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1. Introduction

The spectral approach to signal processing has led to a huge number of well known tech-

niques, most prominently present in the area of analog and digital audio signal processing;

every older child knows what it means to manipulate the high, low or mid frequencies at

their audio player. Therefore it is a natural question to ask how one can formulate the

notion of spectral processing on polygonal meshes. A polygonal mesh can be regarded as

the discrete signal of the vertex coordinates together with connectivity information. In

his seminal paper Taubin [Tau95] suggested to exploit the analogy between the second

derivative for real valued functions over R and the so called Laplace-Beltrami operator on

surfaces. This idea is motivated by the fact that spectral signal processing on periodic

time-dependent discrete signals amounts to modifying the different frequency components

of the signal. The frequency components are obtained by projecting the signal in a sys-

tem of orthogonal sin and cos functions. Note, that sin(nx) and cos(nx) respectively are

eigenfunctions of the second derivative, that is, they reproduce under the action of the

second derivative up to a constant factor. The signal of mesh coordinates naturally lives

on the surface itself. Therefore, it makes sense, in analogy to the 1-dimensional case, to

project the coordinates onto the eigenfunctions of the second derivative of the surface,

the Laplace-Beltrami operator. This analogy is one among many reason for the interest

in the discretization of the Laplace-Beltrami operator (or Laplacian for short) on discrete

surfaces. The Laplacian of a surface determines, to a certain extend, the topology and

geometry of the surface itself. More specifically, the eigenvalues of the Laplacian encode

properties of the surface like Betti numbers and area. On the other hand it captures the

metric of a surface. The Laplacian is therefore a central tool for investigating how global

geometry emerges from local geometry and has become one of the central elements in

computational geometry processing. The academic world prefers to work with triangu-

lar meshes which admit easy theoretic treatment, the movie industry on the other hand

generally prefers quad meshes for practical reasons. It is therefore an important area

of research to find generalizations of well known constructions on triangular meshes to

polygonal meshes.
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1.1. Outline

This thesis deals with the discretization of the Laplace-Beltrami operator on meshes and

investigates the generalization of common discretization schemes from triangular meshes

to the general polygonal case. To understand the ideas used to discretize the Laplacian

it is important to have a basic understanding of the Laplacian acting on smooth surfaces

and its properties. Chapter 2 will give a brief introduction and motivates concepts used in

the discrete theory. Chapter 3 and 4 are concerned with the discrete Laplacian on triangle

and general polygonal meshes respectively. A popular way to discretize the Laplacian is

by defining the discrete operator polygon-wise on a triangle mesh, the most prominent

one being the cotan-operator, which has been discovered independently by Pinkall and

Polthier [PP93] and Duffin [Duf59]. As it turns out many different approaches lead to the

cotan-formula for the discrete Laplace-Beltrami operator. Alexa and Wardetzky [AW11]

found a generalization of the cotan operator to general polygonal meshes sharing all the

favorable properties of the cotan scheme. Unfortunately it also shares some flaws, resulting

in unwanted behavior in certain applications. To overcome or at least alleviate these flaws

is one of the main motivations for this thesis.

1.2. Applications

The rich set of mathematical properties of the Laplacian has led to a vast array of ap-

plications in the field of geometry processing. This section highlights some of them to

illustrate the importance of discrete Laplace operators on polygonal meshes as introduced

in section 3.1.

Mesh Filtering As described in the introduction, the eigendecomposition of the Laplacian

can be used to process signals defined on meshes. The mesh coordinates themself can

be interpreted as discrete signal over the mesh. Vallet and Lévy [VL08] explicitly filter

the mesh by numerically computing a set of eigenvectors and modulating the frequency

components (figure 1.1). The computation of eigenvectors is unfortunately very expensive.

Even for moderate sized meshes and state of the art software interactive applications

are not feasible. The visualization of the eigenfunctions (figure 1.1 below) illustrates

the periodic nature of the eigenfunction. The spatial “frequency” increases with larger

eigenvalues. Further details and applications can be found in the Siggraph course [LZ10].
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Figure (1.1): Eigenfunctions of the Laplacian on a mesh (above) and the result
of increasing and attenuating specific frequency components of the mesh signal
(below). Images taken from Vallet and Lévy [VL08].

Shape DNA The spectrum of the Laplacian encodes important information about the

underlying surface. Kac [Kac66] posed the question whether it is possible to determine the

shape of a 2-dimensional surface by the spectrum of its Laplacian. Since the eigenfunc-

tions correspond to the natural vibration modes of the shape he formulated the question

as “Can one hear the shape of a drum?”. The question was answered negative by Gordon

et al. [Gor92] who found two simple isospectral domains. The spectrum gives nevertheless

important information about the shape. Reuter et al. [Reu06] therefore use the spectrum

as a “fingerprint” of a discrete surface. Applications of this method range from shape

matching and watermarking to database queries. Jain and Zhang [JZ07] use the first

eigenvectors of the Laplacian as coordinates of a spectral embedding to match articulated

models (figure 1.2). They exploit the fact that this spectral embedding depends on dis-

tances measured on the surface rather than in the ambient space. The articulated models,

even though not very similar in the spatial domain, become very similar in the spectral

domain and can effectively be matched with standard methods.

Laplacian Coordinates The Laplacian applied to the coordinates of a mesh computes a

vector representing the difference of a vertex and the average in a small neighborhood, as

detailed later. These vectors per vertex are called Laplacian coordinates of the mesh. One

can show that the geometry can be reconstructed from this representation up to a rigid

3



Figure (1.2): Spectral embeddings of articulated shapes. The coordinates of
the spectral embeddings are given by the (eigenvalue normalized) eigenvectors
corresponding to the lowest non-zero eigenvalues.

Figure (1.3): Constraining vertex positions (red) and a set of handle vertices
(yellow sphere) yields a smooth deformed surface by solving a linear system.

transformation [Sor05]. By constraining the position of a set of vertices and solve for a

mesh that has the same Laplacian coordinates in a least squares sense, the mesh can be

smoothly deformed (figure 1.3).
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2. Smooth Theory

Meshes are used to mimic the smooth theory of two-dimensional surfaces embedded in

R
3. Since meshes are inherently not smooth we cannot employ classical calculus methods

on these surfaces. It is nevertheless very helpful to have a rough understanding of the

smooth theory in order to develop analogous tools on meshes that reflect the behavior in

the smooth setting.

2.1. Surfaces

Differential geometry is concerned with manifolds, smooth surfaces that look locally like

the space R
n. The earth for example can be thought of as a 2-dimensional manifold

embedded in a 3-dimensional ambient space because it is locally flat. The surfaces we are

interested in are called differentiable 2-manifolds. It is sufficient for this thesis to introduce

a particular subset called regular surfaces.

Definition 1 (Regular surface). A regular 2-surface embedded into R
3 is a subset S ⊂ R

3.

For each point p ∈ S there is an open neighborhood p ∈ Vp ⊂ R
3 and a map x : U → Vp∩S

of an open set U ∈ R
2 onto Vp ∩ S ⊂ R

3 such that:

1. x is differentiable.

2. x is a homeomorphism.

3. For each q ∈ U the differential dxq : R
2 → R

3 is one-to-one (⇔ has rank 2).

The maps xp are called local parameterizations or local charts of the surface. They iden-

tify subsets of R2 with subsets of S in a continuous and invertible fashion (property 2).

Properties 1 and 3 ensure that the surface is smoothly embedded into the ambient space

R
3, that is, the surface will have no cusps. Are cube for example cannot be represented

by a regular surface. The third property makes it possible to combine a set of parameter-

izations into an atlas spanning the whole surface. Such a (finite) covering always exists,

since surfaces are compact subsets of Rn. For a local parameterization x(s, t) at a point
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x(q) ∈ S the differential dxq is represented by the Jacobian of x(s, t)

dxq =

⎛
⎜⎜⎝
∂sx1|q ∂tx1|q
∂sx2|q ∂tx2|q
∂sx3|q ∂tx3|q

⎞
⎟⎟⎠ . (2.1)

The Jacobian maps directions in the parameter domain to elements in the so called tangent

space Tx(q)S at the point x(q).

Definition 2 (Tangent space). The tangent space TpS to a regular surface S at a point

x(q) = p ∈ S with a parameterization x is spanned by the two vectors ẽ1 = dxq(e1) and

ẽ2 = dxq(e2).

