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Chapter 1

Phylogenetic trees

Evolutionary tree of organisms Ernst Haeckel, 1866

In this chapter we first introduce some basic definitions concerning trees and sequences. We then
describe a very simple model of sequence evolution along a tree. We finally discuss some of the
methods that are used to reconstruct a phylogenetic tree from a set of extant sequences.
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1.1 Rooted and unrooted trees

Throughout, let X = {x1, . . . , xn} denote a set of taxa, in which each taxon xi represents some species
or organism whose evolutionary history is of interest to us.

For example, X = {x1, x2, . . . } might denote a set of mammals, with x1 representing a gorilla, x2 a
seal etc. A phylogenetic tree T on X (or X-tree) is obtained by labeling the leaves of a tree by the set
X:

Pan_panisc
Gorilla
Homo_sap

Rattus_norv

fin_whale
blue_whale

Cow
harbor_seal

Mus
Pan_panisc

Gorilla

Homo_sap

Rattus_norv

blue_whale

fin_whale

Cow
harbor_seal

Mus

Taxa X + tree ⇒ phylogenetic tree T on X

The above is an example of an unrooted tree. From a theoretical and algorithmic point of view,
unrooted trees are easier to work with than “rooted” trees, In biology the latter are of more interest,
as they define clades of related taxa.

One way to determine where to root a tree is to include an appropriate outgroup in the analysis and
to place the root on the branch leading to the outgroup:

or
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Each branch e of a phylogenetic tree T may be scaled to represent r × t, the “rate of evolution” r

multiplied by the time t along e:

A phylogenetic tree T is called bifurcating or resolved, if all its internal nodes (except the root) have
degree 3, and multifurcating or unresolved, else.

1.2 Aligned sequences

In molecular phylogenetics, a set of taxa X = {x1, . . . , xn} may be given as an alignment of molecular
sequences of the form:

A =















a11 a12 . . . a1m

a21 a22 . . . a2m

. . .

an1 an2 . . . anm

The sequences are usually obtained from some gene or locus that all taxa have in common. One
popular sequence is the SSU rRNA molecule, which has proven to carry a robust phylogenetic signal.

The problem of aligning sequences is non-trivial, but this question is beyond the scope of this tutorial.

Example:

Homo sap fqtpmviilqaimgsatlamtliiftiiiiltvhdtnttvptmitpmllt

Pan panisc fqtpmiiifqaimgsatlaltliiftiiviltvhdtntavpttitpmllt

Gorilla lqtpmviifqaimgsatlamtliiftvimiltvhetnttvptmiapmllt

harbor seal fqlpmviifqaiiggatlalafitftiiifltvhdtdtstlimilsmilt

Cow fqtpmviifqaiiggatlalalitftiiifmtvhdtdtstltmilsmflt

fin whale lqtfmviifqaimgettlalafitftiaifltvhdtdtsmlltilsmllt

blue whale lqtfmviifqaimgettlvlaiitftiaifltvhdtdtstlltilsmllt

Rattus norv fqismiiifqaimggatlvlatitfiilvfltvhdtdtstfitiissmat

Mus fqismiiifqaimggatlvlatitfiilifltvhdtdtstfitiissmit

1.3 Nested structure

A rooted phylogenetic tree T = (V,E, λ) is a nested structure: Consider any node v ∈ V . Let Tv

denote the subtree rooted at v. Let v1, v2, . . . , vk denote the children of v. Then Tv is obtainable from
its subtrees Tv1

, Tv2
, . . . , Tvk

by connecting v to each of their roots.
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Such a nested structure can be written using nested brackets:

Phylogenetic tree nested description

v1

v2 v3

v4 v5 v6 v7 v8

v9 v10

taxon1 taxon2

taxon3
ta

xo
n4

ta
xo

n5

ta
xo

n6

v1

↓
(v2, v3)

↓
((v4, v5), (v6, v7, v8))

↓
(((v9, v10), v5), (v6, v7, v8))

Description: (((taxon1, taxon2), taxon3), (taxon4, taxon5, taxon6))

1.4 The number of phylogenetic trees

Let T be an unrooted phylogenetic tree on n taxa, i.e., with n leaves. How many nodes and edges
does T have? Let us assume that T is binary. Any non-binary tree on n taxa will have less nodes and
edges.

Consider a tree for n = 4, it has 6 nodes and 5 edges:

Now inductively, assume n > 4. Any tree T ′ with n+ 1 leaves can be obtained from some tree T with
n leaves by inserting a new node v into some edge e of T and connecting v to a new leaf w. This
increases both the number of nodes and the number of edges by 2.

Putting this together, we see that the number of nodes is 2n − 2 and the number of edges is 2n − 3.

An unrooted tree T with n leaves has 2n − 2 nodes and 2n − 3 edges. A root can be added in any of
the 2n − 3 edges, thus producing 2n − 3 different rooted trees from T :

a

b

c

a b c

a

b

c

ab c ac b

a

b

c

For n = 3 there are three ways of adding a root. Similarly, there are 3 different ways of adding an
extra edge with a new leaf to obtain an unrooted tree on 4 leaves. This new tree has (2n − 3) = 5
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edges and there are 5 ways to obtain a new tree with 5 leaves etc.

Continuing this, we see that there are

U(n) = (2n − 5)!! := 3 · 5 · 7 · · · · · (2n − 5)

unrooted trees on n leaves. Similarly, there are

R(n) = (2n − 3)!! = U(n) · (2n − 3) = 3 · 5 · · · · · (2n − 3)

rooted trees.

These numbers grows very rapidly with n, for example, U(10) ≈ 2 million and U(20) ≈ 2.2 × 1020.

1.5 Models of evolution

In phylogenetic analysis, a model of evolution is given by a rooted tree T , called the model-, true- or
generating tree, together with a procedure for generating sequences along the model tree.

Usually, the procedure must determine how to generate an initial sequence at the root of the tree and
specify how to “evolve” sequences along the edges of the tree. This involves obtaining intermediate
sequences for all internal nodes of the tree, and producing a set of aligned sequences A at the leaves
of the tree.

