS /∈ P be the source to be

join-merged. Then

dPuS(a) = dP (a) + dS(a)− dP (a) · dS(a).

2

With the help of Lemma 4 and its Corollary 2 we can prove
the following lemma and Theorem 3 (again, the proofs can be
found in [11]).

Lemma 5 (dSitSj
(a)): Let Si andSj be the two sources to

be union-merged (Si t Sj). Let thenull -values of attribute
a be distributed independently. We distinguish the following
three cases:

1) Si andSj are disjoint

⇒ dSitSj
(a) =

dSi
(a) · c(Si) + dSj

(a) · c(Sj)
c(Si) + c(Sj)

2) Si andSj are independent

⇒ dSitSj (a) =
[
dSi(a) · c(Si) + dSj (a) · c(Sj)
− [dSi(a) + dSj (a)− dSi(a) · dSj (a)]
· c(Si) · c(Sj)

]
· 1
c(Si) + c(Sj)− c(Si) · c(Sj)

3) Si ⊇ Sj

⇒ dSitSj
(a) =

[
dSi

(a) · c(Si) + dSj
(a) · c(Sj)

− [dSi
(a) + dSj

(a)− dSi
(a) · dSj

(a)]

· c(Sj)
]
· 1
c(Si)

2

Corollary 3 (dPtS(a)): Let P = {S1, . . . , Sk} be a set of
already union-merged sources andS /∈ P be the source to



be added. Let thenull -values of attributea be distributed
independently. We distinguish the following three cases:

1) ∀Sj ∈ P : S andSj are disjoint

⇒ dPtS(a) =
dP (a) · c(P ) + dS(a) · c(S)

[c(P ) + c(S)]

2) ∀Sj ∈ P : S andSj are independent

⇒ dPtS(a) =
[
dP (a) · c(P ) + dS(a) · c(S)
− [dP (a) + dS(a)− dP (a) · dS(a)]
· c(P ) · c(S)

]
· 1
c(P ) + c(S)− c(P ) · c(S)

3) ∃Sj ∈ P, S ⊆ Sj

⇒ dPtS(a) =
[
dP (a) · c(P ) + dS(a) · c(S)
− [dP (a) + dS(a)− dP (a) · dS(a)]

· c(S)
]
· 1
c(P )

2

This corollary leads us to the general theorem for density.
Theorem 3 (Multiple source attribute density):Let P =

{S1, . . . , Sk} be a set of already union-merged sources and let
S /∈ P be the source to be added. LetD be the set of sources
in P to which S is disjoint. LetI be the set of sources inP
to whichS is independent. LetSB be the set of sources inP
that are subsets ofS. Then

dPtS(a) =[dP (a)c(P ) + dS(a)c(S)− dSB(a)c(SB)
− [dS(a) + dI(a)− dS(a) · dI(a)]c(S)c(I)
+ [dI(a) + dSB(a)− dI(a) · dSB(a)]

· c(I u SB)] · 1
c(P t S)

2

Example.Assume again that Merrill Lynch (M) and e*trade
(E) are independent sources. Let the density scores for the
nameattribute (n) be 0.9 and 0.1, respectively. The coverage
scores are those used in the previous example (0.158 and
0.239). Thus, the density of their merged result is

dMtE(n) = 0.9 · 0.158 + 0.1 · 0.239
− (0.9 + 0.1− 0.9 · 0.1) · 0.158 · 0.239

· 1
0.158 + 0.239− 0.158 · 0.239

= 0.395

We add the Yahoo finance (Y) SIS and again assume it is
independent of e*trade and a superset of Merrill Lynch. We
assume that Yahoo has a density of 1 for the name attribute
and a coverage of 0.25. The new density of the three for the

name attribute is

dMtEtY (n) = [dMtE(n)c(M t E) + dY (n)c(Y )
− dM (n)c(M)
− [dY (n) + dE(n)− dY (n) · dE(n)]
· c(Y )c(E)
+ [dE(n) + dM (n)− dE(n) · dM (n)]

· c(E uM)] · 1
c(M t E t Y )

= [0.395 · 0.359 + 1 · 0.25− 0.9 · 0.158
− [1 + 0.1− 1 · 0.1] · 0.25 · 0.239

+ [0.1 + 0.9− 0.1 · 0.9] · 0.038] · 1
0.429

= 0.523

I.e., when we merge the three sources we can expect to find
a name value in over 52 percent of the tuples. 2

V. COMPLETENESS

The completenessof an information source is the ratio of
its information amount and the total information of the real
world. We understand the amount of information a source can
deliver as the number of fields of the global relation it can fill
with non-null -values. The more complete a source is, the
more information it can potentially contribute to the overall
response to a user query.