Since the parameterizations have full rank Jacobians (property 3), the tangent space is

2-dimensional everywhere. The tangent space is the space of all directional derivatives of

curves on the manifold passing through the point x(p) at x(p) [dCa76, 2-4, Prop. 1]. Given

a curve c(t) : (−ε, ε) ⊂ R → S with c(0) = p, the vector ∂c(t)
∂t

∣∣
0
is part of the tangent

space. This motivates the notation

∂i =
∂

∂ei
= ẽi. (2.2)

The scalar product of the ambient space R
3, restricted to the tangent space, is a bilinear

form

gp =

⎧⎨
⎩ TpS × TpS → R

u, v �→ uT gpv
(2.3)

and is represented in the basis ẽ1, ẽ2 by the matrix

g =

⎛
⎝g11 g12

g21 g22

⎞
⎠ =

⎛
⎝E F

F G

⎞
⎠ =

⎛
⎝〈ẽ1, ẽ1〉 〈ẽ1, ẽ2〉
〈ẽ2, ẽ1〉 〈ẽ2, ẽ2〉

⎞
⎠ (2.4)

The subscript p will be dropped for the rest of the chapter. This scalar product on the

tangent space is also called first fundamental form and is commonly abbreviated by I. The

scalar product g can be used to measure metric properties on the surface like length of

curves and angles. Consider for example a smooth curve c : [0, 1] ⊂ R → S on the surface.

The length of c on the surface is given by

∫ 1

0
|c′(t)|g dt =

∫ 1

0
c′(t)T gc(t)c′(t) dt (2.5)

6



2.2. Integration over Surfaces

With the help of an atlas we can define (differentiable) functions on a surface S, f : S → R.

The question arises how to integrate these functions. As noted before, one can measure

the length of a curve on the manifold by integrating the length of derivatives over an

interval I ∈ R. The length of a vector on the surface is the norm of the vector in the

parameter space with respect to the metric induced by g. The same is true for functions.

The integral of a function on an open subset of R2 is the integral over the function weighted

by the infinitesimal area element dx1dx2. To integrate a function over a surface we have to

deform the area element accordingly. The area spanned by e1 and e2 in parameter space

is mapped to the area |ẽ1 × ẽ2| on the tangent space of the surface. The calculation

〈ẽ1, ẽ2〉 = |ẽ1||ẽ2| cosα
|ẽ1 × ẽ2| = |ẽ1||ẽ2| sinα

⇒ 〈ẽ1, ẽ2〉2 + |ẽ1 × ẽ2|2
|ẽ1|2|ẽ2|2 = cos2 α+ sin2 α = 1

⇒ |ẽ1 × ẽ2| =
√

|ẽ1|2|ẽ2|2 − 〈ẽ1, ẽ2〉2 =
√
EG− F 2 =

√
det g

shows, that the mapped area on the tangent space is related by
√
det g to an area element

in the parameter domain. The integration over one coordinate chart is thus defined as.

∫
u

∫
v
f(u, v)

√
det g(u, v) dv du (2.6)

One can show that this definition of integral is independent of the parameterization and

can be extended to a whole atlas. A proof using a partition of unity argument can be

found in [dCa94, Chapter 4]. Note, that we can measure surface area by integrating the

function f(x, y) = 1. Moreover, it is possible to define an inner product on the space of

square-integrable functions on the surface by

〈f, g〉 =
∫
u

∫
v
f(u, v)g(u, v)

√
det g dv du. (2.7)

2.3. Differential Operators on Surfaces

Vector calculus is concerned with the generalization of the calculus on functions over R

to functions over R
n. For a function f : Rn → R one can define operators known as

gradient and divergence. They can be used to define the Laplacian. We are interested in

further generalizations of these concepts to surfaces in order to define the Laplace-Beltrami

operator. This section gives some insight into the formulations of differential operators on
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surfaces in local coordinates.

2.3.1. The Gradient

The gradient maps functions f : R
n → R to vector fields R

n → R
n representing the

direction of largest increase in the function f

grad f = ∇f =
(

∂f
∂x1

, . . . , ∂f
∂xn

)
. (2.8)

The gradient is characterized by the relation

〈grad f, v〉 = df(v), ∀v ∈ R
3 (2.9)

Note, that Rn is the tangent space for every point in R
n. To generalize this expression to

surfaces the space R
n is replaced by the tangent space of the surface.

〈gradp f, v〉 = (df)p(v), ∀v ∈ TpS (2.10)

In analogy to R
n, the differential of a function on a surface maps elements of the tangent

space of S at p to the directional derivative. Therefore we have in local coordinates

∂f

∂ẽj

∣∣∣∣
p

= 〈gradp, ẽj〉. (2.11)

The gradient of a function at a point p ∈ S is an element of the tangent space and can

therefore be represented by

gradp f =
∑
i

aiẽi. (2.12)

The coefficients ai depend on p and describe a vector field on the surface. By plugging

2.12 into 2.11 we get

∂f

∂ẽj

∣∣∣∣
p

=

〈∑
i

aiẽi, ẽj

〉
=

∑
i

ai〈ẽi, ẽj〉 =
∑
i

aigij . (2.13)

This expression is nothing more than the matrix equation

df = g a (2.14)
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where a = (a1, ..., an)
T . By inverting g we obtain an expression for the elements of a.

Denoting the elements of the inverse of g with gij we get

ai =
∑
j

gij
∂f

∂ẽj
(2.15)

and the gradient of f in local coordinates is given by

gradp f =
∑
i

∑
j

gij
∂f

∂ẽj
ẽi (2.16)

2.3.2. The Divergence

The divergence on R
n is an operator acting on a vector field X : Rn → R

n and is given by

div v = ∇ · v =
∑
i

∂Xi

∂xi
. (2.17)

Physically one can think of a vector field as flow of material. The divergence at a point

measures how much material gets injected or removed into the field at that point. For

smooth functions f with compact support and vector fields X , the divergence is charac-

terized by the relation (cf. [Ros97, Sec. 1.2.3])

〈X , grad f〉 =
∑
i

∫
Rn

Xi
∂f

∂xi
dx

=

↑
Integration by parts

∑
i

[Xif ]∂Rn −
∑
i

∫
Rn

∂Xi

∂xi
fdx

=

↑
supp(f) is compact

−
∑
i

∫
Rn

∂Xi

∂xi
fdx

=

∫
Rn

− divX · fdx

= 〈− divX , f〉.

Note that the inner products in the first and last line are acting on different objects. We

can think of the divergence as negative (formal) adjoint operator to the gradient. By using

the relation for the divergence operator on R
n one can deduce and appropriate expression

for an divergence operator acting on vector fields X defined over a surface [Ros97, Sec.

9



1.2.3]:

divX =
∑
i

1√
det g

∂

∂ẽi
(Xi

√
det g). (2.18)

One can show, that this expression is indeed independent of the parametrization.

2.3.3. The Laplacian

The Laplacian on R
n is defined to be

Δ = div ◦ grad =
∂2

∂x21
+ ...+

∂2

∂x2n
(2.19)

This equation generalizes to functions f : S → R on surfaces by using the surface gradient

and divergence (equation 2.16 and 2.18)

Δf = div ◦ grad f =
1√
det g

∂

∂ẽi

(
gij

∂f

∂ẽj

√
det g

)
. (2.20)

Since the divergence and gradient on surfaces are by construction adjoint to each other,

the Laplacian is self-adjoint.

〈f,Δf〉 = 〈f, div grad f〉
= −〈grad f, grad f〉
= 〈div grad f, f〉
= 〈Δf, f〉

This shows furthermore that the negative Laplacian −Δ is positive semi definite, since

〈grad f, grad f〉 ≥ 0.

As mentioned before gradient and divergence have illustrative interpretations for sur-

faces embedded in R
n. But what about the Laplacian? To get an intuition of the action

of the Laplacian one can take a step back and think of the Laplacian as the generalization

of the second derivative ∂2

∂x2 of functions f(x) defined over R. The second derivative of f

is given by

f ′′(x) = lim
h→0

f ′(x+ h)− f ′(x− h)

2h
. (2.21)

This equation is related to

f ′′(x) = lim
h→0

f(x+ h) + f(x− h)− 2f(x)

2h2
. (2.22)

by the rule of L’Hospital. Equation (2.22) highlights the relation of the value f ′′(x0)

10



at a specific x0 to the value of the function f(x0). The second derivative measures the

difference of f(x0) to the average of f in an infinitesimal neighborhood.

The second derivative in the 1-dimensional case is also related to curvature. Given an

arc-length parameterizedcurve C : R → R
2 the quantity C ′′(t) = κt is called curvature at

t. But how do these concepts extend to higher dimensions?

2.3.4. The Gauss Map, Curvature

The concept of curvature on regular surfaces is a little bit more involved. It is related to

the notion of a normal defined by the Gauss map.