1.6 A simple model of evolution

Start with an ancestor sequence of length n at the root of a given tree. The sequence evolves up the
tree, experiencing point-mutations along the way, at a fixed rate:

Start with an ancestor sequence of length n at the root of a given tree. The sequence evolves up the
tree, experiencing point-mutations along the way, at a fixed rate:

tim
e

ACGTTTCGAG

→
ACGTTTAGAG

ACGTTTCGAG

ACCTTGCGGG

→

ACGTTTCGAG

ACGTTTAGAG

ACGGTTTGAG
ACACTGAGAG

ACCTTGCGGG

CCATTGCGGG
AGCTAGCGGG

This model allows for only two types of events, namely mutations and speciation events (at the nodes
of the tree).

1.7 The Jukes-Cantor model of evolution

T. Jukes and C. Cantor [22] formalized such a simple model of DNA sequence evolution:

Definition Let T0 be a rooted phylogenetic tree. The Jukes-Cantor model of evolution makes the
following assumptions:



Tutorial: Introduction to Algorithms in Phylogeny, Daniel Huson, April 13, 2005 8

1. The possible states for each site are A, C, G and T.

2. The initial sequence length is an input parameter and for each site the state at the root is drawn
from a given distribution (typically uniform).

3. The sites evolve identically and independently (i.i.d.) up the branches of the tree from the root
at a fixed rate u.

4. With each branch e ∈ E we associate a duration t = t(e) and the expected number of mutations
per site along e is uτ(e). The probabilities of change to each of the 3 remaining states are equal.

How do we “evolve” a sequence up a branch e under the Jukes-Cantor model?

Let a = a1a2 . . . an and b = b1b2 . . . bn denote the source and target sequences associated with e. We
assume that a has already been determined and we want to determine b.

Under the Jukes-Cantor model, the evolutionary event

nucleotide changes to one of the other three bases

occurs at a fixed rate u.

From this, we obtain a probability-of-change formula for the probability of an observable change oc-
curring at any given site in time t:

Prob(change | t) = 3
4

(

1 − e−
4

3
ut

)

.

This model can be used to “evolve” sequences along a model tree T0. Consider the following example
with u = 0.1:

ACGTTTCGAG

ACGTTTAGAG

ACCTTGCGGG

0.5 0.5
1

0.5

1

3 e

1 taxon2

1
2

taxon1

1

taxon4

taxon6 taxon5 taxon3

The root node is assigned a random sequence. Then the sequences are evolved up the branches, using
the probability-of-change formula to decide whether to “mutate” a given base.

E.g., the probability of change along the branch labeled e is

0.75(1 − e−
4
3
×0.1×3) = 0.75(1 − e−0.4) = 0.247.
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1.8 The tree reconstruction problem

Given a set of sequences that were generated along some model tree T0 according to some model, can
the model tree be reconstructed?

ACTTCTATCA

ACTCCTATCA

ACTCCTATCT

ACCCCTGTCA

ACTTCGGTCA

ACTTGTATGT

?
−→

More precisely, the challenges are:

• determine the unrooted topology of T0,

• estimate the branch lengths of T0, and

• correctly determine the position of the root in T0.

1.9 Tree reconstruction methods

There exist many different approaches to this problem [11]:

• Distance-based methods infer a distance matrix from the input data then construct a tree from
the matrix, such as:

– UPGMA [26]

– Neighbor-Joining [25] and its variants Bio-NJ [13] and Weighbor [2].

• Sequence-based methods search for a tree that optimally explains the given sequence data, such
as:

– Maximum Parsimony [8],

– Maximum Likelihood [9], and

– Bayesian inference [18].

1.10 Distances

Given a set X = {x1, x2, . . . , xn} of taxa. The input to a distance method is a dissimilarity matrix
D : X × X → R≥0 that associates a distance d(xi, xj) with every pair of taxa xi, xj ∈ X. Sometimes
we will abbreviate dij := d(xi, xj).

We usually require that
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1. the matrix is symmetric, that is, d(x, y) = d(y, x) for all x, y ∈ X, and

2. d(x, x) = 0 for all x ∈ X.

We call D a pseudo metric, if the triangle inequalities are satisfied:

d(x, z) ≤ (x, y) + d(y, z) for all x, y, z ∈ X,

and a metric, if additionally we have d(x, y) > 0 for all x 6= y.

1.11 Hamming distance

Let a collection of taxa be given by a set of distinct sequences A = {a1, a2, . . . , an} and assume we are
given a multiple sequence alignment A∗ of the sequences.

We define sequence dissimilarity as the (normalized) Hamming distance Ham(ai, aj) between two taxa
ai and aj as the number of mismatch positions in a∗

i and a∗j , divided by the number of comparisons.

We ignore any column in which both sequences contain a gap. If only one sequence has a gap in a
column then we can either ignore the column, or treat it as a match, or as a mismatch, depending on
the type of data. Usually, one ignores all columns in which any of the n sequences contains the gap.

For protein data, it makes sense to relax the definition of sequence dissimilarity to the number of
“non-synonymous” residues divided by the number of sequence positions compared.

For example, we may choose to ignore “conservative substitutions” by pooling amino acids with
similar properties into six groups: acidic (D,E), aromatic (F,W,Y), basic (H,K,R), cysteine, non-polar
(A,G,I,L,P,V), and polar (M,N,Q,S,T). Two residues are considered synonymous, if the are contained
in the same group, and non-synonymous, otherwise.

There exist many different methods for computing distances from DNA or protein sequences.

Example:

a1 C A A C C C C C A A A A A

a2 T A A T T T - C A A A A A

a3 C G G T T T - - A A A A A

Distances:

Ham(a1, a2) =
4

12
= 0.33

Ham(a1, a3) =
5

11
= 0.45

Ham(a2, a3) =
3

11
= 0.27

Hamming distances are only suitable for closely related sequences.

