
Extraction of Multiple Stance Navigation Data in

Arbitrary Polygonal Environments

Studienarbeit
im Rahmen des Diplomstudiengangs Informatik

eingereicht am Institut für Informatik
der Humboldt-Universität zu Berlin

vonSara Budde
und Leonard Kausch

Betreuer:Prof. Dr.-Ing. Peter Eisert

eingereicht am: 18.5.2012

Contents

1 Introduction 1

2 Problem De�nition 2

3 Navigation Graph De�nition 4

4 Navigation Graph Generation 4
4.1 Brief Concept . 4
4.2 Import of World Geometry . 5
4.3 Preliminary Welding of Input Polygons . 5
4.4 Steepness Test of Polygons . 5
4.5 Sort Polygons into Spatial Partitioning System 6
4.6 Volume Collision Decomposition . 6
4.7 Smooth Welding of Traversable Polygons . 6
4.8 Optimization of the Navigation Graph . 7

5 Volume Collision Decomposition 7
5.1 Idea . 7
5.2 Algorithm . 9
5.3 Slicing by Vertical Blocker . 12
5.4 Parallel Traversable and Blocker . 14
5.5 Cut o� Blocker beneath Traversable . 14
5.6 Cut across Blocker in Upper Blocker and Lower Blocker 15
5.7 Traversable Decomposition . 16

6 Blocker Slicing 18
6.1 Idea . 18
6.2 Algorithm . 18
6.3 Distance Calculation . 21
6.4 Polygon-Plane Intersection Cases . 23
6.5 Blocker-Traversable Plane Intersection Point Calculation 27
6.6 Blocker Slicing in Lower Blocker and Upper Blocker 31

7 Traversable Decomposition 32
7.1 De�nition . 32
7.2 Algorithm . 33
7.3 Projected Outline Intersection . 36

7.3.1 De�nition . 36
7.3.2 Line-Line Intersection . 38
7.3.3 Intersection Point De�nition . 41

7.4 Traversable Totally Contained in Blocker . 43
7.5 Blocker Totally Contained in Traversable . 43

7.5.1 De�nition . 43
7.5.2 Start Vertex Selection . 44
7.5.3 Convex Decomposition . 46

7.6 Coplanar Polygon Cutting . 53
7.6.1 Intro/Overview . 53
7.6.2 Blocker and Traversable are Coplanar in 3D-Space 53
7.6.3 Intermediate Vertices . 53
7.6.4 Coplanar Polygon Cutting Example 56
7.6.5 Coplanar Polygon Cutting (CPC) Automaton 59
7.6.6 CPC Convex Decomposition Call . 64
7.6.7 CPC Result Processing . 66

8 Slicing by Vertical Blocker 67

9 Implementation 69
9.1 Introduction . 69
9.2 Conservative Vertex Creation . 69
9.3 Minimal Edge Length and Vertex Snapping 70

10 Conclusions 71

11 Acronyms 73

12 References 73

This document describes an e�cient way to extract multiple stance

navigation data with complete coverage for human like agents from

arbitrary polygon clouds in three-dimensional space. The multiple

stance information is obtained by layered volume obstruction tests

realized in the Volume Collision Decomposition.

1 Introduction

To be able to have agents planning complex navigation paths you �rst need to have

detailed data about how and where di�erent movements are possible. So to have complex

movement of agents, one needs to have a precise and detailed navigation graph (see

section 3) with complete coverage of the traversable surface.

Our every day surroundings are build to be easily traversable, so the ability for complex

movement shines when the agents are put into more chaotic environments. To give a

striking example, to move through the ruins of a collapsed skyscraper requires detailed

knowledge of the traversability of thousands of pieces of debris together with a complex

path�nding that incorporates di�erent methods of movement.

The �eld of use ranges from path planning in robotics to the use in AI engines for the

entertainment industry. Any kind of simulation involving virtual path planning is most

likely to greatly bene�t from the ability for complex movement on a perfectly detailed

navigation graph.

The section 2, section 3, section 4 and section 7 were primarily written by Leonard

1

2 Problem De�nition

Kausch and the section 5, section 6, section 8 and section 9 were primarily written by

Sara Budde.

2 Problem De�nition

In the past Navigation Graphs (see section 3) for agents in virtual worlds were made

by hand, which is a very time consuming work, and the work is obsolete when the level

is modi�ed. Automating this process with high precision and speed is essential [Toz02;

Toz03] to be able to manage rapidly changing worlds or path�nding in worlds that are

explored in real time.

State of the art navigation mesh generation is using Space Filling Volumes [HYD08;

HY09] or voxel molds [Zha+07] as an intermediate world representation. From these

intermediate models the actual polygonal navigation mesh is then extracted. An example

of a voxel based implementation of navigation mesh generation is Recast [Mon].

Figure 1: Level geometry after the steepness test

The red surfaces can not be traversed by the agent because it is too steep. The green surfaces on the

other hand are potentially traversable in any stance.

2

Figure 2: Extracted multi stance navigation data for a complete test level

The red surface can not be traversed by the agent, orange can be traversed crouching, yellow can be

traversed ducked and on the green surface the agent is able to stand.

In our work, we target 100% coverage of the navigable surface. According to �Building

a Near-Optimal Navigation Mesh� [Toz02] this �completeness� is one of the important

goals of building a optimal navigation mesh. This is important for the raw navigation

data to be agent independent, the smallest agent de�nes the minimal relevant navigatable

space. Techniques like Space Filling Volumes [HYD08; HY09] have a natural inaccuracy,

because they converge towards 100% but never reach it. Because we directly work on the

world geometry itself, there is no theoretic inaccuracy, only the inaccuracy depending on

the precision of the arithmetic calculations during the navigation graph generation.

We also aim for the navigation data to represent the abilities for di�erent movement

methods of the agents. These movement stances are de�ned by a necessary unobstructed

height above a traversable surface. Stances will be put into a linear ordering and will then

be incorporated into the Navigation Graph Generation by layer based obstruction tests.

This will enable arti�cial intelligence algorithms to employ di�erent movement methods

for di�erent agents to traverse complex terrain. Basically we improve the information

3

4 Navigation Graph Generation

richness of the AI world representation so the agents can improve on the foundation of

this richer knowledge [You+11].

3 Navigation Graph De�nition

A Navigation Graph, which is also called navigation mesh, is de�ned by Tozour as �a

representation that covers the walkable surfaces of the world with convex polygons�[Toz03,

page 95]. Like any graph, this navigation graph is de�ned by nodes and edges. The nodes

are polygons and �the links between adjacent polygons are the edges of the graph�[Toz03,

page 96]. One important thing about navigation meshes is that: �Convex polygons allow

us to guarantee that a character can freely walk from any point within a polygon to any

other point within that same polygon�[Toz03, page 96]. The ideal navigation graph covers

100% of the navigable surface and decomposes this surface into a minimal number of

convex polygons.

4 Navigation Graph Generation

4.1 Brief Concept

The Navigation Graph Generation is composed of seven steps shown in the �gure below.

The biggest part of this document is about the Volume Collision Decomposition, which is

the core around which the other topics are arranged. The goal of the Navigation Graph

Generation is to extract the traversable space according to variable agent properties from

the source world geometry.

4

4.2 Import of World Geometry

import of world

geometry

steepness test of

polygons

extraction of

navigation data

(VCD)

smooth welding of

traversable

polygons

sort polygons into

spatial

partitioning

system

prelimenary

welding of input

polygons

optimization of

the Navigation

Graph

Figure 3: Navigation Graph Generation

4.2 Import of World Geometry

The world geometry is imported from OBJ �les. We do not preserve mesh structures,

everything is decomposed to the polygon level. The Normals in the OBJ �les are ignored,

because we recalculate them, but we presume that all other preliminaries, like planarity

and convexity, are met.

4.3 Preliminary Welding of Input Polygons

Preliminary welding is extremely useful when the import �le strictly only contains trian-

gles. In this case multiple triangles de�ning one planar polygonal plane can be welded

together into one single polygon. The bene�t of this welding depends on the actual

positioning of all polygons, but is most likely signi�cant for common geometry.

4.4 Steepness Test of Polygons

We do take every polygon as a two sided entity, which means that we only use normals

with a z-component that is zero or positive to de�ne the steepness. If the z-component is

negative, it is �ipped. Polygons that are steeper than the prede�ned maximum traversable

steepness are made a blocker and the other are made traversables.

5

4 Navigation Graph Generation

4.5 Sort Polygons into Spatial Partitioning System

All polygons are now sorted into a spatial partitioning system. This spatial data structure

is supposed to reduce the amount of obstruction tests, by applying a heuristic to the

spatial separation. The simplest way would be a octree with a modi�ed iterator. The

topic on optimal spatial data structures is covered well in many papers. In the following

we presume that the blockers and the traversables can be separately accessed in the spatial

data structure.

4.6 Volume Collision Decomposition

The Volume Collision Decomposition (VCD) is the core of this document. The VCD is

the one part of Navigation Graph Generation that makes the traversable space coverage

100%. All traversables identi�ed in the steepness test are iterated and checked against all

possible blockers. If a blocker obstructs the traversable in any kind, the traversable will

be decomposed into appropriate new convex traversables and/or blockers.

4.7 Smooth Welding of Traversable Polygons

The obstruction calculations precisely cover which surface is traversable and how, but

there is no tribute to the context in which all the traversables stand to each other. In

example, if you have a bridge with crosswise boards and there are small gaps between all

boards, then the VCD would not make this bridge one traversable surface. But because

the gaps in between the boards are smaller than the foot size of a human Agent, they

are irrelevant for the movement problem. And that is what smooth welding is doing, it

merges traversable polygons together where the gaps are small enough to be neglected.

When two edges are welded together the basic e�ect for the Navigation Graph is the

creation of a new navigation edge between two existing polygons.

6

4.8 Optimization of the Navigation Graph

After this step the navigation graph is practically ready for use, the polygons are the

nodes and the shared edges are the links between these nodes. The agent is already taken

into account considering the maximum weld distance depending on the agent size.

4.8 Optimization of the Navigation Graph

As an optional last step the navigable surface can now be optimized to �t certain criteria

that algorithms either need or make them faster. This optimization a�ects how the surface

is decomposed into convex polygons. Standard criteria are having minimal number of

nodes or having the most regular polygons.

5 Volume Collision Decomposition

5.1 Idea

The Volume Collision Decomposition calculates the obstructed surface of a traversable

polygon by projecting the obstruction onto the traversable polygon and then decomposing

the result into new convex polygons.

The basic idea is described in [Far06] , where they extruded the blockers along the

negative up axis (negative z-axis) according to agent height and checked if this volume in-

tersects with any traversables and if so, marked the areas of the traversable as obstructed.

So they calculated where it is possible to stand.

Our idea is to extrude the traversables along the positive up axis (positive z-axis) and

check if any blockers intersect with this volume (see Figure 4). If a blocker intersects with

a volume of an extruded traversable, then the traversable will be decomposed into one

new obstructed convex polygon and a �nite number of new traversable convex polygons

7

5 Volume Collision Decomposition

traversable

ob
st
ru
ct
io
n

extruded traversable

cut off obstruction 2

cut off obstruction 1

new obstruction

Figure 4: Simpli�ed example of the Volume Collision Decomposition concept

according to the height of the stances. Meaning if the distance between the traversable

and the intersecting blocker is smaller than the smallest stance height, then it is not

possible to traverse this area. If the distance is higher than the smallest stance, then a

new traversable with the according stance restriction will be extracted from the original

traversable.

To support the information of how an area is traversable, the blocker needs to be sliced

into separate parts according to its distance from the traversable. This way it is possible

to represent crawling, crouching and standing in the data model. A part of the blocker

that corresponds to one stance is called a slice of that blocker.

It is easy to get confused which distance interval, that de�nes one slice, corresponds

to which stance. The �rst slice will be made from zero distance to the minimum height

of the �rst stance, which means it is the slice corresponding to a blocked area (see �new

obstruction� in Figure 4). The end of one slice is always de�ned by the start of the next

one. So the lower end of a slice interval is always the minimum height for the corresponding

stance and the higher end of the slice interval is always the minimum height of the next

stance corresponding to a more freely traversable area.

8

5.2 Algorithm

The last stance is the one where the agent can move without any stance restrictions, so

it has no maximum height, meaning it always contains the rest of the blocker in its slice.

(a) Input geometry before VCD (b) Visualization of the navigation data
after the VCD

Figure 5: Screenshots of one of our example cases

(a) The lower quadrangle is a potentially traversable polygon and the upper quadrangle is too steep to

traverse and is therefore a blocker. (b) The red surface can not be traversed by the agent, yellow can

be traversed ducked and on the green surface the agent is able to stand.

5.2 Algorithm

The VCD always works on one traversable polygon and one blocker polygon which might

obstruct the traversable. Only the traversable polygon might get altered during the VCD.