Definition 3 (Gauss Map). The Gauss map N : S → S2 maps a point p ∈ S with a local

parameterization x to its normal

N(p) =
ẽ1 × ẽ2
|ẽ1 × ẽ2|(p). (2.23)

The differential dNp of the Gauss map at a point p ∈ S is a self-adjoint operator [dCa76,

Sec. 3-2, Prop. 1] on the tangent space TpS. It is intuitively clear that a point with dNp ≡ 0

is locally flat. Otherwise, it captures the local curvature behavior. Therefore dNp is also

called Shape Operator.

Definition 4 (Second Fundamental Form). The quadratic form

IIp : TpS → R, v �→ −〈dNpv, v〉 (2.24)

is called second fundamental form.

The second fundamental form maps (normalized) tangent vectors v of curves on the sur-

face to their so called normal curvature. The minimal and maximal normal curvature at

a point on the surface are called principal curvatures κ1, κ2. Different parameterizations

will lead to different basis for the tangent space and shape operator. The matrix represen-

tation of shape operators in different coordinate charts is therefore related by a similarity

transform and the eigenvalues κ1, κ2 of the shape operator are invariant under the change

of parameterizations. The gauss curvature

K = κ1κ2 (2.25)

and mean curvature

H =
1

2
(κ1 + κ2) (2.26)
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can be defined in terms of these eigenvalues. Since the second fundamental form is a

bilinear form it might be represented by a symmetric matrix

IIp ≡
⎛
⎝e f

f g

⎞
⎠ = −

⎛
⎝〈ñ1, ẽ1〉 〈ñ2, ẽ1〉
〈ñ2, ẽ1〉 〈ñ2, ẽ2〉

⎞
⎠ (2.27)

with ñi =
∂N
∂ei

. Moreover, one can show that

H =
1

2

eG− 2fF + gE

EG− F 2
(2.28)

holds [dCa76, Sec. 3-3].

Mean Curvature Flow The quantity H(p)N(p) is called mean curvature vector (the

explicit dependence on p will be dropped from now on). It has the interesting property

of being the gradient of surface area with respect to the point p. To see this, we need the

notion of normal variation (cf. [dCa76, Sec. 3-5]). If x : R2 → R
3 is the parameterization

of a regular surface patch, we call

φ(u, v, t) = x(u, v) + th(u, v)N(u, v) (2.29)

(with t ∈ (−ε, ε)) normal variation. A normal variation describes a family of “small”

deformation of the surface in normal direction parameterizedby t. The constant ε can

be chosen small enough to guarantee that φ(u, v, t) is a regular surface patch for every t

within (−ε, ε). The basis of the tangent plane and the fundamental forms of φ dependent

on the parameter t. For a fixed constant time t, we obtain

ẽti = dφ(u, v, t)ei = ẽi + thñi + th̃iN (2.30)

and can write the entries of the first fundamental form at time t as

Et = E − 2the+O (
t2
)

F t = F − 2thf +O (
t2
)

Gt = G− 2thg +O (
t2
)

with e, f, g defined by equation 2.27. Note, that the differentiation in 2.30 is with respect

to u and v only because t is constant. The squared infinitesimal area element At at time

12



t within an sufficiently small ε is then given by

(
At

)2
= EtGt − (

F t
)2

= EG− F 2 − 2th(Eg − 2Ff +Ge) +O (
t2
)

(2.31)

which can be written in terms of the mean curvature H (cf. equation 2.28) as

At = A0
√
1− 4thH (2.32)

and gives (
At

)′ |t=0 = −2hHA0. (2.33)

Because variation in normal direction yields a maximal change in surface area we obtain

by setting h ≡ 1:

∇A = −2HNA0. (2.34)

The mean curvature flow ∂x
∂t = −HN is thus an area minimizing deformation of the

surface. In other words, evolving the surface in direction of the mean curvature normal

will maximally decrease surface area.

An isothermal parametrization is characterized by E = G = λ2, F = 0. Such a param-

eterization induces an orthogonal basis on the tangent space. In case of an isothermal

parameterization x, the Laplace-Beltrami operator (2.20) simplifies to

1

λ2

∑
i

∂2

∂x2i
. (2.35)

Moreover, the mean curvature 2.28 becomes

H =
1

2

g + e

λ2
. (2.36)

It follows by a short calculation [dCa76, Sec. 3-5, Prop. 2], that

∂2

∂x21
x+

∂2

∂x22
x = 2λ2HN (2.37)

or equivalently

Δx = 2HN (2.38)

The Laplacian applied to isothermal coordinates therefore yields (twice) the mean curva-

ture normal. In combination with 2.34 we obtain the relationship

A0Δx = −∇A (2.39)
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Figure (2.1): Costas minimal surface. Rendering by Paul Nyander.

which will lead to a straightforward discretization of the Laplacian.

Dirichlet’s Principle Given an open bounded domain Ω ⊂ R
2, Dirichlet’s principle states

that one can find a function on Ω with prescribed values on the boundary ∂Ω that fulfills

Δf = 0 in the interior of Ω by minimizing Dirichlet’s energy

Ed(f) =

∫
Ω
|∇f |2dV (2.40)

in a variational sense. Solutions to this problem are called harmonic functions. Dirichlet’s

principle is just a special case of the Euler-Lagrange equation known from variational

calculus. A solution to the problem is nevertheless not guaranteed. One has to define the

space of admissible functions and the shape of the domain Ω carefully [Cou77].

A direct consequence from the definition of harmonic function is the maximum principle.

The maximum principle for harmonic functions states, that harmonic functions have no

local extrema in Ω or equivalently, they reach their extrema at the boundary ∂Ω. Every

point inside the domain is a saddle point.

Fixing the boundary of a surface and solving for a surface with harmonic coordinate

functions leads to minimal surfaces. It follows from the preceding section that minimal

surfaces have extremal area, which explains the name. Minimizing a discrete Dirichlet

energy leads to an efficient numerical scheme for computing minimal surfaces. Minimal

surfaces appear for example as soap bubbles with fixed boundary (figure 2.1).
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3. Discrete Laplacians

3.1. The Discrete Picture

The discrete analogue to a regular surface is called simplicial 2-complex. Simplicial 2-

complexes are constructed out of so called simplices: points, edges and triangular faces.

The following definitions assert that the simplicial complex fulfills some reasonable prop-

erties mimicking the smooth setting.

Definition 5 (k-Simplex). A k-simplex is the convex hull of k + 1 affinely independent

points. k points are affinely independent if they span a k dimensional affine subspace.

Theses simplices are glued together in order to get triangulated surfaces.

Definition 6 (Simplicial 2-Complex). A simplicial 2-complex is a collection of 0-, 1- and

2-simplices K with the properties:

1. Every simplex t with t ⊂ s for a s ∈ K is contained in K.

2. The intersection t ∩ s of two simplices s, t ∈ K is contained in K.

This definition asserts that the edges of every triangle are in the complex and triangles

intersect in edges also contained in the complex. In order to ensure the “manifoldness” of

the simplical complex I will assume for the rest of the text that the following condition

also holds.

3 Every 1-simplex s ∈ K is contained in exactly two 2−simplices t, u ∈ K.

Simplical 2-complexes can be represented by triangular meshes. A triangular mesh M is

composed of a triple of indexed lists (X,Y, Z) representing the vertex coordinates i.e. X =

(x1, x2, . . . , xn) and a set of simplices S represented by indices into the list of coordinates.

The set of 0-simplices (vertices) will be denoted by V, the set of 1-simplices (edges) by E
and the set of 2-simplices (faces) by F .

In order to represent general polygonal meshes and dual meshes we need a generalization

of simplical 2-complexes. Informally we obtain a cell complex by replacing k-simplices by

open k-balls. That is, we do not require the elements to be a convex hull but rather to

be homeomorphic to the open k-ball. We represent 2-dimensional cell complexes in the

discrete setting by points, edges and general polygons defined by a closed loop of edges.

15



3.2. Properties of Discrete Laplacians

Motivated by the continuous definition of the Laplacian the question arises whether an

corresponding discrete operator on polygonal meshes exists. Real valued functions on

meshes are generally given by a discrete mapping f : V → R. As in the smooth setting a

discrete Laplacian should be a linear map of functions to functions. A discrete Laplacian

can therefore be represented by a real valued |V | × |V | matrix L. Such a matrix can be

defined by the real coefficients ωij in

(Lu)i =
∑
j

ωij(ui − uj). (3.1)

Wardetzky et al. [War07] identify a set of core properties that should be fulfilled by a

discrete Laplacian in order to mimic the smooth setting. As it turns out there is, under

reasonable assumptions, no discretization having all desired properties.