1.12 The Jukes-Cantor distance transformation

The Hamming distance is an underestimation of the number of mutations that happened along a path
between two leaves ai and aj. This is addressed using a transformation based on a model of evolution
such as the Jukes-Cantor model:
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Lemma The maximum likelihood distance between a pair of sequences ai, aj (that is, the most likely
ut to have generated the observed sequences) is given by the following formula:

JC(ai, aj) = −
3

4
ln

(

1 −
4

3
Ham(ai, aj)

)

.

This is called the Jukes-Cantor distance transformation.

1.13 UPGMA

We will now discuss a simple distance method called UPGMA which stands for unweighted pair group
method using arithmetic averages [26].

Given a set of taxa X and a distance matrix D, UPGMA produces a rooted phylogenetic tree T with
edge lengths.

It operates by clustering the given taxa, at each stage merging two clusters and at the same time
creating a new node in the tree. The tree is assembled “upwards”, first clustering pairs of leaves, then
pairs of clustered leaves etc. Each node is given a height and the edge lengths are obtained as the
difference of heights of its two end nodes.

1.14 UPGMA example

Example X = {1, 2, 3, 4, 5}, distances given by distance in the plane:

3

4

5

1 2

6 t1=t2=1/2 d(1,2)

1 2

1 2

6

3

4

5

1 2

7

4 5

t4=t5=1/2 d(4,5)

cluster 1 and 2 cluster 4 and 5
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1 2

6

3

4

5

1 2

7

4 5

8

1/2 d(3,7)

3

3

4

5

1 2

7

4 5

8

31 2

6

9

1/2 d(6,8)

cluster 7 and 3 cluster 6 and 8

UPGMA produces a rooted, binary phylogenetic tree.

1.15 The distance between two clusters

Initially, we are given a distance d(x, y) between any two taxa, i.e. leaves, x and y.

We define the distance d(i, j) := d(Ci, Cj) between two clusters Ci ⊆ X and Cj ⊆ X to be the average
distance between pairs of taxa from each cluster:

d(i, j) =
1

|Ci||Cj |

∑

x∈Ci,y∈Cj

d(x, y).

Note that, if Ck is the union of two clusters Ci and Cj , and Cl is any other cluster, then

d(k, l) =
d(i, l)|Ci| + d(j, l)|Cj |

|Ci| + |Cj|
.

This is a useful update formula, because using it in the algorithm, we can obtain the distance between
two clusters in constant time.

1.16 The UPGMA algorithm

The UPGMA algorithm is very straight-forward:

Algorithm UPGMA
Input: A set of taxa X and a corresponding distance matrix D

Output: A binary, rooted phylogenetic UPGMA tree on T

Initialization

Assign each taxon xi to its own cluster Ci

Define one leaf of T for each taxon, placed at height zero
Iteration
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Determine two clusters Ci and Cj for which d(i, j) is minimal
Define a new cluster k by Ck = Ci ∪ Cj

Define d(k, l) for all existing clusters l using the update formula

Define a node k with daughter nodes i and j, and place it at height d(i,j)
2

Add Ck to the set of current clusters and remove Ci and Cj .
Termination

When only two clusters Ci and Cj remain, place the root at height d(i,j)
2 .

(Problem: show that this algorithm produces well-defined edge lengths, i.e. a parent node always lies above its
daughters.)

Finally, for each edge e, set the edge length ω(e) equal to the difference of the heights of the two
incident nodes.

Example of UPGMA applied to 5S rRNA data:

Original distances:

Abbreviations:

Bsu: Bacillus subtilis

Bst: Baclillus stearothermophilus

Lvi: Lactobacillus viridescens

Amo: Acholeplasma modicum

Mlu: Micrococcus luteus

Bsu Bst Lvi Amo Mlu
Bsu − 0.1715 0.2147 0.3091 0.2326
Bst − 0.2991 0.3399 0.2058
Lvi − 0.2795 0.3943

Amo − 0.4289
Mlu

→

Bsu + Bst Lvi Amo Mlu
Bsu + Bst − 0.2569 0.3245 0.2192

Lvi − 0.2795 0.3943
Amo − 0.4289
Mlu −

→

Bsu + Bst + Mlu Lvi Amo
Bsu + Bst + Mlu − 0.3027 0.3593

Lvi − 0.2795
Amo −

→
Bsu + Bst + Mlu Lvi + Amo

Bsu + Bst + Mlu − 0.3310
Lvi + Amo −

The resulting tree:

00.050.100.150.20

Amo

Lvi

Mlu

Bst

Bsu

This tree is biologically incorrect, as we will see later.
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1.17 The molecular clock hypothesis

Given a distance matrix D, the UPGMA method aims at building a rooted tree T with the property
that all leaves have the same distance from the root ρ:

1 4 2 3

This approach is suitable for sequence data that has evolved under circumstances in which the rate of
mutations of sequences is constant over time and for all lineages in the tree.

Definition The assumption that evolutionary events happen at a constant rate is called the molecular
clock hypothesis.

1.18 UPGMA and the molecular clock

If the input distance matrix D was directly obtained from a generating phylogenetic tree T0 that
adheres to the molecular clock assumption, then the tree T reconstructed by UPGMA from D will
equal T0. Otherwise, if T0 does not do so, then UPGMA may fail to reconstruct the tree correctly, for
example:

2
3

1 4

T0

−→
UPGMA

1 4 2 3
T

The problem here is that the closest leaves in T0 are not neighboring leaves: they do not have a
common parent node.

1.19 The ultrametric property

A distance matrix D is called an ultrametric, if for every triplet of taxa xi, xj , xk ∈ X, the three
distances d(xi, xj), d(xi, xk) and d(xj , xk) have the property that either:

1. all three distances are equal, or

2. two are equal and the remaining one is smaller.
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Note that if D was directly obtained from some tree T that satisfies the molecular clock hypothesis,
then D is an ultrametric:

xkxjxi x’i x’j x’k

condition (1) condition (2)

We say that a rooted phylogenetic tree T is ultrametric, if every leaf has the same distance from the
root.