The blocker polygon is never changed.

Important to understand for some of the special cases in the following explanations

is that the blocker inside the VCD can also be a traversable. The Navigation Graph

Generation that calls the VCD iterates over all traversables. Every traversable is checked

against all other traversables and blockers that are returned by the spatial partitioning

9

5 Volume Collision Decomposition

not parallel

start

for all stances

end for all stances

for all traversables

end for all traversables

fast reject

Traversable Decomposition

delete Blocker, lowerBlocker
Blocker = upperBlocker

Blocker Slicing
(cut across blocker in upper blocker and lower blocker)

Blocker Slicing
(cut off blocker beneath traversable)

fast reject

fast forward

parallel

fast forward

: if blocker is vertical

false

true

end

process parallel and coplanar Traversable and Blocker Traversable Decomposition

end

Figure 6: Volume Collision Decomposition

10

5.2 Algorithm

system as heuristically possible collisions. The reason is that for the traversable it makes

no di�erence if the polygon obstructing the space above is a blocker or a traversable.

We assume that all polygon normals are pointing upwards. With this preliminary

condition, it is certain that two polygons that are projected into the horizontal-plane are

always both clockwise de�ned towards the positive z-axis. This is important for the VCD

because the ordering of the vertex list directly relates to the way the intersections are

handled in the VCD.

The following paragraph explains the �ow through the VCD. The VCD consists of

�ve main parts, which will be described brie�y here and in more detail in the following

subsections.

The �rst step in the VCD is to check if the blocker is vertical. There is a procedure

that handles vertical blockers, which is described in subsection 5.3.

If the blocker is not vertical, we check if the blocker plane and traversable plane are

parallel. What is done if the traversable plane and the blocker plane are parallel is

described in subsection 5.4 and after this we continue with the Traversable Decomposition

(TD).

If the traversable plane and the blocker plane are not parallel, there could be a part of

the blocker which is below the traversable plane. Because this lower part of the blocker

would not obstruct anything of the traversable, we cut it o�. This is done by the �Blocker

Slicing�, which is also labeled with �cut o� blocker beneath traversable� (see subsec-

tion 5.5). We continue with the upper part of the blocker, which lies above the traversable

plane, as blocker for the rest of the VCD.

The �for all stances�-loop iterates over the stances by changing the slicing plane in each

iteration according to the next stance. The initial obstruction level of the traversable

11

5 Volume Collision Decomposition

is the upper border of the stance tests. That is because there is no sense in testing a

stronger obstructed surface against a weaker obstructing blocker, because it is already in

a stronger obstruction state.

The changed slicing plane is then used in the �Blocker Slicing�, which is also labeled

with �cut across blocker in upper blocker and lower blocker�, to get the obstruction for

the current stance (lower blocker) and the obstruction for the remaining stances (upper

blocker). This is explained in more detail in subsection 5.6.

The �for all traversables�-loop is required, because one stance obstruction might require

the initial traversable to be decomposed into a number of convex polygons, so the following

stance obstructions have to be applied to a number of convex polygons representing the

rest of the initial traversable.

The TD is calculating the surface of the traversable which is obstructed by the lower

blocker (see subsection 5.7). If necessary the rest of the traversable will be decomposed

into several polygons to match the convexity constraint.

5.3 Slicing by Vertical Blocker

A vertical blocker obviously does not cover an area if projected into horizontal-plane.

Instead the projected blocker is a line segment. This special case is handled by cutting

the traversable along the line segment de�ned by the projected blocker. The resulting

two traversable polygons are always convex. The line along which the traversable is cut

needs to be separated into up to three edges, depending on the case of the intersection

between the vertical blocker and the traversable. This is because the projected blocker

line segment is a obstruction and this need to be saved in the edge. The part of the line

segment representing the cut which is not part of the projected blocker line segment is a

traversable edge. This is further explained in section 8.

12

5.3 Slicing by Vertical Blocker

calculate distances between planes

9: lowerBlocker is set to Blocker; no upperBlocker and no Blocker

exists

calculate relevant stance, in which the blocker is located

: if traversable and blocker are parallel

: if the distance between traversable and blocker is zero

: if the distance between traversable and blocker is greater zero

and lower than the max stance height

true

false

falsetrue

true

false

start

: set current stance to the blocked stance

: not parallel

call Blocker Slicing (cut off blocker beneath traversable)

: parallel

call traversable decomposition

: end VCD

Figure 7: Parallel Traversable and Blocker

13

5 Volume Collision Decomposition

5.4 Parallel Traversable and Blocker

If the blocker and the traversable are parallel, any obstructed surface of the traversable

has the same distance to the blocker, meaning there can only be one relevant slice. This

means that there is only one stance relevant for the obstruction of this traversable. This

stance can be determined by the distance between the traversable plane and the blocker

plane.

If the distance is zero, the traversable and the blocker are coplanar, which is a special

case of the parallel planes. In this case the stance which is needed for the obstruction cal-

culation is the blocked stance. If the distance is greater than the stance of the traversable,

this VCD run can be stopped and the traversable will be returned, because nothing there

is no stronger obstruction. So if the distance between the plane is between zero and the

traversable stance height, the appropriate stance will be calculated and then the VCD

can continue with the TD. The TD will be described in subsection 5.7.

5.5 Cut o� Blocker beneath Traversable

The process of �cut o� blocker beneath traversable� cuts the blocker along the plane in

which the traversable lies into a lower part and an upper part. The lower part can not

obstruct the traversable in any way, so it is discarded. The upper part of the blocker is

used for the further obstruction calculation in the VCD. After this step it is considered

the blocker in the VCD. The �cut o� blocker beneath traversable� is one form of the

blocker slicing. What distinguishes the di�erent forms of the Blocker Slicing is described

in more detail in section 6. The di�erent exits and where they lead to is described in the

following paragraph.

In this Blocker Slicing we want to cut o� the blocker beneath the traversable plane, that

is why we have three di�erent situations how the blocker can be positioned relative to the

14

5.6 Cut across Blocker in Upper Blocker and Lower Blocker

traversable plane

slicing plane

Figure 8: Three di�erent situations between blocker and traversable in �cut o� blocker beneath
traversable�

traversable, more precisely the traversable plane. If the blocker is below the traversable

plane, the Blocker Slicing quits through the exit which is labelled with �fast reject�. In

this case the traversable is not obstructed in any way by the blocker and the VCD returns

the traversable as a sign that nothing was changed by this VCD run. If the Blocker is

above the traversable plane, there is nothing to cut o� and the VCD can progress to the

obstruction calculation for the �rst stance. In this situation the Blocker Slicing outcome

is the exit labelled with �fast forward�. In the case that the blocker pierces through the

traversable plane, the Blocker Slicing cuts o� the part of the blocker which is below the

traversable plane. Then the VCD continues with the obstruction calculation for the �rst

stance.

5.6 Cut across Blocker in Upper Blocker and Lower Blocker

The process �cut across blocker in upper blocker and lower blocker� is the second form

of the Blocker Slicing. In this form the blocker is cut across into two parts, a lower

blocker and an upper blocker, by a slicing plane. A slicing plane is a parallel plane to the

traversable plane and always corresponds to one stance. A slicing plane is calculated by

shifting the traversable plane along the up-axis by the height of the current stance. This

will be done in the VCD for several stances and for every stance the lower part of the

15

5 Volume Collision Decomposition

blocker will be used to compute the obstruction of the traversable for this stance. The

upper part of the blocker will be used for the obstruction calculation of the next stance.

Like �cut o� blocker beneath traversable� this Blocker Slicing has also three exits.

The exit �fast reject� activates if the blocker is totally contained in the volume between

the last slicing plane and the current slicing plane and there is no upper blocker. In

this situation there will be the obstruction calculation for this stance, but there is no

obstruction calculation for further stances. The exit �fast forward� means that the blocker

is above the slicing plane, so the VCD can proceed with the obstruction calculation for the

next stance. In the case that the blocker pierces through the slicing plane, the blocker is

cut across by the slicing plane in a lower blocker and an upper blocker. The lower blocker

is used to calculate the obstruction of the traversable for this stance and the upper blocker

is used for the obstruction calculation for the next stances (see Figure 9 (b)).

5.7 Traversable Decomposition

The traversable is decomposed in new traversables and one new blocker. The new blocker

covers the surface of the traversable which is obstructed by the lower blocker, which is

determined by the current stance via the Blocker Slicing (BS). The rest of the traversable,

which is not obstructed by the lower blocker, is covered by the new traversables (see

Figure 9 (c)). There is normally more than one new traversable, because all polygons

have to be convex. If a temporary new traversable is not convex, it will be decomposed

in several convex polygons. This is also the reason why there is a loop in the VCD which

iterates over all traversables, despite the fact that the VCD initially only works with a

pair of one traversable and one blocker. The TD is described in more detail in section 7.

16

5.7 Traversable Decomposition

(a) Rendering of a potential traversable
and a blocker

(b) Rendering of a lower blocker pro-
jected into the traversable plane

(c) Rendering of the projected cur-
rent traversable and the projected lower
blocker

Figure 9: Three step visualization of the projections done in the VCD

(a) The red quadrangle is a blocker, because it is too steep. The green quadrangle is a potential

traversable polygon, which has not yet been processed by the VCD. (b) The red outline is the

projection of the �rst lower blocker into the plane of the traversable after the blocker has been cut o�

beneath the traversable. (c) The green and the second red outline are the projections of the current

traversable and the lower blocker into the horizontal-plane to compute the part of the current

traversable which is obstructed by the lower blocker.

17

6 Blocker Slicing

6 Blocker Slicing

6.1 Idea

The blocker slicing means that a convex blocker polygon is being cut into two new convex

polygons along a plane. This plane is called �slice plane�, and is in our case a parallel plane

to the traversable polygon. The blocker slicing is used to divide the blocker into di�erent

parts according to the stances of the agents. The �rst slice plane is always de�ned by

the traversable itself, and the following slice planes are always planes de�ned by parallel

shifting the traversable plane upwards according to the next stance. In the following we

will always refer to slice planes, so it is important to keep in mind where they originate

from.

The blocker slicing is used in the VCD in two slightly di�erent ways. It always returns

a lower and an upper part that together represent the input blocker. In the VCD the

�rst use of the blocker slicing is to cut o� the part of the blocker that lies beneath the

traversable, because that part is never obstructing the space above the traversable. This

means that the lower polygon returned by the blocker slicing is discarded and the upper

polygon is kept for further calculations. After the �rst usage of the blocker slicing, the

lower part always represents a stance speci�c obstruction and the upper part is the rest

of the blocker that is kept for the next stance slices of the VCD.

6.2 Algorithm

Under Blocker Slicing we understand all calculations that have to be done to compute the

intersection points between a slice plane and the blocker as well as the actual slicing of the

blocker in a lower blocker, which is below the slicing plane, and an upper blocker, which

is above the slicing plane. The Blocker Slicing has three di�erent exits. The �rst one is a

18

6.2 Algorithm

calculate distances from vertices of blocker to

traversable plane

yes

no

calculate distances from vertices of traversable to

blocker plane

no

set point onto intersection line and calculate t1, t2,

t3, t4 dependent on the cases

no

yes

get blocker-case and blocker-indices

get traversable-case and traversable-indices

no

yes

cut blocker along the two intersection line points t3

and t4 in lower blocker and upper blocker

fast forwardyes

fast reject

fast reject

fast forward

start

blocker-case = allNegative OR oneZeroNegativ OR

multiZeroNegative

blocker-case = allPositive OR oneZeroPositive OR

multiZeroPositive

traversable-case = allPositive OR oneZeroPositive

OR multiZeroPositive

traversable-case = allNegative OR oneZeroNegativ

OR multiZeroNegative

end

Figure 10: Blocker Slicing

19

6 Blocker Slicing

reject, which means there is nothing to cut because the blocker is below the slicing plane.

What we do after this depends on where we are in the VCD. There is also a fast forward,

which means that there is nothing to cut, but it is possible that there is something to cut

in the remaining stance obstruction calculations, because the blocker is above the slicing

plane. And of course there is that case where the blocker is actually cut in lower blocker

and upper blocker, which means that the blocker is below and above the slicing plane.

What these di�erent exits mean for the VCD has been described in subsection 5.5 and

subsection 5.6.

The �rst step is to calculate the intersection points between the blocker and the slicing

plane. To do this we compute the distance of each vertex of the blocker to the slicing plane

(Figure 10 state 1) and later the distances between the parallel shifted traversable vertices

and the blocker plane. After we have computed the distances of the blocker vertices, we

determine the blocker case. The blocker case describes the position of the blocker vertices

relative to the slice plane, this is explained in detail in subsection 6.4. Then we check if

the blocker lies below the slicing plane, if it does, we can fast reject. If the blocker lies

above the slicing plane, there is nothing to cut and we can fast forward to the next stance

obstruction calculation. If the blocker pierces the slicing plane, we continue with the

distance calculation of the parallel shifted traversable vertices (Figure 10 state 5) and the

traversable case determination (Figure 10 state 6). The situation for the fast reject and

the fast forward is still the same as above. But because we are looking at the traversable

and not at the blocker, the traversable case for the fast reject and the fast forward are

not the same as above (see Figure 10 state 7 and state 8).