1. Symmetry (Sym): The continuous Laplace operator is self-adjoint, so should the

matrix L. This leads to real eigenvalues and orthogonal eigenvectors.

2. Locality (Loc): In order to mimic a differential operator the support for eval-

uating the Laplacian at a vertex should be “small”. The following discussion will

be restricted to discrete Laplacians with 1-ring support. This means ωij = 0 if

(i, j) /∈ E .

3. Positive Weights (Pos): Positive weights ωij for i �= j ensure a maximum prin-

ciple for discrete harmonic functions. Consider a discrete function f with Δf = 0

and ω̃ij =
ωij∑

k∈N (i) ωik
. Therefore fi =

∑
j∈N (i) ω̃ijfj . With 0 ≤ ω̃ij ≤ 1 we have for

all i indices j′, j′′ ∈ N (i) such that fj′ ≤ fi ≤ fj′′ holds. The value at every interior

vertex is therefore not a local extremum.

4. Positive Semi-Definiteness (Psd): L should be positive semi-definite, like the

continuous operator in order to ensure the non-negativity of the Dirichlet energy

ED(u) = uTLu. The smooth Dirichlet energy vanishes for linear functions. Since

linear functions on a closed mesh are constant, the kernel should be 1-dimensional.

5. Linear Precision (Lin): This property should be adopted to ensure reasonable

behavior on planar meshes e.g. in parameterization applications. A discrete Laplace

operator L is linear precise if (Lu)i = 0 whenever the following conditions hold

• all incident triangles to vertex i are coplanar.
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• the discrete function u is linear on the 1-ring of i.

• i is not a boundary vertex.

Note, that this condition does not conflict with (Psd), because a planar embedded

mesh will have boundary vertices and linear functions are not required to vanish at

the boundary. Linear functions on a mesh with boundary will thus not appear in

the null-space of the Laplacian.

6. Convergence (Con): When the mesh resolution becomes finer the discrete oper-

ator should converge to the smooth Laplacian (under reasonable conditions on the

refinement).

3.3. Combinatorial Laplacians

Combinatorial Laplacians represent the simplest yet powerful class of discrete Laplace

operators. Their coefficients are solely based on connectivity information (also called

combinatoric of the mesh). The main advantage of this class of discrete Laplacians is,

that the matrix does not have to be rebuild when altering the mesh i.e. in an iterative

process. This advantage is even more striking if computational expensive decompositions

of the matrix are used. The downside is of course the lack of any geometrical information.

Especially in the presence of nonuniform sampling problems can arise. This section reviews

the most prominent instances of combinatorial Laplacians.

The Umbrella Operator The umbrella operator is a straightforward generalization of

the five-point stencil Laplacian used in image processing on a regular grid. This discrete

Laplacian is motivated by the fact, that the Laplacian evaluates the distance of a func-

tion value to the average of function values in a small neighborhood (see section 2.3.3).

Denoting the degree of a vertex i by di := |{j : (i, j) ∈ E}|, the umbrella operator LU is

given by

ωij =

⎧⎪⎨
⎪⎩
1 if (i, j) ∈ E
0 else.

(3.2)

through the relation (3.1). The properties (Sym), (Loc) and (Pos) are fulfilled by con-

struction. (Lin) does not hold. This follows from the fact that combinatorial operators

are independent of an embedding, the notion of a planar embedding is therefore “invisible”

to any combinatorial operator. The property (Psd) is implied by (Pos) and (Sym). For
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a discrete function u over the mesh with u �= const:

uTLUu =
∑
i

ui
∑
j

ωij(uj − ui)

=
∑
ij

uiωij(uj − ui)

=
(Sym)

∑
i>j

ωij(ui(uj − ui) + uj(ui − uj))

=
∑
i>j

ωij(uj − ui)
2 >
(Pos)

0

This fact is again valid for any combinatorial operator, since the specific structure of LU

is not used in the proof.

The Tutte Laplacian This operator is given by the row-wise normalized umbrella op-

erator. The normalization destroys the symmetry for meshes with irregular connectivity.

(Psd) is nevertheless preserved[Zha04]. The spectrum of the Tutte Laplacian is bounded

within [0, 2].

The normalized graph Laplacian This operator is an symmetrized version of the Tutte

Laplacian. The weights are given by

ωij =

⎧⎪⎨
⎪⎩

1√
didj

if (i, j) ∈ E

0 else.

The property (Psd) is destroyed and the kernel can contain non-constant vectors.

Further details and more elaborate combinatorial Laplacians can be found in [Zha04].

The choice of a discrete Laplacian depends in general on the application and the properties

that should be preserved during discretization.

3.4. Pinkall’s Cotan Operator

Originally derived in the context of numerical computation of minimal surfaces (section

2.3.4), the cotan operator represents the most common discretization of the Laplacian

on triangle meshes. Pinkall and Polthier [PP93] observe, that discrete minimal surfaces,

interpreted as coordinate function defined on the mesh, can be characterized as minimizers

of a discrete Dirichlet energy Ed (cf. 2.40). The dirichlet energy is derived in the more

general case of an arbitrary geometry function f : V → R
3 that maps every triangle (i, j, k)
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γ1

γ

Figure (3.1): Notation used in the formulation of the discrete Laplacian.

in the mesh to the triangle (f(i), f(j), f(k)) (see figure 3.2). The discrete Dirichlet energy

is given by

Ed(f) =
1

2

∫
M

|∇f |2dx. (3.3)

analogous to the smooth case. This functional is the sum of the functionals Ed(f)|T over

each triangle T in F . We are thus interested in the differential of a (affine) function fT

(the explicit restriction to T will be dropped from now on) that maps a triangle Tg onto

another triangle Th.

a

b c

α

β

γ

x0

x1
x2

v

w

e2

e1

f

Tg Th

Te

ϕ ψ

Figure (3.2): A function f mapping triangle Tg to Th can be decomposed into
mappings ϕ and ψ.

We can consider the map f as the composition of the maps ψ and ϕ−1, mapping from and

to the unit triangle Te (figure 3.2). Since ψ is affine, dψ will be constant over the triangle.

The differential takes the particularly simple form dψ = (a, b), because we are mapping

from the unit triangle. This gives

dψTdψ =

⎛
⎝〈a, a〉 〈a, b〉
〈a, b〉 〈b, b〉

⎞
⎠ (3.4)
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It follows from the inverse function theorem, that differentation and the operation of taking

the inverse can be interchanged for smooth functions:

dϕ−1 = (dϕ)−1 =
(
v w

)−1
=

⎛
⎝v0 w0

v1 w1

⎞
⎠−1

=
1

det
(
v w

)
⎛
⎝ w1 −w0

−v1 v0

⎞
⎠ (3.5)

With the area of the triangle A = 1
2 det

(
v w

)
we get

dϕ−1dϕ−1T =
1

4A2

⎛
⎝ 〈w,w〉 −〈v, w〉
−〈v, w〉 〈v, v〉

⎞
⎠ . (3.6)

We can now express the integrand of the Dirichlet energy

|∇f |2 = tr
[
(df)tdf

]
= tr

[
(dϕ−1)TdψTdψdϕ−1

]
= tr

[
dψTdψdϕ−1(dϕ−1)T

]

By using equations 3.4 and 3.6 and rearranging terms we obtain:

=
1

4A2
(〈a, a〉〈w,w〉 − 2〈a, b〉〈v, w〉+ 〈v, v〉〈b, b〉)

=
1

4A2
((〈w,w〉 − 〈v, w〉)|a|2 + (〈v, v〉 − 〈v, w〉)|b|2 + 〈v, w〉|a− b|2)

=
1

4A2
(〈w − v, w〉|a|2 + 〈v, v − w〉|b|2 + 〈v, w〉|c|2)

The triangle area can be expressed with cross products:

=
1

2A

( 〈w − v, w〉
|(v − w)× w| |a|

2 +
〈v, v − w〉

|v × (v − w)| |b|
2 +

〈v, w〉
|v × w| |c|

2

)

Scalar and vector product can be expressed in terms of sin and cos:

=
1

2A

( |w − v||w| cos(α)
|w − v||w| sin(α) |a|

2 +
|v||v − w| cos(β)
|v||v − w| sin(β) |b|

2 +
|v||w| cos(γ)
|v||w| sin(γ) |c|

2

)
=

1

2A
(cotα|a|2 + cotβ|b|2 + cot γ|b|2)

And we finally obtain

Ed(f) =
1

4

∑
F

cotα|a|2 + cotβ|b|2 + cot γ|c|2. (3.7)
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Note, that the angles refer to the base triangle whereas the lengths a, b, c refer to the

mapped triangle. For the special case f ≡ Id, that is, the geometry is mapped to itself,

length and angles come from the same triangle. With the notation from figure 3.1 and

reordering to sum over the edges of the mesh we get

Ed(f) =
1

4

∑
(x0,x1)∈E

(cot γ0 + cot γ1)|x1 − x0|2. (3.8)

By differentiating (3.8) with respect to vertex positions we obtain

dEd

dx0
= −1

2

∑
x∈N (x0)

(cot γ0 + cot γ1)(x− x0). (3.9)

It follows, that dEd
dx0

= 0 (with appropriate boundary conditions) is the condition for M to

be minimal (the coordinate functions are discrete harmonic). In other words dEd
dx0

can be

interpreted as a discrete Laplacian, since Δx = 0 is the condition for the Dirichlet energy

to be minimal in the smooth case (cf. 2.40).