One can show the following results:

Theorem A distance matrix D is directly obtainable from some ultrametric tree T , if and only if D

is an ultrametric.

Theorem If D is a distance matrix directly obtainable from some ultrametric tree T , then UPGMA
applied to D will produce that tree T .

1.20 Additivity and the four-point condition

Given a set of taxa X. A distance matrix D on X is called additive, if D is directly obtainable from
some phylogenetic tree T .

Given an arbitrary distance matrix D. Can we determine whether D is additive without attempting
to obtain a suitable tree? The answer is yes, using the following result due to Peter Buneman [4]:

Theorem A distance matrix D on X is additive, iff for every quartet of (not necessarily distinct) taxa
xi, xj , xk, xl ∈ X the so-called four-point condition holds:

d(xi, xj) + d(xk, xl) ≤ max (d(xi, xk) + d(xj , xl), d(xi, xl) + d(xj , xk)) .

(That is, two of the three expressions d(xi, xj)+d(xk, xl), d(xi, xk)+d(xj , xl), and d(xi, xl)+d(xj , xk)
are equal and are larger than the third.)

Distances obtained directly from a phylogenetic tree:

B

C
D

A

2

1
2

2

3

Check the four-point condition with:
d(A,B) + d(C,D) = 7 + 5 = 12
d(A,C) + d(B,D) = 6 + 6 = 12
d(A,D) + d(B,C) = 5 + 3 = 8
⇒ the four-point condition holds.

A phylogenetic network:
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C
D

1
2

2

A

3

B

2

2

11

Check the four-point condition with:
d(A,B) + d(C,D) = 7 + 5 = 12
d(A,C) + d(B,D) = 7 + 7 = 14
d(A,D) + d(B,C) = 6 + 4 = 10
⇒ d(A, C) + d(B, D) 6≤

max (d(A, B) + d(C, D), d(A, D) + d(B, C))

⇒ 4-point condition doesn’t hold.

1.21 Neighbor-Joining

The most widely used distance method is Neighbor-Joining (NJ), originally introduced by Saitou and
Nei [25], and modified by Studier and Keppler [27].

Given a distance matrix D, Neighbor-Joining produces an unrooted phylogenetic tree T with edge
lengths.

It is more widely applicable than UPGMA, as it does not assume a molecular clock.

Let D be a distance matrix directly obtainable from some (unknown) tree T . Assume that we are
building a tree based on D by repeatedly pairing “neighboring” taxa. The following step reduces the
number of leaves by one and we can repeatedly apply it until we arrive at a single pair of leaves:

Let i and j be two neighboring leaves that have the same parent node, k. Remove i, j from the list of
nodes and add k to the current list of nodes, defining its distance to any given leaf m by

dkm =
1

2
(dim + djm − dij).

By additivity of D, the distances dkm defined in this way are precisely those between equivalent nodes
in the original tree:

j

ki

m

In other words, for any three leaves i, j,m there is a node k where the paths to them meet. By
additivity,

dim = dik + dkm, djm = djk + dkm and dij = dik + djk,

which implies dkm = 1
2(dim + djm − dij).

How to determine which nodes are neighbors?

The Neighbor-Joining method is based on the fact that we can decide which nodes are neighbors,
using only the distance matrix.

However, it does not suffice simply to pick the two closest leaves, i.e. a pair i, j with dij minimal, for
example:
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0.1

0.4

0.4

0.1

0.1

x2

x1

x4

x3

Given distances generated by this tree. Leaves x1 and x2 have minimal distance, but are not neighbors.

To avoid this problem, the trick is to subtract the “averaged distances” to all other leaves, thus
compensating for long edges. We define:

Nij := dij − (ri + rj),

where

ri =
1

|L| − 2

∑

k∈L

dik,

and L denotes the set of leaves. (Note that this is not precisely the average, as the number of summands
is |L|, not |L − 2|. However, this expression is correct and is necessary for the proof of the following
result.)

Lemma If D is directly obtainable from some tree T , then the 2 leaves xi and xj for which Nij is
minimal are neighbors in T .

This result ensures that the Neighbor-Joining algorithm will correctly reconstruct a tree from its
additive distances.

Let us illustrate this result using the previous example:

0.1

0.4

0.4

0.1

0.1

x2

x1

x4

x3

Here, r1 = 0.7, r2 = 0.7, r3 = 1.0 and r4 = 1.0. And so,

N =























x1 x2 x3 x4

x1 − −1.1 − 1.2 −1.1
x2 − −1.1 −1.2

x3 − −1.1
x4 −

The matrix N attains a minimum value for the pair i = 1 and j = 3 and for the pair i = 2 and j = 4,
as required.

1.22 The Neighbor-Joining algorithm

Algorithm (Neighbor-Joining)
Input: Distance matrix D

Output: Phylogenetic tree T
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Initialization:
Define T to be the set of leaf nodes, one for each taxon.
Set L = T .

Iteration:
Pick a pair i, j ∈ L for which Nij is minimal.
Define a new node k and

set dkm = 1
2(dim + djm − dij), for all m ∈ L.

Add k to T with edges of lengths dik = 1
2 (dij + ri − rj) and

djk = dij − dik, joining k to i and j, respectively.
Remove i and j from L and add k.

Termination:
When L consists of two leaves i and j, add the remaining

edge between i and j, with length dij .

1.23 Application of Neighbor-Joining

Given an additive distance matrix D directly obtained from a phylogenetic tree T , Neighbor-Joining
is guaranteed to reconstruct T correctly.

However, in practice we are never given a matrix that was “directly obtained” from the generating tree,
but rather the distance matrix is usually obtained very indirectly by a comparison of finite sequence
data generated along the tree. Such data is rarely additive. Nevertheless, the Neighboring-Joining
method is often applied to such data and has proved to be a fast, useful and robust tree reconstruction
method.