If the blocker pierces the slicing plane and the parallel shifted traversable pierces the

blocker plane, we calculate the intersection points between the blocker and the slicing

plane. These intersection points are calculated by a scalar to a particular line equation.

The line equation is de�ned with a point on the line, which we determine in this step

(Figure 10 state 9) and the direction vector is calculated by the cross product of both

20

6.3 Distance Calculation

planes' normals.

With the calculated intersection points we slice the blocker in a lower part and an upper

part. The lower part of the blocker is also called �lower blocker� and lies below the slicing

plane. The upper part, which lies above the slicing plane, is called �upper blocker�.

6.3 Distance Calculation

The Distance Calculation computes the signed distances between all vertices of a polygon

and a plane given by another polygon. A signed distance is the minimal distance and

the sign implies on which side of the plane the point lies. These distances are used to

determine an intersection case which is directly used for a rejection test, but the calculated

distances are also used in the calculation of the intersection points between the blocker

and the slicing plane.

Let the traversable have nt vertices and the blocker have nb vertices. We denote the

traversable vertices with vt
0, . . . ,v

t
nt−1 and analog the blocker vertices with vb

0, . . . ,v
b
nb−1.

The plane in which the traversable lies is described in Hessian normal form n̂t ⋅ x = −pt,

where n̂t is the unit normal vector and pt is the minimal distance of the traversable plane

to the origin. Analog the plane in which the blocker lies is given by n̂b ⋅ x = −pb.

The distance between a point x0 and a plane given in Hessian normal form n̂ ⋅ x = −p

can be calculated by

D = n̂ ⋅ x0 + p

where n̂ is the unit normal vector and p is the distance of the plane from the origin. If

the point x0 is in the half-space determined by the direction of the normal, then D > 0,

or else it is in the other half-space. Because our normal is pointing upwards, the point

would be below the plane if D < 0 and over the plane otherwise (see [Weia]).

21

6 Blocker Slicing

traversable plane

slicing plane

dvb
i

d
vb

′

i

stance height

vbi

n̂

Figure 11: Sketch of a blocker vertex and the traversable plane and a slicing plane

To compute the distances between the blocker vertices and the traversable plane and

between the traversable vertices and the blocker plane, we use the formula described

above. But to calculate the distances between the blocker vertices and a slicing plane and

between the parallel shifted traversable vertices and the blocker plane we use this formula

to calculate the distance between one vertex and a plane. With the distances calculated

before we can now calculate the distances by computing a delta distance and adding this

to all already calculated distances. The delta distance ∆ is calculated for any traversable

vertex vt
i by

∆ = (n̂t ⋅ v
t
i + pt) − (n̂t ⋅ v

t
i + (pt + stance height ⋅ n̂t.z)) ,

where stance height is the height of the current stance and n̂t.z is the z-component of

the unit normal vector of the traversable plane. So stance height ⋅ n̂t.z is the distance

between the traversable plane and the parallel shifted traversable plane. This is because

the parallel shifted traversable plane is, like the name says, parallel to the traversable

plane, and the shifted distance is the stance height. With this delta ∆ we calculate the

distances between the parallel shifted traversable vertices and the blocker plane by adding

the delta to the distances between traversable vertices and blocker plane. The savings

22

6.4 Polygon-Plane Intersection Cases

are that so only one traversable vertex have to be parallel shifted, because we do not

need the positions of the parallel shifted vertices for the further calculations. This can be

done similar for the computation of the distances between blocker vertices and the slicing

plane.

We denote that dvt
i
is the distance of the ith traversable vertex vt

i and that dvt′
i
is the

distance of the ith parallel shifted traversable vertex to the plane in which the blocker

lies. Analog dvb
i
is the distance of the ith blocker vertex to the traversable plane and dvb′

i

the current slicing plane. So the delta distance ∆ can also be calculated with a saved

distance of the traversable vertex to the blocker plane by

∆ = dvt
i
− dvt′

i
.

6.4 Polygon-Plane Intersection Cases

Polygon-Plane Intersection Cases describe the di�erent ways in which a polygon can lie in

space relative to a plane. In the following list all di�erent cases are listed and described:

� allZero means that the polygon lies in the plane.

� allNegative stands for the fact that the polygon lies under the plane.

� allPositive is the opposite, meaning the polygon lies over the plane.

� oneZeroNegative means that the polygon lies under the plane, but one point lies

on the plane.

� oneZeroPositive implies that the polygon lies over the plane, but one point lies

on the plane.

� multipleZeroNegative is the case, where two or more consecutive points of the

polygon lie in the plane and the other points lie below the plane.

� multipleZeroPositive is analog to the one above, with the di�erence that the

other points of the polygon are above the plane.

23

6 Blocker Slicing

� twoZero stands for the case that two not adjacent points of the polygon lie in the

plane, so there have to be points above and below the plane.

� oneZeroOneSignSwitch means that one point of the polygon lies in the plane and

one edge intersects the plane, the other points have to lie above and below the plane.

� twoSignSwitch implies that there are two edges which intersect the plane and some

points lie above and some below the plane.

Figure 12: Polygon against plane intersection cases, the plane is indicated by the dotted line

f.l.t.r.: allZero, allNegative, allPositive, oneZeroNegative, oneZeroPositive,

multipleZeroNegative, multipleZeroPositive, twoZero, oneZeroOneSignSwitch and

twoSignSwitch

These di�erent cases are used to determine if there is an intersection possibility or

not. If all blocker vertices have a negative distance to the traversable plane or lie in the

plane this means that the blocker lies below the traversable plane and therewith below

the traversable. This implies that there is no surface of the traversable obstructed by this

blocker and we do not have to do anything with this traversable blocker pair. In this case

the blocker case is allNegative, oneZeroNegative or multipleZeroNegative. This is

one of the two fast rejects. The other one is that the traversable is above the blocker,

so the traversable case is allPositive, oneZeroPositive or multipleZeroPositive. If

the traversable case is for example allPositive this does not imply that the blocker case

is allNegative (see Figure 13).

24

6.4 Polygon-Plane Intersection Cases

+

+

+

-

-

+

+

+

Figure 13: Blocker case and traversable case sketch

The traversable is visualized in green and the blocker in red and for both polygons the planes are

sketched in which they lie. The arrows from the intersection line of these two planes to the vertices of

the polygons are labeled with a �+� if the distance between the vertex and the plane is positive. It is

labeled with a �-� if the distance between the vertex and the other plane is negative.

There is another class of cases where the blocker is above the traversable plane and

the traversable is below the blocker plane, these are the blocker cases allPositive,

oneZeroPositive and multipleZeroPositive and the traversable cases allNegative,

oneZeroNegative or multipleZeroNegative. In these cases we know that there is no

intersection yet, but there could be an intersection in the next slice, so we fast forward

to the calculation for the next stance.

The blocker case allZero and the traversable case allZero means that the blocker and

the traversable plane lie in the same plane, so they are coplanar. Because it is checked if

the traversable and blocker are coplanar at the beginning of the VCD, this state is not

reachable.

The other cases are used in further calculations. An essential fact is that during the

determination of the case we also save information about the edges, which intersect the

plane of the other polygon, which will be used to calculate the actual intersection points.

25

6 Blocker Slicing

z0

-

0

+

+

-

0

-

+

0

0

-

0

z1 0

0

0

-

0

+

-

0

+

-
0

-

+

-

+

+

-

+ 0

-

+

-

+

0

+

0
-

-

-

0

+

+

0

0

+

Figure 14: Automaton to determine intersection cases

26

6.5 Blocker-Traversable Plane Intersection Point Calculation

The polygon-plane intersection cases are determined with an automaton (see Figure 14)

which iterates through all vertices of a polygon with their distances. If a vertex has a

distance of zero to the plane, this vertex will be saved as plane intersecting. If an edge

intersects the plane, which happens if the sign of distances changes, then one point is

below and the other point is above the plane. This edge will be saved as well. So after the

automaton run determined which intersection case this polygon has and which vertices

or which edges intersect the plane. This information is used in further calculations to

determine the intersection points.

As described in the paragraph above, the polygon-plane intersection cases were just

described between the blocker and the traversable. This can be generalized to blocker

and slicing plane or parallel shifted traversable and blocker plane. The only thing that

has to be done is the calculation of the distances between the appropriate polygon and

the appropriate plane and then use these for the polygon-plane intersection case determi-

nation.

6.5 Blocker-Traversable Plane Intersection Point Calculation

We calculate the intersection points between the blocker and the slicing plane, because

they de�ne the line at which the blocker is cut along, and the intersection points are the

new points that we need for the construction of the lower and upper blocker as result

polygons.

Assume that the slicing plane and the blocker do not intersect, the blocker slicing would

have rejected this situation with the help of the polygon-plane intersection case, which

has been described above (see subsection 6.4). So if we calculate the intersection between

the blocker and the slicing plane, we know that the blocker plane and slicing plane do

intersect each other.

27

6 Blocker Slicing

If two planes intersect each other, we know that the intersection is a line. We denote

the intersection line between the blocker plane and the slicing plane with L. As any other

line this line L can be described by

L = x0 + t ⋅ v ,

where x0 is a point on the line, v is a directional vector and t is a real number. The

direction vector of the line L can be calculated with

v = n̂b × n̂t ,

where n̂b is the unit normal vector of the blocker polygon and plane, and n̂t is the

unit normal vector of the traversable, which is also the unit normal vector of the slicing

planes, that are parallel shifted to the traversable plane. The intersection points between

the blocker and the slicing plane have to lie on the line L, so they can be described by

the scalars t3 and t4. To calculate the intersection points we also need to know a point

x0 on the line.

If one of the polygon-plane intersection cases indicates a distance of zero to the plane

of the other polygon, it means that we can use this point as the point on the intersection

line L. So only if the blocker case and the traversable case are twoSignSwitches, we have

to calculate a point on the intersection line (see Table 1 where no scalar is set to zero).

To compute the point on the line x0, we perform a line-plane intersection calculation.

The edge, that intersects the intersection line, is the line from the line-plane intersection

test, which is given by the vertex vt
i and the vertex vt

i′ . Furthermore the plane in the

line-plane intersection test is the plane, in which the polygon lies, which does not include

the edge. This intersection has to lie on the intersection line because the intersection line

L is de�ned so that it is the intersection of the blocker plane and the traversable plane

and the edge lies in one of these planes. The intersection point is calculated like described

28

6.5 Blocker-Traversable Plane Intersection Point Calculation

in reference [Pap03, on page 65] by

x0 = vt
i +

n̂b ⋅ (vb⋆ − vt
i)

n̂b ⋅ (vt
i′ − vt

i)
⋅ (vt

i′ − vt
i) ,

where vb⋆ is any vertex of the blocker.

Now we have a point on the intersection line L and we can calculate the scalars t3 and

t4, which de�ne the intersection points between the blocker and the traversable plane.

L

vb
j

vb
j′

Kb
j Kb

j′

vb
j − x0

vb
j′ − x0

x0

v P

Figure 15: Calculation of the intersection line direction vector scalar for the intersection point
P of a polygon edge with the plane in which the other polygon lies

If we have a point on the line and the line directional vector, we can simply calculate

the scalar to a given point on the same line. This can be done by calculating the length

of the vector between the point on the line and the point to which we want to calculate

the scalar and divide this by the length of the line directional vector.

In the situation that a blocker edge with the vertex vb
j and the vertex vb

j′ intersects the

29

6 Blocker Slicing

intersection line L, we can compute the scalar as it is described in reference [Möl97].

t4 = pvb
j
+ (pvb

j′
− pvb

j
) ⋅

dvb
j

dvb
j
− dvb

j′
,

where vertex vb
j is projected onto L with pvb

j
= v⋅(vb

j − x0) and as above v is the directional

vector of the intersection line, x0 is a point on the intersection line L and dvb
j
is the distance

of the blocker vertex vb
j to the slicing plane (see Figure 15).