3.5. Desbrun’s Cotan Operator

As seen in the smooth setting (section 2.3.4), the Laplacian is intimately related to the

area gradient. For an isothermal parameterization x and a small surface patch of area A

we have:

A0Δx = −∇A (3.10)

(cf. 2.39). Desbrun et al. [Des99] find the (area normalized) cotan Laplacian by computing

the area gradient explicitly in the discrete setting. They use the gradient of the 1-ring

area with respect to its center vertex. The following proof shows this approach indeed

yields the cotan-formula.

Proof. Let T = (a, b, c) be a Triangle with a, b, c ∈ R
3. The area of T can be written as

A =
1

2

√
|b− a|2|c− a|2 − 〈b− a, c− a〉2. (3.11)

The derivative with respect to a is given by

∇aA =
1

2A
∇a(|b− a|2|c− a|2 − 〈b− a, c− a〉2)

= − 1

2A

[
2(b− a)|c− a|2 + 2(c− a)|b− a|2 + 2〈b− a, c− a〉(2a− c− b)

]
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Expanding the squared norms and rearranging gives:

= − 1

A
[(b− a)〈c− a+ a− b, c− a〉+ (c− a)〈b− a, b− a− c+ a〉]

= − 1

A
[(b− a)〈b− c, a− c〉+ (c− a)〈a− b, c− b〉]

The area and scalar products can be expressed in terms of the side lengths and the enclosed

angle.

= −1

2

|b− c| |a− c| cos γ
|b− c| |a− c| sin γ (b− a)− 1

2

|a− b| |c− b| cosβ
|a− b| |c− b| sinβ (c− a)

= −1

2
cot γ(b− a)− 1

2
cotβ(c− a)

This is the cotan-formula derived earlier through a totally different construction. Using

formula 3.10 we get the area normalized cotan weights

ωij =
1

4ARing
(cot γij + cot γji). (3.12)

3.6. The DEC Laplacian

It is also possible to derive the cotan operator in the framework of Discrete Exterior

Calculus. DEC does not try to directly discretize operators but to build them up from

basic building blocks analogous to the smooth theory of exterior calculus [Hir03]. The

Laplacian can be written as

Δ = div grad = δd = d � d

with � being the Hodge-Star-operator. With a discrete version of the Hodge-Star-operator

and the differential in place we can use the smooth theory as recipe for a discrete Laplacian.

The discrete differential is the difference of function values per edge. The DEC-Hodge-Star

is defined with the help of a dual mesh (see figure 3.3).

Definition 7 (Circumcentric Dual). For a given simplical 2-complex K the circumcentric

dual complex is a cell 2-complex �K. Every k-simplex in t ∈ K has a corresponding 2− k

cell �t ∈ �K. For every s ⊂ t we have �t ⊂ �s. The circumcenter of every 2-complex

(primal face) determines the position of its dual 0-cell (dual vertex).
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Figure (3.3): A planar simplicial complex and its cicumcentric dual (dotted).
Dual simplices might be unbounded in case of a primal complex with boundary.

The DEC-Laplacian of a function u : V → R evaluated at vertex i is then given by

(LDu)i =
1

| � i|
∑

e∈E,e=(i,j)

| � e|
|e| (ui − uj) (3.13)

[Hir03]. This geometric construction can be shown to be equivalent to the area normalized

cotan operator.

Lemma 1. The DEC Laplacian (3.13) is the area normalized cotan operator.

Proof. Following the notation from Glickenstein [Gli08] we denote the angle at vertex k

in a triangle (i, j, k) with γkij . C(i, j, k) is the circumcenter of the triangle and C(i, j)

the circumcenter of the edge (i, j) (cf. figure 3.4). Since the lines perpendicular to the

edges through the midpoints meet in the circumcenter the angle γkC(i,j,k)j and γjkC(i,j,k)

are equal. With the same argument we have γkiC(i,j,k) = γiC(i,j,k)k. This gives γC(i,j,k)jk =

π − 2γkC(i,j,k)j and γC(i,j,k)ki = π − 2γkiC(i,j,k). Since 2ϕ = 2π − γC(i,j,k)ki − γC(i,j,k)jk we

get

2ϕ = 2γkC(i,j,k),j + 2γkiC(i,j,k) ⇒ ϕ = γkij . (3.14)

With 1
2 |(i, j)| cotϕ = |(C(i, j, k), C(i, j))| we get

| � (i, j)|
|(i, j)| =

1

2
(cot γij + cot γji) (3.15)

which completes the proof.
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C(i, j)

C(i, j, k)
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ϕ

Figure (3.4): Weighted dual mesh (red). The distance between edge and triangle
circumcenter, C(i, j) and C(i, j, k) respectively, can be calculated in terms of the
angle γi and the distances dij and dik.

3.7. Properties of the Cotan Operator

The cotan operator is given by (3.9) as

ωij =
1

2
(cot(γ0) + cot(γ1)) (3.16)

following the notation from figure 3.1. The cotan operator is obviously symmetric (Sym).

(Psd) is implied because the discrete Dirichlet energy is positive by construction.

Lemma 2. The cotan operator L fulfills the property (Lin).

Proof. Consider wlog. a mesh with all incident triangles to the interior vertex i embedded

in the x-y-plane. In order to fulfill (Lin) every linear function f on the 1-ring of i has

to vanish at vertex i under the action of the Laplacian. The space of linear functions

on this 1-ring is spanned by the functions ux, uy mapping every vertex to its own x- and

y-coordinate and the constants. With the DEC formulation of the cotan Laplacian (3.13)

and the vector-valued function u = (ux, uy) we get

(Lu)i =
1

| � i|
∑

(i,j)∈E

| � (i, j)|
|(i, j)| (ui − uj)

=
1

| � i|
∑

(i,j)∈E

(i, j)

|(i, j)| | � (i, j)|.

Since the dual edges form a closed loop we have
∑

(i,j)∈E �(i, j) = 0 for a fixed i. Because
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dual and primal edges are perpendicular, the mapping

� (i, j) �→ (i, j)

|(i, j)| | � (i, j)| (3.17)

is just a π/2-rotation and we can conclude that (Lux)i = (Luy)i = 0. Since the constants

are in the kernel of the operator we have (Lu)i = 0 for every linear function u and inner

vertices i.

The convergence behavior (Con) of the cotan Laplacian was discussed by Wardetzky

[War08]. The point-wise convergence of a family of meshes to a smooth surface is in general

not sufficient for the cotan-formula to converge to the smooth Laplacian. However, one

can show that if the meshes converge in Hausdorff distance and the normals converge as

well (which is not implied), the cotan operator converges to the smooth Laplacian with

respect to an operator norm.

The positivity (Pos) is in general violated because cot(x) < 0 for x ∈ (π/2, π). For

meshes with a bound of π/2 on the angles positivity is guaranteed and therefor a discrete

maximum principle holds.

3.8. Weighted Cotan Operator

We have seen that the property (Lin) is intimately related to the dual mesh. The fact that

the boundary loop of the dual face to each vertex is closed was crucial for the proof, but the

choice of the circumcenter as dual vertex of each face was somewhat arbitrary. Varying the

position of each dual vertex will lead to cotan operators that are guaranteed to maintain

linear precision and symmetry. Glickenstein [Gli08] shows that the space of orthogonal

dual meshes can be parameterizedby vertex weights leading to weighted discrete Laplace

operators. They can be shown to be positive definite as long as the dual vertex lies inside

the circumcircle of the triangle [Gli07].