1.24 Example

Example of Neighbor-Joining applied to 5S rRNA data:

Original distances:

Abbreviations:

Bsu: Bacillus subtilis

Bst: Baclillus stearothermophilus

Lvi: Lactobacillus viridescens

Amo: Acholeplasma modicum

Mlu: Micrococcus luteus

Bsu Bst Lvi Amo Mlu
Bsu − 0.1715 0.2147 0.3091 0.2326
Bst − 0.2991 0.3399 0.2058
Lvi − 0.2795 0.3943

Amo − 0.4289
Mlu

The resulting tree:

0.07295

0.111 0.141

0.065
0.050

0.0490.168Amo
Bsu

Bst

MluLvi
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1.25 Maximum Parsimony

The Maximum Parsimony method is by far the most used sequence-based tree reconstruction method.

In science, the principal of Maximum Parsimony is well known: always use the simplest, most par-
simonious explanation of an observation, until new observations force one to adopt a more complex
theory.

In phylogenetic analysis, the Maximum Parsimony problem is to find a phylogenetic tree that explains
a given set of aligned sequences using a minimum number of “evolutionary events”.

1.26 The Parsimony score of a tree

The difference between two sequences x = (x1, . . . , xL) and y = (y1, . . . , yL) is simply their non-
normalized Hamming distance

diff(x, y) = |{k | xk 6= yk}|.

Given a multiple alignment of sequences A = {a1, a2, . . . , an} and a corresponding phylogenetic tree
T , leaf-labeled by A.

If we assign a hypothetical ancestor sequence to every internal node in T , then we can obtain a score
for T together with this assignment, by summing over all differences diff(x, y), where x and y are any
two sequences labeling two nodes that are joined by an edge in T .

The minimum value obtainable in this way is called the Parsimony score PS(T,A) of T and A.

1.27 The Small Parsimony problem

The small parsimony problem is to compute the Parsimony score for a given tree T . Can it be solved
efficiently?

As the Parsimony score is obtained by summing over all columns, the columns are independent and
so it suffices to discuss how to obtain an optimal assignment for one position:

b d

e
f

c

a A C A

C GG

→

G
C A

GA C

unrooted tree rooted tree

1.28 The Fitch algorithm

The following algorithm computes the Parsimony score for T and a fixed column in the sequence
alignment. It modifies a global score variable and is repeatedly run to obtain the total score. Initially
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it is called with e = null and v the root node.

Algorithm ParsimonyScore(e, v) [12]
Input: A phylogenetic tree T and a character c(v) for each leaf v

Output: The Parsimony score for T and c

if v is a leaf node then

Set R(v) = {c(v)}
else

for each edge f1, f2 6= e adjacent to v do

Let wi be the opposite node of fi

Call ParsimonyScore(fi, wi) // to compute R(wi)
if R(w1) ∩ R(w2) 6= ∅ then

Set R(v) = R(w1) ∩ R(w2)
else

Set R(v) = R(w1) ∪ R(w2) and increment the global score
end

We can use the Fitch algorithm to show that the Parsimony score for the following labeled tree is 3:

G
C A

GA C

In total, the algorithm requires O(nL) steps.

1.29 Traceback

The above algorithm computes the Parsimony score. An optimal labeling of the internal nodes is
obtained via traceback: starting at the root node r, we label r using any character in R(r). Then, for
each child w, we us the same letter, if it is contained in R(w), otherwise we us any letter in R(w) as
label for w. We then visit the children von w etc:

G
C A

GA C

C
C

G

G
G

Again, the algorithm requires O(nL) steps, in total.

Example:
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{C,T}

{C}

{C,T}

{C}
{T}{T}{C} C T

C
T

C

C

C

Fitch labeling one traceback result

C T
C

T

C

C

T

C T
C

T

T

T

T

another traceback result not obtainable by traceback

1.30 A simple example

Assume we are given the following four aligned sequences:

A A G

A A A

G G A

A G A

There are three possible binary topologies on four taxa:

AAG
AAA

GGA
AGA

AAG
AGA

AAA
GGA

AAG AAA
GGA AGA

In each tree, label all internal nodes with sequences so as to minimize the score obtained by summing
all mismatches along edges. Which tree minimizes this score?

1.31 The Large Parsimony problem

Given a multiple alignment A = {a1, . . . , an}, it’s Parsimony score is defined as

PS(A) = min{PS(T,A) | T is a phylogenetic tree on A}.
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The Large Parsimony problem is to compute PS(A).

Potentially, we need to consider all (n − 5)!! possible trees. Unfortunately, in general this can’t be
avoided and the Maximum Parsimony problem is known to be NP-hard.

Exhaustive enumeration of all possible tree topologies will only work for n ≤ 10 or 11, say.

Thus, we need more efficient strategies that either solve the problem exactly, such as the branch and
bound technique, or return good approximations, such as heuristic searches.

Remark: As with most biological problems, we are not only interested in the optimal solution, but
would also like to know something about other near optimal solutions as well.

1.32 Branch and bound

Recall how we obtained an expression for the number U(n) of unrooted phylogenetic tree topologies
on n taxa:

For n = 3 there are three ways of adding an extra edge with a new leaf to obtain an unrooted tree
on 4 leaves. This new tree has (2n − 3) = 5 edges and there are 5 ways to obtain a new tree with 5
leaves etc.

To be precise, one can obtain any tree Ti+1 on {a1, . . . , ai, ai+1} by adding an extra edge with a leaf
labeled ai+1 to some (unique) tree Ti on {a1, . . . , ai}.

In other words, we can produce the set of all possible trees on n taxa by adding one leaf at a time in
all possible ways, thus systematically generating a complete enumeration tree.

A simple, but crucial observation is that adding a new sequence ai+1 to a tree Ti to obtain a new tree
Ti+1 cannot lead to a smaller Parsimony score.

This gives rise to the following bound criterion when generating the enumeration tree: if the local

Parsimony score of the current incomplete tree T ′ is larger or equal to the best global score for any
complete tree seen so far, then we do not generate or search the enumeration subtree below T ′.