So we have two di�erent methods of how the scalars can be computed depending on

the traversable intersection case and the blocker intersection case. Which method we use

for which combination of blocker and traversable intersection cases can be looked up in

Table 1.

aaaaaaaaaa
traversable case

blocker case
oneZeroNegative

oneZeroPositive

multipleZeroNegative

multipleZeroPositive

twoZero

OneZeroOneSignSwitch twoSignSwitches

oneZeroNegative

oneZeroPositive

t1 = 0 t1 = 0 t1 = 0 t1 = 0
t2 = t1 t2 = t1 t2 = t1 t2 = t1
t3 =⊢⊣ t3 =⊢⊣ t3 =⊢⊣ t3 =1
t4 = t3 t4 =⊢⊣ t4 =1 t4 =1

multipleZeroNegative

multipleZeroPositive

twoZero

t1 = 0 t1 = 0 t1 = 0 t1 = 0
t2 =⊢⊣ t2 =⊢⊣ t2 =⊢⊣ t2 =⊢⊣
t3 =⊢⊣ t3 =⊢⊣ t3 =⊢⊣ t3 =1
t4 = t3 t4 =⊢⊣ t4 =1 t4 =1

OneZeroOneSignSwitch

t1 = 0 t1 = 0 t1 = 0 t1 = 0
t2 =1 t2 =1 t2 =1 t2 =1
t3 =⊢⊣ t3 =⊢⊣ t3 =⊢⊣ t3 =1
t4 = t3 t4 =⊢⊣ t4 =1 t4 =1

twoSignSwitches

t1 =1 t1 =1 t1 =1
t2 =1 t2 =1 t2 =1
t3 = 0 t3 = 0 t3 = 0
t4 = t3 t4 =⊢⊣ t4 =1

Table 1: Scalar computation by length calculation or line-line intersection calculation depending
on the intersection cases
The scalar t1 and t2 are the scalars which de�ne the two intersection points of the traversable and the

blocker plane, analog for the scalar t3 and t4. ⊢⊣ means length calculation and 1 means line-line
intersection calculation.

30

6.6 Blocker Slicing in Lower Blocker and Upper Blocker

The computation via the scalar is described by reference [Möl97]. We decided to im-

plement it, so that we can compute the intersection points between two polygons in

three-dimensional space.

6.6 Blocker Slicing in Lower Blocker and Upper Blocker

The actual blocker slicing in lower and upper blocker, by the slicing plane, can now be

performed, because we know the intersection point or intersection points. If there is only

one intersection point, this means that the blocker touches the slicing plane, but does not

pierce through. In this case the lower blocker or the upper blocker is equal to the blocker

and the other part of the blocker does not exist. If there are two intersection points, the

blocker pierces through the slicing plane or an edge of the blocker lies in the slicing plane.

The second case has the same result as described for one intersection point. If the blocker

is piercing through the slicing plane, then the blocker is cut into lower blocker and upper

blocker. Both consist only of vertices of the blocker and the two intersection points, but

non of them contains all blocker vertices.

There are two slightly di�erent ways in which the Blocker Slicing is used in the VCD.

The �rst occurrence is to cut o� the blocker beneath the traversable plane. In this

situation the slicing plane is the traversable plane, the lower blocker is discarded and the

upper blocker is used for the further obstruction computations.

The next occurrence in the VCD is in �cut across blocker in upper blocker and lower

blocker� (see Figure 6 state 6), where the blocker is sliced by a slicing plane which is de�ned

by the traversable and the current stance. The resulting lower blocker is used in the

Traversable Decomposition to determine the part of the traversable which is obstructed

for a stance by the blocker. The upper blocker is used as blocker in the obstruction

computation for the next stance.

31

7 Traversable Decomposition

7 Traversable Decomposition

7.1 De�nition

The Traversable Decomposition (TD) is the subdivision of a current traversable into one

new blocker and zero or more new traversables.

currentTraversable = newBlocker ∪ ⋃
i∈{1,...,n}

newTraversablesi

The new blocker is the part of the current traversable that is obstructed by the lower

blocker. The lower blocker is a slice from the initial blocker of the VCD which represents

one speci�c stance and is handed down into the Traversable Decomposition. From now on

the vertical projection of the lower blocker in the traversable plane is just called projected

lower blocker.

newBlocker = currentTraversable ∩ projectedLowerBlocker

The unobstructed part of the current traversable surface can, in most cases, not be

represented by one convex polygon, so it has to be decomposed into a number of convex

new traversables, representing the unobstructed traversable surface.

⋃
i∈{1,...,n}

newTraversablesi = currentTraversable ∖ projectedLowerBlocker

32

7.2 Algorithm

7.2 Algorithm

Figure 16: Traversable Decomposition Cutting Cases

Two coplanar convex polygons have four di�erent cases how they could intersect. Here

these polygons are the current traversable and the projected lower blocker. The �rst two

cases are that one polygon is totally contained in the other polygon. So the �rst case is

that the current traversable is totally contained in the projected lower blocker. The second

case is that the projected lower blocker is totally contained in the current traversable. The

next case is that there is a non empty intersection between both polygons and non of the

polygons is totally contained in the other polygon. Finally there is the case where there

is no intersection between these two polygons.

The TD starts with determining the intersection between current traversable and

projected lower blocker. This intersection has to be one of the four cases mentioned

above. Depending on the case, we use a special cutting method to decompose the current

traversable into an obstructed part and a convex decomposed rest (see Figure 16). Of

course if there is no intersection between the current traversable and the projected lower

blocker there is no need for any kind of cutting.

33

7 Traversable Decomposition

coplanar projected edge intersection calculation

true

add newTraversables to list of traversables

add newBlocker to list of Blockers

false

true

false

false

true

remove current traversable from list of traversables

start

end

T in B

B in T

CPC

if the list of intersection points is not empty

if current traversable is totally contained in the projected blocker

if projected blocker is totally contained in the traversable

Figure 17: Traversable Decomposition

34

7.2 Algorithm

We use the Projected Outline Intersection, which is described in detail in subsection 7.3,

to get a list of edge intersection points (Figure 17 state 1). If we do not �nd any edge

intersection points, we have to identify which of the three possible cases we have to process

(Figure 17 state 2).

Either the current traversable is totally contained in the projected lower blocker (Fig-

ure 17 state 5) or the projected lower blocker is totally contained in the current traversable

(Figure 17 state 7). If both cases are false, then we know that the lower blocker is not

obstructing the current traversable and stop the TD.

To test if the current traversable is totally contained in the projected lower blocker, we

use a point inside polygon test which is implemented in two-dimensional space. For the

test we simply ignore the z-coordinate of the current traversable and the lower blocker.

Then we test for one vertex of the traversable if it lies inside the lower blocker. Testing

this for only one vertex is enough, because we know there are no edge intersections, which

implies that this test has the same outcome for all vertices of the current traversable.

If the vertex lies inside the projected lower blocker, we know the traversable is totally

contained in the projected lower blocker (Figure 17 state 5). This case is described in

subsection 7.4.

If the vertex does not lie inside the projected lower blocker, we have to test for a vertex

of the projected lower blocker if it lies inside the current traversable. If the vertex of the

projected lower blocker lies outside of the current traversable, then the lower blocker does

not obstruct the current traversable at all.

If the vertex of the projected lower blocker is tested positively for lying inside the

current traversable, the projected lower blocker must be totally contained in the current

traversable (Figure 17 state 7). That case is explained in subsection 7.5.

If we �nd an Intersection Point (IP) (Figure 17 state 2), the actual cutting and con-

struction of the new polygons will be done in the subsection 7.6 (Figure 17 state 3).

35

7 Traversable Decomposition

Regardless of the case we processed, the result polygons are treated the same way

as covered below. The new traversables will be added to the list of traversables of the

section 5 (Figure 17 state 8). The current traversable is now obsolete, because its surface

is now represented by the new traversables and the new blocker, so it is removed from

the list of traversables (Figure 17 state 9). If a new blocker was created and if the initial

traversable and the initial blocker are not coplanar, the new blocker is added to the list

of blockers of the section 5 (Figure 17 state 10).

7.3 Projected Outline Intersection

7.3.1 De�nition

The Projected Outline Intersection calculates the outline intersections between the current

traversable and the projected lower blocker.

First both polygons will be projected into the horizontal-plane, so the following coplanar

polygon intersection calculation has a better performance. Every projected edge of the

current traversable will perform a line-line intersection calculation against every projected

edge of the projected lower blocker, which is described in detail in subsubsection 7.3.2. If

an intersection is found, we save it as an Intersection Point (IP). What IPs are and how

they di�er from intersections will be explained in subsubsection 7.3.3. These IPs have

to be ordered clockwise on the traversable, which will happen automatically, because

we check one edge of the traversable against all edges of the projected lower blocker

before we take the next traversable edge. So we only have to check the ordering if two

intersections are found on one traversable edge. This is done by a distance calculation

from the counterclockwise vertex of the traversable to the IPs. The IP that has a higher

distance lies clockwise from the IP with the lower distance.

36

7.3 Projected Outline Intersection

no solution

one solution infinity number of solution

project traversable and lower blocker onto

horizontal-plane

for all edges of the traversable

end for all edges of the traversable

for all edges of the blocker

end for all edges of the blocker

calculate determinante

calculate x and y from the system of equations

no

yes

set scalars t1 = 0 and t2 = 1

no

yes

calculate point onto line scalars t3, t4

calculate overlapping interval

calculate second intersection point in 3D

add second intersection point to list of intersection

points

calculate intersection point in 3D

add intersection point to list of intersection points

no

yes

yes

no

no

yes

calculate intersection point in 3D

add intersection point to list of intersection points

with „for all edges of the blocker“

with „for all edges of the blocker“

with „for all edges of the traversable“

start

end
return list of intersection points

if overlapping interval is not a point

exists overlapping interval

matrix rank = augmented matrix rankif determinant is zero

if x and y lying between the initial points

with „for all edges of the blocker“

with „for all edges of the blocker“

Figure 18: Projected Outline Intersection

37

7 Traversable Decomposition

7.3.2 Line-Line Intersection

Let the projected edge of the current traversable have the start (x1, y1) and the end

(x2, y2) and the projected edge of the lower blocker have the start (x3, y3) and the end

(x4, y4). We �rst consider these line segments as lines and calculate the intersection point,

after this we check if this intersection point lies on both of these line segments. The two

lines given by the projected polygon edges can intersect, be parallel or lie on each other.

If they intersect, let (x, y) be the intersection point.

(x1, y1)

(x2, y2)
(x4, y4)

(x3, y3)

(x,y)

Figure 19: Sketch of the edge-edge intersection situation

The line given by the projected traversable edge can be described as

⎧⎪⎪
⎨
⎪⎪⎩

⎛

⎝

x′

y′
⎞

⎠
∈ R2

RRRRRRRRRRR

⎛

⎝

x′

y′
⎞

⎠
=
⎛

⎝

x1

y1

⎞

⎠
+ α ⋅

⎛

⎝

⎛

⎝

x2

y2

⎞

⎠
−
⎛

⎝

x1

y1

⎞

⎠

⎞

⎠
∧ α ∈ R

⎫⎪⎪
⎬
⎪⎪⎭

.

Analogue the projected line given by the lower blocker edge can be described as

⎧⎪⎪
⎨
⎪⎪⎩

⎛

⎝

x′

y′
⎞

⎠
∈ R2

RRRRRRRRRRR

⎛

⎝

x′

y′
⎞

⎠
=
⎛

⎝

x3

y3

⎞

⎠
+ β ⋅

⎛

⎝

⎛

⎝

x4

y4

⎞

⎠
−
⎛

⎝

x3

y3

⎞

⎠

⎞

⎠
∧ β ∈ R

⎫⎪⎪
⎬
⎪⎪⎭

.

If there is an intersection point, it has to lie on both lines, which implies that the

point has to ful�ll both line equations. The resulting system of linear equations for the

intersection point of these lines is

RRRRRRRRRRR

⎛

⎝

x1

y1

⎞

⎠
+ α ⋅

⎛

⎝

⎛

⎝

x2

y2

⎞

⎠
−
⎛

⎝

x1

y1

⎞

⎠

⎞

⎠
=
⎛

⎝

x3

y3

⎞

⎠
+ β ⋅

⎛

⎝

⎛

⎝

x4

y4

⎞

⎠
−
⎛

⎝

x3

y3

⎞

⎠

⎞

⎠
,

38

7.3 Projected Outline Intersection

⇔

RRRRRRRRRRRR

⎛

⎝

x2 − x1 x4 − x3

y2 − y1 y4 − y3

⎞

⎠
⋅
⎛

⎝

α

−β

⎞

⎠

⊺

=
⎛

⎝

x1 − x3

y1 − y3

⎞

⎠
,

which can be rewritten, like any other equation system, as A ⋅
⎛

⎝

α

β

⎞

⎠
= c.

The coe�cient determinant

D = detA =

RRRRRRRRRRR

x2 − x1 x4 − x3

y2 − y1 y4 − y3

RRRRRRRRRRR

=

RRRRRRRRRRR

x1 − x2 y1 − y2

x3 − x4 y3 − y4

RRRRRRRRRRR

is needed to know if there is one solution for the system of equations, an endless number

of solutions or no solution. If the coe�cient determinant is not zero, there is exactly one

solution, which means the lines intersect each other, which does not necessarily mean that

the line segments intersect. Otherwise if the determinant is zero, we have to compare the

rank of the matrix A to the rank of the augmented matrix A∣c.