As before, we denote by (i, j, k) the triangle formed by the vertices i, j and k and by

(i, j) the edge from i to j. The points C(i, j, k) and C(i, j) are the circumcenter of the

triangle and edge respectively. The triangle circumcenter induces a dual mesh with dual

edges perpendicular to the primal edges. The dual edge �(i, j) intersects the edge (i, j) in

the circumcenter C(i, j). The definition of circumcenter as a point that is equidistant to a

set of 2 or 3 points depends on the specific distance d : R3 ×R
3 → R. Consider the power

distance defined by

πp(x) = ||x− p||22 − wp (3.18)
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Figure (3.5): Weighted dual mesh (red). The signed distance between weighted
edge and triangle circumcenter, C(i, j) and C(i, j, k) respectively, can be calculated
in terms of the angle γi and the distances dij and dik.

with a weight wp ∈ R. Given a triangle (i, j, k) and weights wi, wj , wk we can define the

weighted circumcenter Cw of the triangle by

πxi(Cw(i, j, k)) = πxj (Cw(i, j, k)) = πxk
(Cw(i, j, k)) (3.19)

and accordingly the weighted circumcenter of an edge (i, j) as

πxi(Cw(i, j)) = πxj (Cw(i, j)) and Cw(i, j) = sxi + txj for some s, t ∈ R. (3.20)

For a point p with equal power distance to xi and xj we have

||xi − p||2 − wi = ||xj − p||2 − wj (3.21)

which can be rearranged to give

〈p, xj − xi〉 = wi − wj − ||xi||2 + ||xj ||2. (3.22)

The set of points p obeying this equation form a line in the plane of the triangle perpen-

dicular to the primal edge (i, j). The three (weighted) dual edges of a triangle intersect

in Cw(i, j, k). The power distance with respect to a weight functions thus induces an

orthogonal dual mesh. Given a weighted triangle mesh we can define a weighted Lapla-

cian by using formula 3.13 together with a weighted dual mesh. In order to implement

the weighted Laplace operator, it is necessary to evaluate the weighted dual edge length.
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Denoting the distance of a vertex i to the the weighted circumcenter C(i, j) by dij and

the angle at vertex i by γi, [Gli07] gives the formula

d±(C(i, j, k), C(i, j)) =
dik − dij cos(γi)

sin(γi)
(3.23)

for the signed distance between triangle and edge circumcenter. Figure 3.5 illustrates this

relationship. The coefficients of the Laplacian with respect to a triangle are given by

ωij =
d±(C(i, j, k), C(i, j))

|(i, j)| =
dik − dij cos(γi)

|(i, j)| sin(γi) . (3.24)

For dij we have

d2ij − wi = d2ji − wj = (|(i, j)| − dij)
2 − wj

= (|(i, j)| − dij)
2 − wj

= |(i, j)|2 − 2|(i, j)|dij + d2ij − wj

and therefore

dij =
|(i, j)|2 + wi − wj

2|(i, j)| (3.25)

which leadss to a simple formula for the weighted Laplacian.
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4. General Polygonal Meshes

The operators encountered so far are all defined on triangular meshes (simplical 2-complexes).

This makes a lot of sense from a mathematical point of view as seen in the definition of

simplical complexes. Since three vertices in general position describe a single plane, it

is easy to incorporate ideas from the smooth theory like parameterization and normal

vectors. From a aesthetically and practically point of view triangle meshes are not always

the right choice. The movie industry generally prefers quad-meshes. This is attributed to

the extensive use of Catmull-Clark subdivision surfaces. Moreover, it is important for a

3d-artist to have control over the edge-flow while modeling an object which is much easier

in a semi-regular quad mesh (figure 4.1) .

A quick remedy would be to triangulate the quad meshes before applying operations

involving a discrete Laplacian. This would destroy an extensive amount of information,

especially for low-poly meshes like in figure 4.1. Depending on the chosen triangulation the

result will consequently differ. Therefore we need a real polygon based geometric Lapla-

cian. It is easy to extend the definition of combinatorial Laplacians to general polygonal

meshes (cell 2-complexes). This is not the case for the cotan-Laplacian. We have seen

that many derivations of the cotan-formula exist, all of which can potentially be used to

generalize the cotan-formula. The main obstacle to a direct generalization of the ideas is

the fact, that there is a priori no distinguished surface spanned by the polygon.

4.1. Orthogonal Duals for Polygonal Meshes

Orthogonal dual meshes are at the heart of the discrete Laplacian formulation in discrete

exterior calculus and lead to linear precision. A straightforward generalization of the cotan

operator to polygonal meshes would thus be to construct orthogonal dual meshes and

use the cotan-formulation from DEC (equation 3.13). Note, that the problem of finding

admissible dual vertices is linear. Given a mesh (V, E ,F) a solution to the problem consists

of a set of dual vertices per face V ′ = �F and a set of distances dij per unoriented edge.

The set of unoriented edges Eu is the set of edges modulo the relation (i, j) ∼ (j, i). Per

face fk with dual vertex v′k and for each edge (i, j) ∈ Eu adjacent to that face we have the
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Figure (4.1): The edges of the base quad mesh follow smooth feature lines of the
face (right). Carefully modeling the edge flow is important for the visual aesthetics
of the final Catmull-Clark subdivision surface (left).

condition 〈
vi + dij

vj − vi
||vj − vi|| − v′k, vj − vi

〉
= 0 (4.1)

expressing the orthogonality between primal and dual edge. The set of |E| equations forms

a linear system in the 3|F| + |Eu| unknowns v′k and dij . For a closed mesh of n-gons we

have the relation

n|F| = |E| = 2|Eu|. (4.2)

Assuming the systems have almost maximal rank we have an under constraint system for

n-gons with n ≤ 5. By solving the system and computing the null space we can explore

the space of admissible dual meshes. Note that the set of dij ’s and the set of dual vertices

determine each other. Numerical experiments suggest, that the dimension of the solution

space is generally very close to |F| for quad meshes. A reasonable choice from the solution

space is a mesh that minimizes the squared distance between the face barycenters and

their dual vertices. An implementation of this strategy in Mathematica can be found in

the appendix (listing A.2). Results of the optimization can be found in figures 4.2 and

4.3. The computational cost is unfortunately prohibitively large, even for moderate sized

meshes (a couple of minutes for figure 4.3 on a 2.2 GHz dual core laptop). A simple

parameterization of the space of orthogonal duals, like for the triangle case (section 3.8),

would be necessary in order to use orthogonal duals for polygonal meshes in an interactive

application.

The approach bears some similarity to the HOT energy introduced by Mullen et al.

[Mul11]. They try to optimize the weights on a triangulation in order to move the cir-

cumcenters closer to the barycenters of each triangle. The application of HOT energy

optimization for polygonal meshes is an interesting direction for future research.
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Figure (4.2): Dual vertices (left) and edge midpoints (right) of a quad mesh
obtained by an optimization implemented in Mathematica (listing A.2).

4.2. Alexa and Wardetzky’s Polygon Laplacian

To cope with the lack of a spanned surface it is natural to look for mathematical quantities

of a surface that can be expressed in terms of its boundary. Stoke’s theorem might come

to mind stating ∫
S
〈∇ × X , n〉dA =

∫
∂S

〈X , dx〉. (4.3)

for a smooth vector field X and a compact surface S with boundary ∂S. Integration of

the normal component of the vector field ∇×X over the surface yields the same value as

integrating the vector field X along the boundary. Given vector fields ai, i = 0, 1, 2 with

∇× ai = ei equation (4.3) gives

∫
S
ni dA =

∫
S
〈∇ × ai, n〉 dA =

∫
∂S

〈ai, dx〉 (4.4)

The integral
∫
S n dA is called vector area of the surface and is by equation (4.4) indepen-

dent of the surface itself. It is easy to check that

A = (a0, a1, a2)
T =

1

2

⎛
⎜⎜⎝

0 −x2 x1

x2 0 −x0
−x1 x0 0

⎞
⎟⎟⎠ (4.5)

satisfies the condition ∇ × ai = ei. By calculation we see that for every y ∈ R
3 we have

Ay = 1
2x × y. The position vector 1

2x is called Darboux vector of the matrix A. More

generally, for every skew-symmetric matrix B the vector v is called Darboux vector if it

satisfies

By = v × y for every y ∈ R
3 (4.6)
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Figure (4.3): Edge midpoints inducing an orthogonal dual of a quad mesh.

and we write [B] = v. With this observation we obtain a compact expression for the vector

area: ∫
S
n dA =

∑
i

∫
∂S

〈ai, dx〉 =
∫
∂S
A dx =

1

2

∫
∂S
x× dx. (4.7)

In the discrete case the right hand side of (4.7) becomes the sum of area-weighted triangle

normal vectors (the vector area of a triangle). For the vector area of a general n-gon f

with coordinates Xf = (x0, ..., xn−1)
T ∈ R

n×3 we have

af =
1

2

n−1∑
i=0

xi × xi+1 (4.8)

where the indices are cyclic, meaning xi+1 = x((i+1) mod n). This convention will be used

throughout this section. Note, that this formula is translation invariant, it does not depend

on a specific choice of origin. With the vector area we have a generalization of area to

non-planar polygons that is easy to compute — just choose an arbitrary tessellation of the

polygon and sum up the individual vector areas. For a planar polygon the length of the

vector area will consequently be the area of the polygon. For a non-planar polygon the

length will correspond to the area of the polygon projected in the direction of the vector

area. We will see in a moment that this projection direction is in fact the direction that

produces the projection of largest area.