In practice, using branch and bound one can obtain exact solutions for data sets of twenty or more
sequences, depending on the sequence length and the messiness of the data.

A good starting strategy is to first compute a tree T0 for the data, e.g. using Neighbor-Joining, and
then to initialize the global bound to the Parsimony score of T0.

Example Assume we are given an msa A = {a1, a2, . . . , a5} and at a given position i the characters
are: a1i = A, a2i = A, a3i = C, a4i = C and a5i = A. Assume that the Neighbor-Joining tree on A looks

like this:
a1

a2
a3 a5

a4
A

A C A

C

and thus gives a global upper bound of global = 2 for position i. The first

step in generating the enumeration tree is this:
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A

A

C

a

a
a1

2

3

↙ ↓ ↘
A

A

C

C A

A

C

C A

A

C

C

local = 1 < global local = 2 6< global local = 2 6< global

continue don’t continue don’t continue

Only the first of the three trees fulfills the bound criterion and we do not pursue the other two trees.
The second step in generating the enumeration tree looks like this:

A

A

C

C

↙ ↓ ↘

A

A

C

CA

A

A

C

C

A A

A

C

C

A A

A

C

C

A A

A

C

CA

local = 1 local = 1 local = 1 local = 2 local = 2

The first three trees are optimal. Note that the bound criterion in the first step reduced the number
of full trees to be considered by two thirds.

Application of branch-and-bound to evolutionary trees was first suggested by Mike Hendy and Dave Penny
(1982).

1.33 Branch swapping methods

The two heuristics just described are both very susceptible to entrapment in local optima. We now
discuss a number of branch-swapping operations that one can use to move through the space of all
trees, hopefully jumping far enough to escape from local optima.

In a nearest-neighbor interchange (NNI), two of the four subtrees around an edge are swapped, in two
different ways:



Tutorial: Introduction to Algorithms in Phylogeny, Daniel Huson, April 13, 2005 24

a

b

c d e

f

g

↘
↓

a

b

e

f

g

d c

e f

g

a

b

d

c

In branch swapping by subtree pruning and re-grafting, a subtree is pruned from the tree and re-grafted
to a different location of the tree:

a

b

c d e

f

g

↓

a

b

c d e

f

g
→ a

b

d e

f

g

c

In branch swapping by tree bisection and reattachment, the tree is bisected at an edge, yielding two
subtrees. The two subtrees are then reconnected at two new positions:
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a

b

c d e

f

g

↓

a

b

c

e

f

g

d
→

a

b

c

e

f

g

d

1.34 Heuristic search

If the data set A = {a1, . . . , an} is too big to be solved exactly via branch and bound, then we can
use a heuristic search method in an attempt to find or approximate the optimal solution.

This involves searching through the space of all unrooted phylogenetic trees on n labels and trying to
proceed toward a globally optimal one. We “move” through tree space using one or more branching-
swapping techniques.

Heuristic searches employ hill-climbing techniques: we imagine that the “goodness” −PS(T ) of the
solution as a landscape along which we move during the search. The general strategy is to always
move upwards in the hope of reaching the top of the highest peak.

Even using the above described branch-swapping techniques, any heuristic search is in danger of
“climbing the wrong mountain” and getting stuck in a local optimum. Different strategies have been
developed to avoid this problem.

1.35 Simulated annealing

The simulated annealing method employs a temperature that cools over time [23]. At high temperatures
the search can move more easily to trees whose score is less optimal than the score of the current tree.
As the temperature decreases, the search becomes more and more directed toward better trees.

I.e., let Ti denote the current tree at step i and let z(Ti) denote the goodness of Ti (e.g., −PS(T )).
In hill climbing, a move to Ti+1 is acceptable, if z(Ti+1) ≥ z(Ti). In simulated annealing, any new
solution is accepted with a certain probability:

Prob(accepting solution Ti+1)

=

{

1 if z(Ti+1) ≥ z(Ti)

e−ti(z(Ti+1)−z(Ti)) otherwise,
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where ti is called the temperature and decreases over time.

1.36 The Great Deluge method

The Great Deluge method, introduced by Gunter Dueck and Tobias Scheuer[7], employs a slowly rising
water level and the search accepts any move that stays above the water level.

The probability of accepting a new solution Ti+1 is 1, if z(Ti+1) > wi, where wi is a bound that
increases slowly with time.

If Ti+1 is accepted, then we update the water level by setting

wi+1 = c × (z(Ti+1) − z(Ti)) .

Typically, the constant c is usually about 0.01 to 0.05.

Another of the many heuristics is tabu search method that maintains a tabu list of 5 − 10 solutions
recently visited and refrains from revisiting them.

1.37 Maximum Likelihood and Bayesian methods

Any Maximum Likelihood or Bayesian method is based on an explicit model of evolution, such as the
Jukes-Cantor model.

In the maximum-likelihood approach, one computes the “likelihood” P (T | A) that the true tree is T ,
given that the alignment A was observed. The method returns:

TML = max
T

P (T | A).

More desirable is the tree T that maximizes the probability of generating the data A (computed using
Bayes’ Theorem):

TBayesian = max
T

P (A | T ).

Both approaches are computationally very expensive.

1.38 Maximum Likelihood Estimation (MLE)

Given a multiple alignment A = {a1, . . . , an}. Assuming a specific model of evolution M , one may
attempt to estimate a phylogenetic tree T with edge lengths ω that maximizes the likelihood

P (A | T )

of generating the sequences a1, . . . , an at the leaves of T .

A main attraction of Maximum Likelihood estimation (MLE) is that it provides a systematic frame-
work for explicitly incorporating assumptions and knowledge about the process that generated the
given data.
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One potential draw-back is that any given model of evolution is only a rough estimation of real-world
biological evolution. Fortunately, in practice, Maximum Likelihood methods have proved to be quite
robust to many violations of the assumptions formulated in the models. MLE methods work very well
on small data sets.