If the ranks are not equal, then there is no solution of the equation system, which means

that the projected edges are parallel and this means there is no intersection, so we can

continue with the next lower blocker edge.

If the ranks are equal, we have an endless number of solutions of the equation sys-

tem, which means that the lines are equal. So the line segments are the same, are

overlapping each other, are included or are separate. But we know that the four points

(x1, y1) , (x2, y2) , (x3, y3) , (x4, y4) are collinear. So we can calculate the overlapping line

segment, if it exists, by using (x2, y2) − (x1, y1) as directional vector and calculate the

scalars t3 and t4 for the points (x3, y3) and (x4, y4). So that the scalar t3 holds

⎛

⎝

x3

y3

⎞

⎠
=
⎛

⎝

x1

y1

⎞

⎠
+ t3 ⋅

⎛

⎝

x2 − x1

y2 − y1

⎞

⎠

and the analog equation holds for t4. Determine the overlapping interval, overlapping

point or disjoint of the interval [0,1] and the interval [t3, t4]. If the two intervals are

39

7 Traversable Decomposition

disjoint, there is nothing to be done and we continue with the next blocker edge. In the

case that there is an overlapping point we create an IP and insert it into the list of already

found IPs. The two points which de�ne the overlapping are the points we create IPs for

and add them to the other IPs.

In the case that the coe�cient determinant D is zero, which means there is not more

than one intersection, we calculate the solution of the equation system as described in

[Weib] by

x =

RRRRRRRRRRRRRRRRRRRRRRR

RRRRRRRRRRR

x1 y1

x2 y2

RRRRRRRRRRR

x1 − x2

RRRRRRRRRRR

x3 y3

x4 y4

RRRRRRRRRRR

x3 − x4

RRRRRRRRRRRRRRRRRRRRRRR
RRRRRRRRRRR

x1 − x2 y1 − y2

x3 − x4 y3 − y4

RRRRRRRRRRR

y =

RRRRRRRRRRRRRRRRRRRRRRR

RRRRRRRRRRR

x1 y1

x2 y2

RRRRRRRRRRR

y1 − y2

RRRRRRRRRRR

x3 y3

x4 y4

RRRRRRRRRRR

y3 − y4

RRRRRRRRRRRRRRRRRRRRRRR
RRRRRRRRRRR

x1 − x2 y1 − y2

x3 − x4 y3 − y4

RRRRRRRRRRR

.

The denominator determinant is the coe�cient determinant D, which has already been

computed. On the other hand the numerator determinant has to be calculated, by which

we do not have to calculate α or β explicitly.

Now that we know (x, y), we have to check if (x, y) lies on both projected edges. If so,

then we can create an IP for this intersection and insert it into the list of already found

IPs. Then we continue with the next projected lower blocker edge.

This check is done by a componentwise comparison as follows

x ≥ min (x1, x2) ∧ x ≤ max (x1, x2) ∧ x ≥ min (x3, x4) ∧ x ≤ max (x3, x4) .

If this formula is satis�ed for the x-component and the y-component, then the intersection

point (x, y) lies on the line segment de�ned by (x1, y1) and (x2, y2) and also lies on the

line segment de�ned by (x3, y3) and (x4, y4).

40

7.3 Projected Outline Intersection

7.3.3 Intersection Point De�nition

Intersection Points (IPs) are more than just points in three-dimensional space. They

consist of a type, pointers and a point. The pointers point to the vertices of the edges

that are intersecting.

Point of both Polygons

Point of Blocker

Point of Traversable

new Point

Figure 20: Intersection Point types

There are four di�erent types of IPs (see Figure 20). The �rst is the type �new point�,

which means that the IP is not part of the current traversable nor the projected lower

blocker. There is the type �point of traversable�, which means the IP is a vertex of the

current traversable. If the IP has the type �point of blocker�, this means that the IP is

part of the lower blocker or at least part of the projected lower blocker. The last type is

�point of both polygons�, which means that it is part of the current traversable and the

projected lower blocker.

41

7 Traversable Decomposition

Figure 21: Di�erent Intersection Points and the vertices which are linked to each Intersection
Point

The pointers of the IPs point to vertices of the current traversable and the projected

lower blocker that are relevant for the sorting of the IP into these polygons. If an IP is

a �point of both polygons�, then there are two pointers. One of the pointers points to

a vertex of the current traversable, which has the same position as the IP. The other

pointer points to a vertex of the lower blocker, which projection in the traversable plane

has the same position as the IP. Is the IP a �point of traversable�, then there are three

pointers. There is one pointer that points to a vertex of the current traversable, which has

the same position as the IP. The two other pointer are connected with the two vertices

of the lower blocker, which form the edge that has caused this IP. Analogue if the IP is

a �point of blocker�, this means there is one pointer to a lower blocker vertex and there

are two pointers to one edge of the current traversable. An IP which has the type �new

point� has four pointers. Two of them pointing to an edge of the current traversable and

the other two pointing to an edge of the lower blocker. These two edges are the edges

which have caused this IP.

42

7.4 Traversable Totally Contained in Blocker

7.4 Traversable Totally Contained in Blocker

This case is pretty simple to handle, because we know that the Traversable is completely

obstructed, so we do not need to alter any geometry. Instead we just change the current

traversable to be a new blocker.

In case that the current traversable and the lower blocker are coplanar, then the new

blocker would be a redundant piece of obstruction geometry. So in the case of coplanarity,

the current traversable is simply deleted and no new geometry is constructed.

7.5 Blocker Totally Contained in Traversable

7.5.1 De�nition

In the case that the current traversable and the lower blocker are coplanar, no new blocker

has to be created, because it would be a redundant piece of obstruction geometry. This

is very similar to the coplanar handling in subsection 7.4.

If the current traversable and the lower blocker are not coplanar, the new blocker is very

easy to construct. It is simply the lower blocker projected into the current traversable

plane.

The real problem here is that the current traversable is de�nitely not convex when

the lower blocker is subtracted from it. Speci�cally, because we know there are no edge

intersections, the current traversable without the lower blocker is always a polygonal ring

structure.

As de�ned early the VCD requires convex polygons to work. Because of that the

ring structure has to be decomposed into the smallest possible number of convex new

traversable polygons. This process is described in detail in subsubsection 7.5.3, with the

preliminary selection of start vertices which is explained in subsubsection 7.5.2.

43

7 Traversable Decomposition

Because we know that both polygons are convex we can conclude that a convex decom-

position of the polygonal ring structure can be done very e�ciently by just incrementally

building polygons until the ring is completely represented through new convex polygons.

7.5.2 Start Vertex Selection

To start the Convex Decomposition, we need to select one start vertex vt from the current

traversable and one start vertex vb from the projected lower blocker in that way, that the

edges of the triangle △ (vb, vt, (vb↻+ 1)) do not intersect with any of the edges of the

current traversable and/or the projected lower blocker. Only then it is guaranteed, that

there is a clean starting triangle with which the Convex Decomposition can set o�.

The triangle △ (vb, vt, (vb↻+ 1)) does not intersect with any of the edges of the current

traversable, because the projected lower blocker is totally contained in the projected

current traversable. So it just has to be tested if the triangle △ (vb, vt, (vb↻+ 1)) does not

intersect with any edge of the projected lower blocker. Because the lower blocker is a

convex polygon and not a vertical blocker, the lower blocker, which is projected into the

plane of the traversable, is also a convex polygon. That is why we know that the edge

between the vertices (vb, (vb↻+ 1)) does not intersect any other edge of the projected lower

blocker. So we just have to check that the edge (vb, vt) and the edge (vt, (vb↻+ 1)) do not

intersect any edge of the projected lower blocker. This is done by a simplicity check of

the polygon 7 (vb, vt, (vb↻+ 1) , . . . , (vb↻− 1)). If this polygon is simple, it does not self

intersect. This means that the edge (vb, vt) and the edge (vt, (vb↻+ 1)) do not intersect

any edge of the projected lower blocker.

We choose an arbitrary but �xed vertex vb from the projected lower blocker. Then we

iterate through the vertices of the current traversable Tvertices ∶= [t0, . . . , tnt−1] and test for

every vertex ti of the current traversable if the polygon

7P ∶= 7 (vb, ti, (vb↻+ 1) , . . . , bnb−1, b0, . . . , (vb↻− 1))

44

7.5 Blocker Totally Contained in Traversable

is simple, where Bvertices ∶= [b0, . . . , bnb−1] are the projected lower blocker vertices. The

polygon P is constructed from the projected lower blocker with the vertex i inserted

between vb and vb↻+ 1. Testing this temporary polygon for simplicity is a su�cient test

for the necessary conditions mentioned above. The �rst vertex ti that ful�lls the condition

is chosen as vt.

bnb−1

b0

ti

Figure 22: Start vertex pair selection

We reorder the vertex list of the current traversable's vertices so that is starts with

the vertex vt. The new vertex list of the current traversable is [ti, . . . , tnt−1, t0, . . . , ti−1].

Analog we reorder the vertex list of the project lower blocker so that it starts with vb

and then the projected lower blocker vertices are [bnb−1, b0, . . . , bnb−2]. At this point we

renumber the traversable vertices list and the blocker vertices list, in such a way that

both list starts with the index 0 and the last current traversable list index is nt − 1 and

the last projected lower blocker vertex index is nb − 1, wih the result that the traversable

vertices list is Tvertices = [t0, . . . , tnt−1] and the projected lower blocker vertices list is

Bvertices = [b0, . . . , bnb−1].

The Convex Decomposition (subsubsection 7.5.3) is started with Tvertices and Bvertices.

45

7 Traversable Decomposition

7.5.3 Convex Decomposition

The goal of the Convex Decomposition is to decompose the surface of current Traversable∖

projected Blocker into a minimal number of convex polygons.

The Convex Decomposition is started with two lists of vertices, one is the vertex list

de�ning the projected lower blocker and the other is the vertex list de�ning the current

traversable.

These lists are the input for the Convex Decomposition, so they are de�ned the same

way as in subsubsection 7.5.2 and subsection 7.6:

� the traversable's list of vertices is de�ned as Tvertices ∶= [ti, . . . , tnt−1, t0, . . . , ti−1]

� the blocker's list of vertices is de�ned as Bvertices ∶= [bnb−1, b0, . . . , bnb−2]

When we add vertices from the input polygons to the polygon in construction, we imply

that moving through the vertex lists represents a clockwise movement along the polygon's

edges. Furthermore it is implied that vertices are always added into the cyclic structure

of the new polygon between the vertex last added from the traversable and the vertex

last added from the blocker. This is as important as it is intuitively simple and will not

be mentioned at every inserting operation reference in the following text.

The �rst triangle to be constructed is △T0 = △(bj, ti, bj+1) with i = 0 and j = 0 and

this is known to not intersect with any edges of input polygons. Now we add as many

vertices from the blocker to the triangle T0 as possible. This means we incrementally add

one vertex after another and check every time if the resulting polygon is still simple and

convex. If it is either not simple any more or not convex any more, then the last added

vertex is removed and no more blocker vertices will be added to this polygon.

46

7.5 Blocker Totally Contained in Traversable

For the blocker vertices, it is only possible that more than one vertex is added if the

following vertices all lie on the same line as the line de�ned by bj and bj+1. Then as many

traversable vertices as possible are added in the same way as for the blocker vertices.

These vertices do not have to lie on one line. It makes no di�erence if the traversable

vertices are added �rst or the blocker vertices, because the constraints of simpleness and

convexity will be violated at the same vertices regardless of the order in which the vertices

are added.

This is because the line Lj de�ned by bj and bj+1 splits the space in two partitions, one

we call inside which fully contains the blocker, and one we call outside which contains

no blocker surface at all. As long as the added vertices are on the outside of the line

Lj or on the line Lj the resulting polygon is convex. The line Lj is in that regard the

convexity border for the adding of the vertices and this is not changed by the adding

of more projected lower blocker vertices as mentioned above, so the condition for the

convexity test stays the same.

ti

ti+1

bj

bj+1

Figure 23: Middle/Loop polygon simple and convex

The last vertex of the projected lower blocker which has been added to the new polygon

and the last vertex of the current traversable which has been added to the new polygon

47

7 Traversable Decomposition

are the two start vertices bj and ti for the following loop of polygon constructions of the

Convex Decomposition.

The di�erence to the �rst polygon that got constructed is, that the triangle△(bj, ti, bj+1)

is not guaranteed to be correct, it was just correct in the �rst construction because of the

conditions for the preliminary start vertex calculation. In the loop the �rst thing that is

done is to construct a quadrangle Q = ◻(bj+1, bj, ti, ti+1), which is tested for simplicity and

convexity.