The idea of the polygon-Laplace operator is to compute the gradient of the vector area
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x4

x̄3

af

x1

x2

x3

x̄1

x̄2

x̄4

Δx1
|af |

Figure (4.4): A nonplanar polygon f = (x1, x2, x3, x4) is projected along its vector
area af . Rotating the diagonal (x̄4, x̄2) in the plane and scaling by 0.5 gives the
vector area gradient with respect to x1.

norm |af | with respect to a vertex xi analogous to Desbrun’s approach (see section 3.5):

(∇xi |af |)T =

(
∇xi

√
〈af , af 〉

)T

=
1

2|af | 〈∇xi(xi−1 × xi − xi+1 × xi), af 〉 (4.9)

It is easy to construct matrices Xi+1, Xi−1 with [Xi+1] = xi+1 and [Xi−1] = xi−1. We

thus have

=
1

2|af | 〈∇xi((Xi−1 −Xi+1)xi), af 〉 = 1

2|af |(Xi−1 −Xi+1)
Taf (4.10)

Using the definition of the Darboux vector we finally get for the area gradient

=
1

2|af |af × (xi−1 − xi+1) =
1

2|af |A(xi−1 − xi+1) (4.11)

A closer look at this last equation reveals the geometric meaning of the vector area (norm)

gradient. Multiplication of the edge vector (xi−1 − xi+1) by the matrix 1
|af |A comes down

to calculating the cross product with af/|af | yielding a vector orthogonal to both, the edge

and the vector area, with length determined by the orthogonal projection of the edge onto

the space orthogonal to af . The vector area gradient can thus be interpreted as a rotation

of the projected edge (xi−1 − xi+1) in the plane of maximal projection followed by scaling

with 1
2 . This is exactly the area gradient of the projected polygon with respect to vertex

xi (figure 4.4). We can also see the fact, that the vector area points into the direction of
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largest projection. Since the gradient is just acting on the projected area, the projection

direction has to be critical with respect to area. Moreover, it is by equation (4.8) apparent,

that the polygon-Laplacian reduces to the cotan operator on triangle meshes since it is

exactly the same construction as Desbrun’s [Des99].

4.2.1. Implementation

The polygon Laplacian admits for a simple implementation in terms of the two matrices

Ef = (x1 − x0, · · · , x0 − xn−1)
T and Bf =

1

2
(x1 + x0, · · · , x0 + xn−1)

T (4.12)

encoding the polygon edges and edge-midpoints respectively. Note, that the operation

(xi×xi+1)× gives the rotated component of a vector in the plane spanned by (0, xi, xi+1).

This operation can be written as

p : v �→ xi+1〈xi, v〉 − xi〈xi+1, v〉 (4.13)

since p projects a vector into the basis xi, xi+1 and rotates it by π/2. Rotation by π/2 is

archived by multiplication by the rotation matrix

⎛
⎝cos(π/2) − sin(π/2)

sin(π/2) cos(π/2)

⎞
⎠ =

⎛
⎝0 −1

1 0

⎞
⎠ (4.14)

For the operator A = 1
2 (

∑
i xi × xi+1)× we can write

v �→ 1

2

∑
i

xi+1〈xi, v〉 − xi〈xi+1, v〉 = 1

2

∑
i

(xi+1 − xi)〈xi + xi+1, v〉 (4.15)

since the terms xi〈xi, v〉 cancel each other cyclically. From this last equation we get

Af = ET
f Bf (4.16)

Moreover, with the coboundary operator δ defined by δXf = Ef and by noting that(
BT

f δ
)
i
= xi−1 − xi+1 holds, we can rewrite equation (4.11) as

(∇Xf
|af |

)T
=

1

|af |AfB
T
f δ =

1

|af |E
T
f BfB

T
f δ (4.17)
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Furthermore, by the definition of the coboundary operator we obtain

∇Xf
|af | = 1

|af |
(
(δXf )

T BfB
T
f δ

)T
=

1

|af |δ
TBfB

T
f δXf = L̃fXf . (4.18)

The matrices L̃f can be assembled to build the matrix representation of the polygonal

Laplacian. For triangle meshes this construction is equivalent to the traditional weak

cotan operator. An implementation in Mathematica can be found in the Appendix A.1.

4.2.2. Properties of the Polygon Laplacian

By the representation (4.18) of the polygon Laplacian we immediately see that the operator

is symmetric. Like in the triangle case positivity cannot be ensured. Note, that in the

planar case the applying the polygon Laplacian to the geometry yields the same result

as applying the cotan operator on an arbitrary tessellation of the mesh. Therefore the

property (Lin) holds also for arbitrary polygons. Since the constant functions are in the

kernel of δ and

uTBBTu = (BTu)T (BTu) ≥ 0 (4.19)

the matrix L̃ is positive semi definite and the constants are in the kernel of the operator.

Unfortunately the kernel is even bigger leading to unintuitive behavior of the Dirichlet

energy. For a general n-gon with n > 3 the edge-midpoint matrix BT
f will have rank

≤ 3 therefore admitting for a null space of dimension ≥ n− 3. In order to overcome this

problem, Alexa and Wardetzky [AW11] propose to add a matrix F to BfB
T
f that keeps

the properties of the operator but fills up the null space leading to a positive semi definite

Laplacian. In order to keep the symmetry, the additional matrix F should be symmetric.

We have seen in section 3.7 that linear precision for a discrete Laplacian L amounts to

having (LX)i = 0 for every vertex i with planar 1-ring and the discrete coordinate function

X. Denoting the planar projection of the polygon f in direction af as f̄ , the height vectors

h, he, hb are defined by

Xf = Xf̄ + haTf , Bf = Bf̄ + hba
T
f and Ef = Ef̄ + hea

T
f (4.20)

Linear precision is preserved if we have for a planar region around vertex i

(FδX)i = (FEf )i = (FEf̄ )i = 0

⇔ (ET
f̄ F

T )i = 0 (4.21)
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it is thus sufficient to require imF T = kerEf̄ or equivalently kerF = imEf̄ . With matrices

Cf spanning the kernel of ET
f̄
and a positive definite, symmetric matrix Uf we have

Ff = CfUfC
T
f (4.22)

as positive semi definite candidates for the additional term. To demonstrate that this

approach successfully fills up the null space we have to show

Lemma 3. For an arbitrary 1-form v we have

vT (BfB
T
f + CfUfC

T
f )v > 0 (4.23)

with matrices Cf whose kernel is spanning the image of Ef̄ and Uf positive definite and

symmetric.

Proof. It is sufficient to require

||BT v|| > 0 and ||CT v|| > 0 (4.24)

for every 1-form v. Let us assume that this is not true. From CT v = 0 we get

v ∈ kerCT
f = imEf̄ . (4.25)

Therefore there exists a u ∈ R
3 with v = Ef̄u. We have for the vector area:

ET
f Bf = Af = Af̄ = ET

f̄ Bf̄ (4.26)

which cancels each other out in

ET
f Bf =

(
ET

f̄ + afh
T
e

)(
Bf̄ + hba

T
f

)
= ET

f̄ Bf̄ + ET
f̄ hba

T
f + afh

T
e Bf

Alexa and Wardetzky [AW11, Lemma 2] show that ET
f̄
hb ≡ 0 and we therefore have

BT
f he ≡ 0. (4.27)

With this in mind we have because of Bt
fv = 0:

0 = BT
f Ef̄u = BT

f (Ef̄ + hea
T
f )u = BT

f Efu = AT
f u = −Afu = −af × u. (4.28)
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Therefore u is parallel to af in contradiction to v = Ef̄u since af is perpendicular to the

projected edges Ef̄ .

The discrete polygon Laplacian

Lf = δt
(

1

|af |BfB
T
f + CfUfC

T
f

)
δ (4.29)

is therefore linear precise, symmetric and positive semi definite with a 1-dimensional kernel

consisting of the constant functions. Moreover, for a non-degenerate triangle f we have

kerET
f̄

= kerET
f ≡ 0 and therefore Lf = L̃f which is equivalent to the classical cotan-

formula. Alexa and Wardetzky [AW11] suggest to use an orthonormalized null-space of

Ef̄ for Cf and to set Uf = λId.