Similar to Maximum Parsimony, an optimal MLE tree is determined by a search in tree space. One
can attempt to find an exact solution, using branch and bound techniques, or one can attempt to find
a good approximate solution using a heuristic search technique. . .

A main draw-back of MLE appears to be that it is very expensive to compute, even more so that
Maximum Parsimony.

In the case of Maximum Parsimony, we are able to solve the Small Parsimony problem in polynomial
time using the Fitch algorithm.

In the case of MLE, no such fast method of evaluating a single tree is known.

Given a multiple alignment A = {a1, . . . , an}, MLE seeks to determine the topology (evolutionary
branching order) and branch lengths of the true or generating tree.

This is done under the assumption of a model of evolution, such as the Jukes-Cantor model, described
above, or more general models. Such models for biological sequences are usually time reversible and
thus the likelihood of a tree is generally independent of the location of the root.

Example Assume that we are given the following msa A = {a1, . . . , a4}:

1 2 i N

sequence a1 A C . . . G C G . . . A

sequence a2 A C . . . G C C . . . G

sequence a3 A C . . . T A C . . . G

sequence a4 A C . . . T G G . . . A

There are three possible unrooted tree topologies on four taxa:

a1

a2

a3

a4

a1

a4a3

a2 a1 a2

a4 a3

We now discuss how to compute the Maximum Likelihood for the first tree. The other trees are
processed similarly.

For simplicity, we root the tree at an arbitrary internal node and then consider each position i =
1, 2, . . . , N in the sequence:

(2)

(1) (3)

(4)

→

(3)(2)(1) (4)

(5)

(6)

C C A G

(6)

(5)

original tree topology rooted version labeled by characters
at position i

Schematically, we obtain the likelihood that this tree generated the characters seen at position i of
the multiple alignment by summing over all possible labelings of the internal nodes by characters:
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L(i) = Prob
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∣
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∣
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C A G 







We then multiple the likelihoods obtained for each position:

L = L(1) · L(2) · · · · · L(N) =

N
∏

i=1

L(i).

Obviously, the individual probabilities will often be very small and so we add their logarithms instead
of using multiplication:

lnL = lnL(1) + lnL(2) + · · · + lnL(N) =
N

∑

i=1

lnL(i).

Actually, the situation is more complicated as we must determine the choice of edge lengths for the
given tree that produces the highest likelihood.

How do we compute e.g. Prob









A

∣

∣

∣

∣

∣

∣

∣

∣

C

AA

A

C A G 







?

Let us look at this under the Jukes-Cantor model of evolution with a fixed mutation rate u, as discussed
above. For any edge e, let P and Q denote the labels at the two opposite ends of e. The probability
of P = Q is given by

Prob(Q = P | T ) =
1

4
(1 + 3e−

4
3
ut),

and the probability that the two characters differ is

1 − Prob(Q = P | T ) =
3

4
(1 − e−

4
3
ut),

where t = ω(e).

The total probability that this tree with this labeling of internal nodes generated the observed data
at the leaves of the tree is obtained by multiplication of the probabilities for each edge.
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1.39 Software

Here is a small selection of software that build phylogenetic trees:

• PAUP* [28], a program for performing phylogenetic analysis using parsimony, Maximum Like-
lihood and other methods,

• Phylip [10], a package for phylogenetic inference,

• MrBayes [17], a program for Bayesian inference of trees,

• Mesquite [24], a modular system for evolutionary analysis,

• PAL [6], an object-oriented programming library for molecular evolution and phylogenetics, and

• SplitsTree4 [19, 20], an integrated program for estimating phylogenetic trees and networks.



Chapter 2

Consensus networks and super
networks

In this chapter we first discuss additional evolutionary events that are not considered in simple models
such as the one proposed by Jukes and Cantor.

This will lead us to the fundamental observation that:

gene trees differ.

Hence, it may not be adequate to represent a set of gene trees by a single consensus tree, as is sometimes
done, and we will discuss how to represent the conflicting signals using a “consensus network” or “super
network”.

Finally, we will briefly look at some other methods that use a network to represent conflicting signals.

2.1 Additional evolutionary events

Models such as the Jukes-Cantor one are usually understood to represent the evolution of a single
gene. They don’t consider insertions and deletions, or more complicated events.

If one studies more than one gene simultaneously, additional evolutionary events must be taken into
account. E.g.:

• individual genes may be born, duplicated or lost.

Moreover, biological mechanisms such as

• recombination,

• hybridization, or

• horizontal gene transfer

may be involved.

30
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2.2 Gene trees can differ

Now, suppose we are given one or more genes for X. Consider a model in which the sequence of a
gene evolves via mutations, but we also allow gene duplication or loss.

The true phylogeny of a gene can differ from the model phylogeny. here we depict a species phylogeny
using bold parallel lines and the history of a single gene by thin lines:

x

xx

A B C

duplication

loss

A B C A B C

So, true “gene trees” can differ from the true “species phylogeny” and also from each other.

2.3 The split encoding of a tree

Let X = {x1, . . . , xn} be a set of taxa and g1, . . . , gk a set of genes that are present in all taxa. For
each gene gi we are given a sequence alignment Ai.

Assume that we have reconstructed a phylogenetic tree Ti for each gene gi. The goal is to compute a
consensus of these trees. To this end, we introduce the following concepts.

An X-split S = A
B

(= B
A

) is a bipartitioning of X with [1]:

A,B 6= ∅, A ∩ B = ∅ and A ∪ B = X.

Any edge e of T defines a split S = A
B

, where A and B are the sets of taxa contained in the two
sub-trees defined by e. E.g.:

e

t1

t2

t3

t4

t5 t6
t7

t8

For the edge labeled e we get:
A = {t3, t4, t5} and B = {t1, t2, t6, t7, t8}.

Let Σ(T ) denote the split encoding of T , i.e. the set of all splits obtained from T .