Definition 9 (Completeness):A sourceS has completeness

C(S) :=
number of data-values6= ⊥ in S

|W | · |A|
2

To calculate completeness of an information source without
actually counting the number of filled fields, we use coverage
and density scores of the source. They are combined in a very
natural way:

Theorem 4 (Completeness):Let S be an information source
and let c(S) and d(S) be its coverage and density scores,
respectively. Then

C(S) = c(S) · d(S)

2

Corollary 4: Let P be a set of information sources. Then

C(P ) = c(P ) · d(P ).

2

Example.Suppose Table V represents the entire Yahoo finance
information source, i.e., it provides only two tuples with
varying density. Coverage of the source is thusc(Yahoo) =
1/20, 000. The density vector of the source isD(Yahoo) =
(1, 0, 1, 1, 1, 1, 1, 0, 0) and the density isd(Yahoo) = 2/3.
Thus, with Theorem 4 completeness of Yahoo finance (in
this miniature example) is1/20, 000 · 2/3 = 1/30, 000. This
number corresponds to the definition of completeness: The
number of non-null values in the source is 12 and|W |·|A| =
40, 000 · 9 = 360, 000 and12/360, 000 = 1/30, 000. 2



Yahoo Finance
symbol name ltd l. tr. quote change change % volume td’s high td’s low
IBM ⊥ 10:45 AM 112 1/8 +9/16 +0.50% 1,458,600 ⊥ ⊥
IBM SICO. ⊥ 9:47 AM 111 +8/16 +1.2% 677 ⊥ ⊥

TABLE V

AN INFORMATION SOURCE

Theorem 4 and Corollary 4 suggest that completeness
calculation can be interpreted as the geometric calculation
of an area: Coverage represents the height of the area (or
table), density represents the width of the area (or table).
In the following section we suggest several applications for
the completeness measure and provide an outlook to future
research.

VI. CONCLUSIONS ANDOUTLOOK

Our coverage, density, and completeness models are a pow-
erful tool with several applications in cooperative information
systems. Among them is the task ofsource selectionandplan
selectionas described in [12]: When trying to decide which
source or set of sources to query, our model offers an excellent
guideline for chosing the most promising set of sources based
on the expected information quality. For instance, the coverage
criterion is of special importance when comparing search
engines. One of the main features of search engines is the
amount of Web pages they have previously indexed. The larger
a search engine, the more probable it is to find the desired
result. Coverage calculation corresponds to join-result size
estimation in traditional database systems. Other application
domains demand special attributes to perform joins. The
density measure is well suited to select sources on this basis.
The completeness measure combines the two; it provides hints
on the byte-size of the result – an important measure for
applications with widely distributed data and/or low bandwidth
connections between the sources. Taking source selection one
step further, completeness measures are useful for selecting the
best query execution plan across several sources: Sections III-
C and IV-C expand the notion of coverage and density of
sources to that of sets of sources or plans. Thus, with the
value model we present, a meta information service can
generate and compare different strategies to execute a user
query against a cooperative information system. The measures
of this paper seem to imply that large sources are good sources.
High coverage and density are better than low scores. On
the other hand, much has been lamented on theinformation
overflow caused by the enormous size of the World Wide
Web. Much research has addressed the problem of reducing
query responses to a reasonable number of objects, if possible
to the most useful or relevant ones to the user. This need
for reduction is especially true for search engines, where no
user is willing to browse the typical number of> 10, 000
results. However, any filtering profits from a large amount of
information to begin with. The model presented in this paper
is able to objectively value information sources by the amount
of information they provide.

We consider our model as an important step towards the
systematic consideration of information quality in data inte-
gration. We plan to use our approach in projects in the area
of bioinformatics. In bioinformatics, sources typically contain
a set of core attributes of high accuracy, describing their
primary data objects, and an extended set of other attributes
that are not updated on a regular basis. Hence, choosing the
right source dependent on the attributes being seeked is an
essential problem. We believe that our density, coverage, and
completeness measures provide a solid ground for this task.
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