If Q is simple and convex we proceed as with the �rst triangle and add as many blocker

vertices as possible and then as many traversable vertices as possible. Then the loop

continues with newly set j and i.

ti

bj

ti+1

bj+1

(a) not simple

ti

bj

ti+1

bj+1

(b) not convex and bj+1 out-
side

ti

ti+1

bj

bj+1

(c) not convex and bj+1 in-
side

Figure 24: Middle/Loop polygon during convex decomposition which is not simple(1) and the
other which is not convex(2) and (3) and in sub�gure (3) is bj+1 inside the triangle △ (bj , ti, ti+1)

If one of the tests fails the blocker vertex bj+1 is removed from the quadrangle ◻Q and

we de�ne that as triangle △Q′. Then we test if bj+1 lies inside the triangle △Q′, if it does,

it means that the triangle △Q′ is intersecting edges of the blocker (see Figure 24 (c)).

48

7.5 Blocker Totally Contained in Traversable

The test if bj+1 lies inside the triangle △Q′ can be done by just checking the vertex bj+1
against the edge ti+1bj. Where an ordinary inside test, which has no further information,

would have to check the vertex against all edges.

We know that either the triangle △Q′ =△(bj, ti, ti+1) or the △Q′′ ∶=△(bj+1, bj, ti) is not

intersecting the projected lower blocker in more points than the shared edge. So now that

we have ruled out Q′, we know that the other triangle Q′′ does not intersect any blocker

edges and thus is added to the list of new traversables and the loop continues.

If bj+1 lies outside the triangle △Q′, then it does not intersect any edges of the blocker.

Because the triangle Q′ is obviously simple and convex, it is then added to the list of new

traversables and the loop continues.

In the case that the quadrangle ◻Q is not simple or not convex it is relevant if the �rst

vertex to be removed is ti+1 from the traversable or bj+1 from the projected lower blocker.

The di�erence lies in the complexity of the necessary tests and is explained in more detail

in the following paragraphs.

It is possible to implement it the way that not vertex bj+1 from the projected lower

blocker is removed from the quadrangle ◻Q = ◻ (ti, ti+1, bj+1, bj), but the traversable vertex

ti+1. After the �rst created quadrangle ◻Q the triangle would be △Q′′ = △ (bj+1, bj, ti).

Then it has to be checked that there is no line intersection between any line of the triangle

△Q′′ and the projected lower blocker other than the line segment bjbj+1 itself. If there

is no intersection than the polygon can be added to the list of new traversables. But if

there is an intersection then there has to be a new polygon with two traversable vertices,

which would be the triangle △Q′ =△ (bj, ti, ti+1).

So there is a di�erent complexity in the tests. The test we implemented tests the

vertex in polygon condition and the alternate way needs to test if the line segment tibj+1

49

7 Traversable Decomposition

intersects with any blocker edge. This can be done by testing if the triangle △Q′′ is

clockwise de�ned or not, if it is counterclockwise de�ned in the two dimensional space,

then it is implied that the triangle intersects with edges of the blocker. Therefore we

decided to implement it the �rst way.

The loop is stopped when the newest constructed polygon contains either the vertex b0

of the blocker or the vertex t0 of the current traversable. In this case we are �nished with

one of the cyclic structures which makes the rest of the constructions much more simple.

unused
blocker
vertices

�rst constructed
polygon

last constructed
polygon

Figure 25: Sketch of a situation, where blocker vertices are unused

In case that the blocker's list of vertices is �nished, the last polygon is created with the

vertex b0 and all the rest of the traversables with the vertex t0 added as the last one (see

Figure 25).

If the traversable's list of vertices is iterated to its end �rst, then there is the need for

another loop, which is very similar to the one described above. Just that it does not start

50

7.5 Blocker Totally Contained in Traversable

unused
traversable
vertices

�rst constructed
polygon

last constructed
polygon

Figure 26: Sketch of a situation, where traversable vertices are unused

with a quadrangle, instead with the triangle △(bj+1, bj, ti) (see Figure 26). Obviously

no more vertices of the traversable are added to the polygon in construction. But the

incremental addition of blocker vertices with the test for simplicity and convexity stays

the same.

When all vertices of both the traversable and the blocker are consumed, the list of new

traversables represents the surface that we wanted to be decomposed. The decomposition

is near optimal, but the �rst and the last polygon that got created can in some cases be

welded along their shared edge. That is because the �rst polygon is created in clockwise

direction and is not expanded into counterclockwise as well. When the weld test is done,

the list of new traversables is returned as the result of the Convex Decomposition.

All the vertex and list operations can be reviewed in more detail in Figure 27.

51

7 Traversable Decomposition

last polygon construction

quad creation in a loopfirst triangle creation

initialize currentBlockerIndex and

currentTraversableIndex with zero

create new polygon f with the

following vertices:

first vertex from vBlockerIVs

first intersection vertex

first vertex from vTraversableIVs

increment currentBlockerIndex and

currentTraversableIndex

add f to newTraversables

decrement currentBlockerIndex and

currentTraversableIndex

while vertices of vBlockerIVs or

vTraversableIVs are unused

create new polygon f with the

following vertices:

after next vertex from

vBlockerIVs

next vertex from vBlockerIVs

next vertex from

vTraversableIVs

after next vertex from

vTraversableIVs

increment currentBlockerIndex and

currentTraversableIndex twice

add f to newTraversables

decrement currentBlockerIndex and

currentTraversableIndex

remove after next vertex from

vBlockerIVs from f

decrement currentBlockerIndex

modified vertices to f so that f have

the following vertices:

after next vertex from

vBlockerIVs

next vertex from vBlockerIVs

next vertex from

vTraversableIVs

increment currentBlockerIndex and

decrement currentTraversableIndex

add f to newTraversables

decrement currentBlockerIndex and

currentTraversableIndex

false

true

true

false add f to newTraversables

decrement currentBlockerIndex and

currentTraversableIndex

end while vertices of vBlockerIVs or

vTraversableIVs are unused

process remaining vertices from

vBlockerIVs

add as many vertices from

vBlockerIVs as possible

add as many vertices from

vTraversableIVs as possible

add as many vertices from

vTraversableIVs as possible

add as many vertices from

vBlockerIVs as possible

end

return newTraversables

process remaining vertices from

vBlockerIVs

start

if the after next vertex from

vBlockerIVs is inside f

if f is simple and convex

Figure 27: Convex decomposition

52

7.6 Coplanar Polygon Cutting

7.6 Coplanar Polygon Cutting

7.6.1 Intro/Overview

The task of the CPC is to construct the new Traversables and the new Blocker with the

IPs of the current traversable and projected lower blocker as well as the current traversable

and the projected lower blocker itself as input. Especially the CPC is constructing all the

new polygonal data in linear complexity without the need for any sort of history cross

checking of the constructed polygons. The vertices of the blocker and the traversable are

only iterated once, and during this iteration all polygons are created. With the given IPs,

the CPC only requires one geometric operation. Except that operation, everything else

is just fast list operations.

7.6.2 Blocker and Traversable are Coplanar in 3D-Space

There is one case for the CPC where no new blocker is supposed to be created. Normally

cutting of the current traversable is done on the bases of IPs that were calculated from a

lower blocker that is somewhere in the obstructable space above the current traversable.

So the obstructed part of the current traversable becomes a new blocker. But if the current

traversable and the lower blocker are coplanar from the start, then the new blocker would

be just equal to a part of the lower blocker, which means the new blocker would be

redundant obstruction geometry, thus should never be created. If the current traversable

and the lower blocker are coplanar, all operations on the new blocker that are described

below are ignored and only the new traversables will be created.

7.6.3 Intermediate Vertices

The vertices between two IPs are called Intermediate Vertices (IVs). The IVs always

either belong to the projected lower blocker or the current traversable, which will also be

53

7 Traversable Decomposition

referred to as blocker IVs or traversable IVs. The IVs are used by the CPC to construct

the new traversables and the new blocker.

�rst IP second IP

blocker IVs

traversable IVs

Figure 28: Intermediate Vertices (IVs)

The determination if IVs exist depends on the type of the IPs and of course the polygon

we are looking at. An IP can be a vertex of the polygon we are looking at or not (see

subsubsection 7.3.1). So there are four di�erent situations of the two IPs.

Let IP1 be the �rst Intersection Point and IP2 be the second Intersection Point. Each

IP is embedded in both polygons, so we say an IP has a previous vertex and a successor

vertex, which is alway a vertex of the polygon. So if there are two IPs on an edge of a

polygon, they have the same previous and successor vertex. The previous vertex of an IP

is given by the function prev and the successor by succ. If an IP is part of the polygon,

the previous and the successor of this IP are set to the IP itself.

In the case ¬ (of Table 2) where both IPs are part of the polygon we are looking at,

there are no IVs if the two vertices of the IPs are adjacent and the �rst is clockwise directly

before the second. Here applies that prev(IP1) = IP1 = succ(IP1) and the same for IP2.

54

7.6 Coplanar Polygon Cutting

case �rst IP second IP condition for no IVs

¬ ∈ poly ∈ poly IP1 = IP2↻− 1

 ∈ poly ∉ poly succ (IP1) = IP2

® ∉ poly ∈ poly IP1 = prev (IP2)

¯ ∉ poly ∉ poly

prev (IP1) = prev (IP2)∧

succ (IP1) = succ (IP2)∧

∣prev (IP1) IP1∣ < ∣prev (IP1) IP2∣

Table 2: Conditions that no IVs exists in the di�erent cases

The symbol "`∈ poly"' means that the IP belongs to the polygon and the symbol "`∉ poly"' means that

the IP does not belong to the polygon.

There are no IPs when IP1 = IP2↻− 1, which is equivalent to

IP1↻+ 1 = IP2.

If the second IP does not belong to the polygon we are looking at (Table 2 case),

there are no IVs if the second IP lies on the edge which starts with IP1 and ends with

the clockwise successor of IP1. This context is described by

succ(IP1) = IP2.

The situation that the �rst IP does not belong to the polygon we are looking at and

the second is part of the polygon, is the case (see Table 2). This is similar to the case

described above. The �rst IP lies on the edge which ends with the second IP and starts

with the previous clockwise vertex of the second IP. If this holds, so does

IP1 = prev(IP2).

If both IPs do not belong to the polygon we are looking at (see Table 2 case ¬), there

are no IVs where both IPs are lying on the same edge of the polygon and the �rst IP lies

55

7 Traversable Decomposition

clockwise directly before the second IP.

prev (IP1) = prev (IP2) ∧ succ (IP1) = succ (IP2) ∧ ∣prev (IP1) IP1∣ < ∣prev (IP1) IP2∣

In the case we are looking at the traversable, we compare the indices of the IPs to check

the ordering, because the IPs are ordered clockwise on the traversable. In the case we are

looking at the blocker, we have the problem that the IPs are not ordered. It could be that

they are ordered clockwise or counter clockwise. So we have to order them by taking the

vector from the prev vertex of the �rst IP to the �rst IP itself and compare its length to

the length of the vector from the prev vertex of the �rst IP to the second IP. This more

complex test is only necessary for this case because in all other cases at least one vertex

is element of the polygon we are looking at, so the ordering of the IPs is implied.

7.6.4 Coplanar Polygon Cutting Example

The basic idea of the CPC is that when two convex polygons intersect each other in two-

dimensional space, you only need to calculate the intersection points in order to construct

the polygon that represents the overlapping surface of the two polygons. The thing to keep

in mind is, that both polygons are clockwise de�ned respective to the two-dimensional

space they are de�ned in. The same has to be true for the newly constructed polygons.

So when constructing new polygons from the IPs and IVs, you need to make sure that

the vertices are added in the correct order. When the inside of the new polygon lies on

the outside of the vertices' source polygon, then the ordering of the vertices has to be

switched.

In the following example a simple polygon cut that only needs two iterations in the

CPC will be used to explain the way the CPC Automaton works and how the vertices

are added to the new polygon structures so they remain consistent with the clockwise

de�nition.

56

7.6 Coplanar Polygon Cutting

�rst IP

second IP

t0

t7

t6 t5

t4

t3

b4t2t1

b3

b2

b1

b0

b9

b8

b7

b6

b5

(a) �rst run of CPC

second IP

�rst IP

t0

t7

t6 t5

t4

t3

t2 b4t1

b3

b2

b1

b0

b9

b8

b7

b6

b5

(b) second run of CPC

Figure 29: Example CPC Automaton run

The traversable is the green polygon and the blocker is the red polygon. The traversable IVs and

blocker IVs have a brighter green or red than the other vertices in the respective CPC runs.