Consider the tree T :
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The split encoding Σ(T ) contains 5 trivial splits and 2 non-trivial ones. The trivial splits are:

{a}

{b, c, d, e}
,

{b}

{a, c, d, e}
,

{c}

{a, b, d, e}
,

{d}

{a, b, c, e}
and

{e}

{a, b, c, d}
,

and the non-trivial ones are:
{a, b}

{c, d, e}
and

{a, b, e}

{c, d}
.

2.4 Trees and splits

Two different X-splits S = A
B

and S′ = A′

B′ are compatible, if “one is a refinement of the other”, that
is, if one of the four following inclusions holds:

A ⊂ A′, A ⊂ B′, B ⊂ A′, or B ⊂ B′.

This is an important concept, as we have:

Lemma Let Σ be a set of X-splits. Then there exists an unique X-tree T with Σ(T ) iff Σ is compatible
[4].

2.5 Representing incompatible splits

Any compatible set of X-splits can be represented by a phylogenetic tree. What about incompatible
splits sets?

Consider the following two trees T1 and T2, for which the splits Sp = {a,b,c}
{d,e} ∈ Σ(T1) and Sq = {a,b,d}

{c,e} ∈

Σ(T2) are incompatible:

T1 T2 SN(Σ)

The “splits network” SN(Σ) represents the incompatible set of splits Σ := Σ(T1)∪Σ(T2), using “bands
of parallel edges” to represent splits that are incompatible with others [5].
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2.6 Consensus of trees

A collection of trees T = {T1, . . . , TK} is often summarized using a consensus tree.

Let Σall = ∪T∈T Σ(T ) be the set of all present splits.

Let Σ(p) = {S ∈ Σall : |{T ∈ T : S ∈ Σ(T )}| > pK} be the set of splits that occur in more than a
proportion p of all trees. Then,

• Σ∗(1) :=
⋂

i Σ(Ti) defines the strict consensus,

• Σ(1
2) defines the majority consensus, and, more generally,

• Σ( 1
d+1) (d ≥ 0) defines a set of consensus splits.

Note that both Σ∗(1) and Σ( 1
2) are always compatible and thus correspond to trees, whereas Σ( 1

d+1)
with d ≥ 0 may be incompatible and thus is usually represented by a network.

For example, given these trees as input:

t1

t4
t5

t6

t3
t2 1.0

t1

t4

t5

t6

t3

t2 1.0

t1

t4
t5

t6

t3
t2

 1.0

t1

t4
t5

t6

t3 t2 1.0

t1

t4

t5

t6

t3

t2

 1.0

t1

t4t5

t6

t3 t2
 1.0

We get these consensus trees and networks:

t1

t4

t5

t6

t3 t2 1.0

t1

t4

t5

t6

t3 t2 1.0

t1

t4

t5

t6

t3 t2
 1.0

t1

t4
t5

t6

t3
t2 1.0

Σ(1
2 ) = Σ∗(1) Σ(1

3 ) Σ(1
6 ) Σ(0)

2.7 Consensus networks

Often, a set of trees T = {T1, . . . , TK} is summarized using a consensus tree.

This may not always be appropriate, as gene trees are not necessarily different estimations of the same
true phylogeny, but may differ substantially for biological reasons.

A consensus network is obtained by computing the consensus splits Σ( 1
d+1) for some fixed value d ≥ 0.

The parameter d sets the maximum dimensionality of the corresponding network: for d = 1 the
network will be 1-dimensional, hence a tree, for d = 2 the network may contain parallelograms, and
in general it may contain cubes of dimension ≤ d [15, 14].
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2.8 Consensus super networks

Consider a set of taxa X = {x1, . . . , xn} and a set of genes G = {g1, . . . , gt}.

It is often the case that a given gene is not available for all taxa and the alignment Ai associated with
some gene gi only contains sequences for a subset X ′ ⊂ X. Then, any X ′-tree inferred from Ai is
called a partial X-tree.

For a collection of partial trees T = {T1, . . . , TK}, the consensus methods above do not apply.

One alternative is to compute an optimal super tree T that “optimally” summarizes the set of input
trees.

A second approach is to summarize the input trees in terms of a super network that attempts to
represent as many of the input “partial” splits as possible.

The Z-closure method [21] takes as input a set of partial X-trees T = {T1, . . . , TK} and produces as
output a set of X-splits Σ. Here is an example of five partial gene trees and a summarizing super
network:

super network

2.9 Bootstrap network

One popular way to study how robust the different branches of an inferred tree, is to generate many
“bootstrap replicates” by randomly resampling from the given alignment A. Then, every branch of
the originally inferred tree is labeled by the percentage of replicates that yield the corresponding split.

We propose to construct a bootstrap network [20] by collecting all splits that are present in any of the
replicates and displaying them in a splits network:
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NJ tree with bootstrap values bootstrap network

2.10 Distance-based network methods

So, incompatible splits arise naturally in the context of consensus. There also exist a number of
methods that generate incompatible splits directly from a distance matrix.

The split decomposition [1] takes as input a distance matrix D on X and produces a set of weighted
X-splits Σdecomp, where the sum of weights of all splits that “separate” two taxa x, y ∈ X is an
approximation of the given distance D(x, y).

This method has the nice property that it produces a tree, whenever the distance matrix fits a tree,
and otherwise it produces a tree-like splits network that potentially displays different and conflicting
signals in a given data set.

To illustrate this, compare the bootstrap network with the network produced using the split decom-
position method:

bootstrap network split decomposition

Here, both the bootstrap analysis and split decomposition indicate that the input sequences contain
two different and incompatible signals.

The split decomposition is a useful for visualizing conflicting signals in a data set. However, it is
sensitive to noise and only has good resolution for data sets of up to about 20 taxa.

The Neighbor-Net method [3] is a hybrid of Neighbor-Joining and split decomposition. It is applicable
to data sets containing hundreds of taxa. Here is an example based on human mtDNA:
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2.11 Software

• SplitsTree4 [20] provides implementations of all methods described in this chapter, including a
number of different algorithms for constructing networks from splits.

• SpectroNet [16] provides an algorithm for constructing a splits network (a special case, namely
the median network) and some related methods
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