IPs are ordered clockwise along the current traversable's border. This is a matter of

de�nition, they could as well be ordered clockwise along the projected lower blocker's

border, but then the ordering of the CPC Automaton calls would change. The IPs are

iterated in pairs, so every IP is used two times. Like in a cyclic structure the �rst pair is

(IP0, IP1) and the last is (IPn, IP0).

In our example the IP0 is a vertex of both polygons and the IP1 is a new vertex (see

subsubsection 7.3.3). Because in the example we only have two IPs, it is good to point

out that it is irrelevant which IP is the �rst, only the clockwise ordering on the current

traversable matters.

What we want in this example is that the overlapping part becomes the new blocker

7(IP0, t3, t4, IP1, b1, b2, b3) and the rest of the current traversable, that lies outside the pro-

jected lower blocker, to become the new traversable 7(IP1, t5, t6, t7, t0, t1, IP0, b3, b2, b1).

57

7 Traversable Decomposition

In the �rst CPC run we have the IP pair (IP0, IP1). We get the traversable IVs between

IP0 and IP1 by moving clockwise from IP0 to IP1 on the current traversable and we get

the blocker IVs by moving clockwise from IP0 to IP1 on the projected lower blocker. This

way we get traversable IVs [t3, t4] and blocker IVs [b5, b6, b7, b8, b9, b0].

The Blocker IVs lie outside the current traversable, so they are of no further interest

for the CPC, because blocker vertices that lie outside the traversable are never part of the

new geometry that we are trying to construct. The traversable IVs are part of the new

blocker we want to construct, so we add IP0, the traversable IVs and IP1 in clockwise

order to the new blocker. So we get newBlocker = 7 (IP0, t3, t4, IP1).

There are only two IPs, but they still have to be iterated like a cyclic structure, so

the next run of the CPC is done with the IP pair (IP1, IP0). Now, like in the �rst run,

we move clockwise on the current traversable from IP1 to IP0 and get the traversable

IVs [t5, t6, t7, t0, t1]. As blocker IVs we get [b1, b2, b3]. Now we add the blocker IVs

to the new blocker in clockwise order and get the �nished obstruction newBlocker =

7 (IP0, t3, t4, IP1, b1, b2, b3). Note that normally we would have to add IP1 and IP0 too,

but when adding IPs to the polygons in construction, it always has to be checked for

duplicates. If this check would not be performed, we would end up with a blocker

7 (IP0, t3, t4, IP1, IP1, b1, b2, b3, IP0) (the red marked area in Figure 30).

Because the inside of the new traversable polygon lies on the outside of the pro-

jected lower blocker, we have to add the blocker IVs in counterclockwise order to the

new traversable. Now to construct the new traversable, we move from IP1 in clock-

wise direction on the current traversable to IP0 and then from IP0 in counterclockwise

direction on the projected lower blocker to IP1. This way we get the new traversable

7newTraversable = 7 (IP1, t5, t6, t7, t0, t1, IP0, b3, b2, b1) (the green marked area in Fig-

ure 30).

58

7.6 Coplanar Polygon Cutting

newTraversable newBlocker

t0

t7

t6 t5

t4

t3

b4t2t1

b3

b2

b1

b0

b9

b8

b7

b6

b5

Figure 30: The CPC results for the example without the convex decomposition of the
newTraversable

The traversable is the green polygon and the blocker is the red polygon. The newTraversable is the

green marked area and the newBlocker is visualized by the red marked area.

Obviously the constructed new traversable 7newTraversable is not convex, how this

is handled is explained in detail in subsubsection 7.6.6. For our example the CPC

Convex Decomposition Call will decompose 7newTraversable into a set of convex new

traversables

newTraversables = {7 (t7, t6, t5, IP1, b1) ,7 (b1, b2, t7) ,7 (t1, t0, t7, b2, b3) ,7 (t1, IP0, b3)} .

7.6.5 CPC Automaton

The CPC Automaton is used to calculate the intersection of the current traversable and

the projected lower blocker, which is called �newBlocker�, and it constructs a set of new

traversables which are the parts of current traversable without the projected lower blocker.

The CPC is mainly based on rules how to construct the new traversables and the new

blocker and a repeat loop over all adjacent IPs in clockwise order. To determine which

rule we use to construct the new polygons we check if there are blocker IVs and if they

59

7 Traversable Decomposition

are inside the current traversable and if there are traversable IVs and if they are inside

the projected lower blocker.

The inside/outside test for IVs, that is referenced in Table 3, is always tested against

the other polygon. So blocker IVs are tested if they are inside or outside the current

traversable and traversable IVs are tested if they are inside or outside the projected lower

blocker.

If the overlapping surface of two convex polygons is always a convex polygon, then of

course this polygon contains all IPs. The rules to construct the new blocker based on the

part between two IPs has to contain the IVs of the polygon which is inside the other one.

The new traversables then have to contain these inside IVs and the outside IVs of the

other polygon. The outside IVs have to be the traversable IVs because of the de�nitions

of the new traversables, which says that every new traversable is a subset of the current

traversable.

Below we discuss all the di�erent situations of the blocker IVs and the traversable IVs

between two IPs (see Table 3). It does not matter with which pair of adjacent IPs we

start, if we take care of the problem that the new blocker should not have the same

vertex twice. So we assume that the new blocker vertices are all added so that there are

no duplicates.

�rst IP second IP

Figure 31: Sketch of two IPs with traversable and blocker IVs and the traversable IVs are outside

60

7.6 Coplanar Polygon Cutting

b
lo
ck
er

IV
s

in
si
d
e
/
ou
ts
id
e

tr
av
er
sa
b
le
IV
s

in
si
d
e
/
ou
ts
id
e

re
su
lt
in
g
ac
ti
on
s

no no add [1. IP,2. IP] to newBlocker
no yes inside not possible
no yes outside add [1. IP,2. IP] to newBlocker &

add 7(1. IP, traversable IVs (clockwise), 2. IP) to list of new-
Traversables

yes inside no not possible
yes inside yes inside not possible
yes inside yes outside add [1. IP, traversable IVs (clockwise),2. IP] to newBlocker &

add convex decomposition of 7(1. IP, traversable IVs (clockwise),
2. IP, blocker IVs (counterclockwise)) to list of newTraversables

yes outside no add [1. IP,2. IP] to newBlocker
yes outside yes inside add [1. IP, traversable IVs (clockwise),2. IP] to newBlocker
yes outside yes outside not possible

Table 3: Di�erent situations in the CPC and their processing

If the blocker IVs are inside and any traversable IVs exist, they have to be outside,

because the blocker IVs are inside (see Figure 31). The blocker IVs are inside, which

means that they are also in the current traversable, that is why they are added to the

new blocker. Because there are traversable IVs which are outside, there is a surface which

has to be covered by new traversables. This surface consists of the �rst IP, the traversable

IVs in clockwise ordering, the second IP and the blocker IVs in counterclockwise ordering.

This surface usually looks like a half moon, which is normally not convex, so we construct

the new traversable with the help of the Convex Decomposition, which is described in

subsubsection 7.6.6.

61

7 Traversable Decomposition

�rst IP second IP

Figure 32: Sketch of two IPs with blocker
IVs, which are outside, and no traversable
IVs

�rst IP second IP

Figure 33: Sketch of two IPs with blocker
IVs, which are outside, and traversable IVs

In the situations in which blocker IVs exist and are outside, there is no way that a

new traversable should be constructed. So we add to the new blocker the �rst IP, the

traversable IVs and the second IP, in case there are traversable IVs (see Figure 33). In

the case there are no traversable IVs we add the �rst IP and then the second IP (see

Figure 32).

�rst IP second IP

(a) A traversable edge lies
on an edge of the blocker

�rst IP second IP

(b) A blocker edge lies on an
edge of the traversable

Figure 34: Two sketches of two IPs without IVs

In the following situations there are no blocker IVs, which means that the traversable

intersects an edge of the projected lower blocker.

62

7.6 Coplanar Polygon Cutting

If there are no IVs at all, an edge of the current traversable lies on an edge of the

projected lower blocker or vice versa (see Figure 34). So we just have to add both IPs to

the new blocker.

�rst IP second IP

Figure 35: Sketch of two IPs with traversable IVs, which are outside, and no blocker IVs

In the situation that there are traversable IVs, they have to be outside (see Figure 35),

because if they would be inside, then they would be IPs and our second IP would not

be the second IP, because there are IVs which would also be IPs. So the traversable IVs

have to be outside. A part of the traversable is cut o� by the edge of the projected lower

blocker, this a convex new traversable which has the vertices �rst IP, traversable IVs in

clockwise ordering and the second IP. Also the two IPs are added to the new blocker.

(a) Blocker inside
the traversable

(b) Traversable in-
side the blocker

(c) Traversable and
blocker with one bound-
ary point

Figure 36: Three sketches for situation with one IP

63

7 Traversable Decomposition

The case that only one IP exists is separately handled. Only one IP implies a boundary

point, so the IVs together with the IP are always all vertices of the polygon. But to decide

the correct operations we have to make some inside/outside tests. In the following consider

IP0 = IP1.

The blocker is fully contained in the traversable (see Figure 36 (a)), if the blocker IVs

are inside, which implies that the traversable IVs are outside. This case is handled like

there were two di�erent IPs, with traversable and blocker IVs and the traversable IVs are

outside.

The traversable is fully contained in the blocker (see Figure 36 (b)), if the blocker

IVs are outside and the traversable IVs are inside. In this case the traversable simply is

converted into the new blocker and we are �nished.

If the polygons have no overlapping surface (see Figure 36 (c)), there is nothing to do,

because no part of the geometry needs to be modi�ed. No overlapping surface is the case

when traversable IVs and blocker IVs are positive for outside.

7.6.6 CPC Convex Decomposition Call

The CPC Convex Decomposition (CD) is a Decomposition of a non convex polygon into

a minimal amount of convex polygons. The CD is nearly the same as the one described in

subsubsection 7.5.3. There are just three di�erences that will be described in the following

section.

64

7.6 Coplanar Polygon Cutting

�rst IP

�rst triangle

second IP

last triangle

Figure 37: The �rst and the last triangle construction of the Convex Decomposition in the CPC

The �rst di�erence is the construction of the �rst triangle. In the Blocker totally

contained in Traversable (BinT) we have to �nd a constellation of the current traversable

and the projected lower blocker, where we have a triangle with two adjacent blocker

vertices and one from the current traversable. And this triangle is not allowed to intersect

the projected lower blocker in any thing other then the shared blocker edge. In the CPC

CD we can construct the �rst triangle with the �rst blocker IV, the �rst IP and the

�rst traversable IV (see Figure 37). We know that this triangle does not intersect the

projected lower blocker in any other point then the points of the shared edge, because this

CD is called if the traversable IVs are outside. After this �rst triangle is processed, like

described above, the CD continues with the adding of as many blocker and traversable

vertices as possible.

second IP

ti

bj

Figure 38: Sketch to show that no blocker IVs can remain

65

7 Traversable Decomposition

The next di�erence is that after the loop, which constructs the quadrangles in the CD,

it is clear that only blocker IVs can remain when all traversable IVs have already been

used. This is because the last blocker IV bj and the vertex of the second IP, which is

handled like a blocker IV (see Figure 38), always incorporate all remaining traversable

IVs in one convex polygon.

At last the construction of the last triangle is di�erent. Which is normally constructed

with the remaining vertices, is now constructed manually with the last vertex of the

traversable IVs, the last vertex of the blocker IVs and the second IP(see Figure 37). It is

possible that the second IP is already used as the last blocker IV in the loop that constructs

quadrangles and then it is not necessary to construct the last triangle separately.

7.6.7 CPC Result Processing

The CPC Automaton return results have to be post processed to be made valid for

incorporation into the spatial partitioning system. It is possible that the constructed

new blocker is not a polygon and then it should not be returned to the VCD and should

not be inserted into the spatial partitioning system. This happens for example if two

polygons only have one shared edge, then this shared edge will be the new blocker but it

is a line-segment and not a polygon. Not every new blocker with more than two vertices

is a polygon because we allow that polygons have three or more collinear vertices. So at

the end of the CPC Automaton we have to check if the new blocker is a polygon, which

means the polygon has to have more than two vertices and these are not allowed to be

all collinear. The way we construct the new blocker guarantees, if it is a polygon, that it

is simple and convex.

The new traversables are not required to go through post processing, because we know

that they are all polygons, simple and convex. There are just two situation in which a new

66

traversable is constructed. In the �rst one the traversable intersects with a blocker edge

and we construct a polygon with the traversable IVs and the two IPs. That guarantees

to be a polygon, which is simple and convex, because the current traversable is convex

and a line decomposes a convex polygon into two convex polygons. If the traversable

intersects with the projected lower blocker in a way that there are blocker IVs, and of

course traversable IVs, we have a surface like a half moon. This form is usually not convex

and then we use the convex decomposition described in subsubsection 7.6.6 to get a set

of new convex polygons which cover this surface. So all new traversables are convex and

do not have to be checked by any sort of post processing.

8 Slicing by Vertical Blocker

Figure 39: Perspective sketch of a vertical blocker piercing through a traversable

The slicing by a vertical blocker decomposes a traversable into two new traversables

and separates them by an edge which holds the information that there is an obstruction.

The separation can be done by a modi�ed version of the BS. The BS cuts a blocker into

two parts by a plane given by a polygon. Now we want to cut the traversable into two

parts along a plane given by the blocker.

67

8 Slicing by Vertical Blocker

To be accurate it is necessary to not just cut along the plane of the blocker, but rather

divide that cut into a part where the blocker is and potentially in two parts where the

blocker is not. It is divided so that three edge and four vertices lie in the plane which is

de�ned by the blocker. These four points can also be determined by the BS (see Table 1).

If the blocker does not pierce the traversable plane, the edge is still not traversable, if

the blocker distance to the traversable is smaller than the smallest traversable stance. But

if the blocker hovers higher than the smallest traversable stance over the traversable, the

information how the edge can be traversed, meaning how it can be crossed, is added to

the edge. If there is an intersection between traversable and blocker, this intersection does

not have to be the part of the cut that is obstructed by the blocker. It is possible that the

part which is obstructed by the blocker is larger than the intersection. Then this part has

to be determined. To get the part that is obstructed by the blocker, all blocker vertices

which are above or in the plane of the traversable are projected onto the intersection line

between traversable plane and blocker plane. After this it is possible to calculate the

distances of the projected blocker vertices to one point on the intersection line and the

points with the smallest and the biggest distance represent the largest possible obstruction

by the blocker. But you could also take di�erent stances into account and then you would

slice the blocker along the slicing planes, that are parallel shifted to the traversable plane.

And you would just project the lower parts analogue to the way it is done in the VCD.

After you projected all lower parts, you have a collection of distances and stances and you

can cut the traversable along the intersection line between traversable plane and blocker

plane. Afterwards the new edge has to be split according to the distances of the projected

vertices and their stances.

68

9 Implementation

9.1 Introduction

The implementation was programmed in C++ and OGRE (see [Str]) was used as the

rendering engine. It should be noted that one of the most important things is the inte-

gration of a fast spatial data system. Obviously using something fast is always good, but

reducing the amount of VCD calls by using a well thought out spatial data structure is

the best way to get faster practical performance. In our Implementation we used a very

simple octree as a spatial data structure. More sophisticated spatial data structures like

AABB trees [XLX10] are most likely the easiest way to speed up the overall performance

of the practical implementation.

The overall speed of the algorithm when consuming a complete polygonal environment

depends heavily on the way the polygons are positioned. For example, if very thin layers of

polygons lie on top of each other, the algorithm will check each polygon against numerous

of the other layers just to �nd that only the top one is traversable. If the environment

geometry is very clean, without polygons sticking in each other, the algorithm is much

faster in relation to the navigation space that is extracted.

9.2 Conservative Vertex Creation

Our data model supports shared vertices and shared edges between multiple polygons. In

a normal polygonal world this means that most vertices and edges are part of more than

one polygon.

We only create a new vertex when necessary, meaning we do not create a new vertex

if there is already a vertex at this position in space. This leads to a much cleaner data

structure over all because it naturally leads to shared edges between the traversables which

69

9 Implementation

in turn means that edge welding is much easier to implement. In fact it is likely that any

post processing and optimization greatly bene�ts from conservative vertex creation.

9.3 Minimal Edge Length and Vertex Snapping

We encountered a lot of problems with the precision of our calculations. Edges that were

too short would not work because the intersection point calculations sometimes returned

points that did not even lie on the edge. These precision problems will always exist, it just

depends how small you make the edge, at some point you will run into trouble. To �nd

solutions that would scale with the achievable precision was quite time consuming. In the

end the main constraint was to de�ne a minimal edge length, if in edge was shorter, it

had to be collapsed. This constraint was sometimes met in advance to the edge creation.

For example there is vertex snapping in the Blocker Slicing and in the Projected Outline

Intersection. This means we snap the calculated intersection to an existing vertex, which

prevents the creation of an edge which would be too short.

The repercussions of the minimal edge length constraint turned out to be another huge

problem. When you start collapsing edges and snapping vertices onto one another, you

end up changing the polygonal structure. This means there are cases were you violate

the other constraints we put on the polygons, like convexity and planarity, to name the

most important. So when we potentially changed the polygonal structure by collapsing or

snapping, we had to check all polygons that shared the changed vertices or edges if they

still ful�lled all the constraints. Then if any of the properties of one of these polygons

changed, we had to �x it. This means either decomposing it into polygons that are planar

again or modify the vertices so everything was ful�lled again. Depending how a case could

be solved, the �wave� of structure changes extended further through the world.

70

10 Conclusions

(a) Low angle view (b) High angle view

Figure 40: Complex multi layered extraction of multi stance navigation data. The red surface
can not be traversed by the agent, orange can be traversed crouching, yellow can be traversed
ducked and on the green surface the agent is able to stand.

We achieved our goal to get to the 100% coverage of the navigatable surface we aimed for

by using the precise downward projection of the obstruction geometry in the Traversable

Decomposition (see section 7). We also managed to integrate the di�erent stance heights

into the main algorithm so the everything is calculated in one path instead of revisiting

the navigatable surface to determine the maximum stance height (see section 6).

The rendering in Figure 40 illustrates the strength of our implementation. The rather

complex multi layered level geometry is decomposed into precise polygons containing the

information where the agent can move and in which stance.

However we did not manage to get an absolutely robust implementation. The problem

with the arithmetic inaccuracy and the need to keep all polygons planar as described in

71

10 Conclusions

subsection 9.3 turned out to cause a lot of problems. And the huge number of tests and

corrections to retain polygon planarity ended up costing a lot of computational power.

Using only triangles instead of polygons would have dramatically increased the triangle

count compared to the polygon count, but the planarity issue just does not exist with

triangles, which saves a lot of computations. Overall using triangles would have led to a

much more robust implementation and most of the problematic cases of polygon-polygon

intersection would have been avoided.

72

11 Acronyms

BinT Blocker totally contained in Traversable

BS Blocker Slicing

CD Convex Decomposition

CPC Coplanar Polygon Cutting

IP Intersection Point

IV Intermediate Vertex

TD Traversable Decomposition

TinB Traversable totally contained in Blocker

VCD Volume Collision Decomposition

12 References

[FSH94] Jr. F. S. Hill. �The Pleasures of "Perp Dot" Products�. In: Graphics Gems

IV. Ed. by Paul S. Heckbert. Academic Press, 1994, pp. 138�148.

[Far06] Fredrik Farnstrom. �Improving on Near-Optimality: More Techniques for Build-

ing Navigation�. In: AI Game Programming Wisdom 3. Ed. by Steve Rabin.

Charles River Media, Inc., 2006.

[FTU95] Francisco R. Feito, Juan Carlos Torres, and A. Ureña. �Orientation, simplicity,

and inclusion test for planar polygons�. In: Computers & Graphics 19.4 (1995),

pp. 595�600.

[HY09] D. Hunter Hale and G. Michael Youngblood. �Full 3D Spatial Decomposition

for the Generation of Navigation Meshes�. In: AIIDE. 2009.

73

12 References

[HYD08] D. Hunter Hale, G. Michael Youngblood, and Priyesh N. Dixit. �Automatically-

generated Convex Region Decomposition for Real-time Spatial Agent Navi-

gation in Virtual Worlds�. In: AIIDE. 2008.

[KS02] J. Mark Keil and Jack Snoeyink. �On the Time Bound for Convex Decompo-

sition of Simple Polygons�. In: Int. J. Comput. Geometry Appl. 12.3 (2002).

[Möl97] Tomas Möller. �A Fast Triangle-Triangle Intersection Test�. In: journal of

graphics tools 2.2 (1997), pp. 25�30.

[Mon] Mikko Mononen. Recast. url: http://code.google.com/p/recastnavigat

ion/ (visited on 01/16/2012).

[O'R+82] Joseph O'Rourke et al. �A new linear algorithm for intersecting convex poly-

gons�. In: Comput. Graph. Image Process. 19 (1982), pp. 384�391.

[Pap03] Lothar Papula. Mathematische Formelsammlung. Vieweg, 2003.

[Str] Steve Streeting. OGRE. Torus Knot Software Ltd. url: http://www.ogre

3d.org/ (visited on 01/16/2012).

[Tou85] Godfried T. Toussaint. �A Simple Linear Algorithm for Intersecting Convex

Polygons�. In: The Visual Computer 1 (1985), pp. 118�123.

[Toz02] Paul Tozour. �Building a Near-Optimal Navigation Mesh�. In: AI Game Pro-

gramming Wisdom. Ed. by Steve Rabin. Charles River Media, Inc., 2002,

pp. 171�185. isbn: 1-58450-077-8,

[Toz03] Paul Tozour. �Search Space Representation�. In: AI Game Programming Wis-

dom 2. Ed. by Steve Rabin. Charles River Media, Inc., 2003.

[Weia] Eric W. Weisstein. Hessian Normal Form. MathWorld�A Wolfram Web Re-

source. url: http://mathworld.wolfram.com/HessianNormalForm.html

(visited on 12/15/2011).

74

http://code.google.com/p/recastnavigation/
http://code.google.com/p/recastnavigation/
http://www.ogre3d.org/
http://www.ogre3d.org/
http://mathworld.wolfram.com/HessianNormalForm.html

[Weib] Eric W. Weisstein. Line-Line Intersection. MathWorld�A Wolfram Web Re-

source. url: http://mathworld.wolfram.com/Line-LineIntersection.ht

ml (visited on 12/09/2011).

[XLX10] Yi-Si Xing, Xiaoping P Liu, and Shao-Ping Xu. �E�cient collision detection

based on AABB trees and sort algorithm�. In: Ieee Icca 2010. Ieee, 2010,

pp. 328�332.

[You+11] G Michael Youngblood et al. �Embedding Information into Game Worlds to

Improve Interactive Intelligence�. In: (2011).

[Zha+07] Long Zhang et al. �Conservative Voxelization�. In: The Visual Computer 23.9-

11 (2007), pp. 783�792.

http://mathworld.wolfram.com/Line-LineIntersection.html
http://mathworld.wolfram.com/Line-LineIntersection.html

Selbstständigkeitserklärung

Hiermit versicheren wir, die vorliegende Arbeit selbstständig und unter ausschlieÿlicher

Verwendung der angegebenen Literatur und Hilfsmittel erstellt zu haben.

Ort, Datum Sara Budde

Ort, Datum Leonard Kausch

	1 Introduction
	2 Problem Definition
	3 Navigation Graph Definition
	4 Navigation Graph Generation
	4.1 Brief Concept
	4.2 Import of World Geometry
	4.3 Preliminary Welding of Input Polygons
	4.4 Steepness Test of Polygons
	4.5 Sort Polygons into Spatial Partitioning System
	4.6 Volume Collision Decomposition
	4.7 Smooth Welding of Traversable Polygons
	4.8 Optimization of the Navigation Graph

	5 Volume Collision Decomposition
	5.1 Idea
	5.2 Algorithm
	5.3 Slicing by Vertical Blocker
	5.4 Parallel Traversable and Blocker
	5.5 Cut off Blocker beneath Traversable
	5.6 Cut across Blocker in Upper Blocker and Lower Blocker
	5.7 Traversable Decomposition

	6 Blocker Slicing
	6.1 Idea
	6.2 Algorithm
	6.3 Distance Calculation
	6.4 Polygon-Plane Intersection Cases
	6.5 Blocker-Traversable Plane Intersection Point Calculation
	6.6 Blocker Slicing in Lower Blocker and Upper Blocker

	7 Traversable Decomposition
	7.1 Definition
	7.2 Algorithm
	7.3 Projected Outline Intersection
	7.3.1 Definition
	7.3.2 Line-Line Intersection
	7.3.3 Intersection Point Definition

	7.4 Traversable Totally Contained in Blocker
	7.5 Blocker Totally Contained in Traversable
	7.5.1 Definition
	7.5.2 Start Vertex Selection
	7.5.3 Convex Decomposition

	7.6 Coplanar Polygon Cutting
	7.6.1 Intro/Overview
	7.6.2 Blocker and Traversable are Coplanar in 3D-Space
	7.6.3 Intermediate Vertices
	7.6.4 Coplanar Polygon Cutting Example
	7.6.5 CPC Automaton
	7.6.6 CPC Convex Decomposition Call
	7.6.7 CPC Result Processing

	8 Slicing by Vertical Blocker
	9 Implementation
	9.1 Introduction
	9.2 Conservative Vertex Creation
	9.3 Minimal Edge Length and Vertex Snapping

	10 Conclusions
	11 Acronyms
	12 References