4.2.3. Weighting

Can we find a weighting scheme for general polygons that generates a family of discrete

polygon Laplacian analogous to the weighted cotan operator for triangle meshes (section

3.8)? For triangle meshes the answer is positive. With a matrix of weighted edge-midpoints

(Bw
f )

T = (bw0 , . . . , b
w
n−1) (4.30)

where bwi is the circumcenter of the i-th edge with respect to the power distance. With a

real weight per vertex wi we get (cf. equation 3.25)

bwi = xi + dij
(xi+1 − xi)

|xi+1 − xi| = xi +
(|xi+1 − xi|2 + wi − wj)(xi+1 − xi)

2|xi+1 − xi|2 (4.31)

And we can show

Lemma 4. The polygon Laplace construction yields the weighted cotan operator of Glick-

enstein [Gli08] if the term BfB
T
f is replaced by Bf (B

w
f )

T

L̃w = δTBf (B
w
f )

T δ (4.32)

Proof. The value wij of the operator is given by the dot product of a difference of edge-

points.

ωij =
1

|af |
〈
bwi−1 − bwi , bj − bj+1

〉
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By expanding the edge mid-points (equations 4.31 and 4.12)

=
1

|af |
〈
di,i+1

xi − xi+1

|x1 − xi+1| + di,i−1
xi−1 − xi
|xi−1 − xi| ,

1

2
(xi+1 − xi) +

1

2
(xj+1 − xj)

〉

=
1

2|af |
〈
di,i+1

xi − xi+1

|x1 − xi+1| + di,i−1
xi−1 − xi
|xi−1 − xi| , xj+1 − xi

〉

Note, that we have for a triangle xi+1 = xj and xj+1 = xi−1. Moreover by definition of

the scalar product

=
1

2|af | (di,i−1|xi−1 − xi| − di,i+1|xj+1 − xi| cos γi)

=
di,i−1|xi−1 − xi| − di,i+1|xj+1 − xi| cos γi

|xi−1 − xi||xi+1 − xi| sin γi
=
di,i−1 − di,i+1 cos γi
|xi+1 − xi| sin γi

which is exactly the formula of Glickenstein (cf. equation 3.24).

Unfortunately, this construction does not extended to higher polygons because the sym-

metry is violated.

Example. Consider the quadrilateral

x0 x1

x2
x3

Figure (4.5): A quadrilateral.

x0 (-2, 0)

x1 (2, 0)

x2 (1, 1)

x3 (-1, 1)

Table (4.1): Coordinates

We have the edge-midpoint matrix B. With the length d̃ij = dij/|xi − xj | we get the

general weighted midpoint matrix BW .

B =

⎛
⎜⎜⎜⎜⎜⎝

0 0

3
2

1
2

0 1

−3
2

1
2

⎞
⎟⎟⎟⎟⎟⎠ BW =

⎛
⎜⎜⎜⎜⎜⎝

−2 + 4d̃01 0

2− d̃12 d̃12

1− 2d̃23 1

−1− d̃30 1− d̃30

⎞
⎟⎟⎟⎟⎟⎠

Symmetry occurs if LW − LT
W = 0 holds. This is true for
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d̃12 = 2− 3d̃01

d̃23 = 1− d̃01

d̃30 = 2− 3d̃01

We have one degree of freedom (i.e. choosing d̃01). B is obviously a special case of

BW (d̃01 = 1/2). Fixing one weighted edge-point pins down all other midpoints of that

polygon. In order to archive linear precision we have to choose weighted edge-points on

two edge-neighboring polygons consistently. For a general quad-mesh this leaves no other

choice than BW = B. A notable exception is the cube, where one can choose consistent

weights because of the symmetry of the mesh. The question whether it is possible to

choose weights that yield a symmetrizable matrix, a matrix that can be decomposed into

a full-rank diagonal matrix and a symmetric matrix, remains unanswered.

4.2.4. Alternative Polygon Laplacian

The main idea for the construction of a cotan-like Laplacian on general polygonal meshes

was to require that the operator applied to the geometry vector should yield the vector

area gradient. In a second step an additional term was added in order to ensure the

property Psd. Let Xf = Xf̄ + hfa
T
f be the vertex vector of a polygon f . We have

LfXf = δT
(
BfB

T
f + CfUfC

T
f

)
δ
(
Xf̄ + hfa

T
f

)
= δTBfB

T
f Ef̄ + δTCfUfC

T
f hea

T
f + δTBfB

T
f hea

T
f︸ ︷︷ ︸

=0 by eq. 4.27

+ δTCfUfC
T
f Ef̄ .︸ ︷︷ ︸

=0 by def. of Cf

(4.33)

The operator has two components, one acting on the maximal planar projection of the

polygon Ef̄ and computing the vector-area gradient and one component acting on the

height vector of the polygon over the maximal projection hea
T
f .

Following this approach we can construct a polygonal Laplacian L by ensuring that the

planar component of LX yields the vector area gradient.

1. Project the polygon in direction of the area vector.

2. Triangulate the projected polygon.

3. Build the matrix of cotangent weights for the polygon by summing over the triangles.

Note, that the weights will differ depending on the chosen triangulation, however, the mean

curvature vector will be independent of the triangulation since the projected polygon is

planar. The Laplacian for the whole mesh can be assembled from the individual face

operators. The operator is symmetric because the weights ωij are summed up from the
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ϕ

Figure (4.6): Two possible triangulations of a quadrilateral leading to different
maximal interior angles.

Figure (4.7): A quad mesh of the Stanford bunny with 5k vertices. For the left
version noise in the normal direction was added.

Figure (4.8): Result of implicit mean curvature flow applied to the noisy bunny
(figure 4.7) with the planar operator (left) and the polygon Laplacian (right).

two adjacent polygons. Linear precision is ensured because the operator equals the cotan

operator on planar meshes. The property Psd is also inherited from the triangle cotan

operator. As for triangles we cannot guarantee positive weights, however, it is possible to

significantly reduce negative weights by choosing a “good” triangulation of the polygon.

E.g. for a quadrilateral there are two ways of triangulating by choosing one of the two

diagonals (see figure 4.6). The value cotϕ will be negative since ϕ > π/2. The second

triangulation will produce no negative weight. For triangles with good aspect ratio this
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Figure (4.9): A simple quadrilateral mesh with a single interior vertex (left),
prescribed values at the boundary and vanishing Laplacian at the interior vertex
for the polygon Laplacian (center), the same boundary values with the planar
Laplacian vanishing for the interior vertex (right).

operator can significantly reduce the number of negative weights. For the noisy bunny (4.7

right) with 5000 vertices the polygon cotan operator has 23950 negative weights whereas

the planar formulation has 680 negative weights. For the smooth bunny (4.7 right) the

difference is even more striking with 20714 for the polygon Laplacian and 30 for the planar

version. The following example illustrates the effect of negative weights.

Example. The positivity of the Laplacian coefficients ωij is related to the discrete maxi-

mum principle, as detailed in section 3.2. For a surface with fixed boundary and vanishing

discrete Laplacian at all interior vertices the discrete maximum principle requires that

the extrema of each coordinate function are attained at the boundary. Since the polygon

Laplacian of Alexa and Wardetzky [AW11] is not guaranteed to have only positive entries

the discrete maximum principle might be violated as depicted in figure 4.9 (center). The

planar polygon Laplacian has no negative entries in this particular case and consequently

obeys the maximum principle (4.9 right).

Figure 4.8 compares the original polygon Laplacian and the proposed version in a mesh

smoothing application. The results are almost indistinguishable.
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A. Listings

PolyCotan�x_, faces_� :� Module�� dmat, cnt, res, lambda�,

cnt � 0;
lambda � 1.;

�� Compute per polygon data ��
res �
Module��n, E, B, A, a, area, Xp, Ep, M1, C, L, ret, coords, d, rules�,

n � Length��;
�� Get the coordinates per face ��
coords � Extract�x, Partition��, 1��;
E � ListConvolve���1.�, ��1.��, coords, �1�;
B � ListConvolve���.5�, �.5��, coords, �1�;

�� Assemble M1, compute vector area 'a' ��
A � E�.B;
a � ��A��2, 3��, A��1, 3��, �A��1, 2���;
area � Norm�a�;
a �� area;
M1 � 1.0�area � B.B�;

�� Project polygon along the vector area ��
Xp � �� � a �a.��� & �� coords;
Ep � ListConvolve���1.�, ��1.��, Xp, �1�;
C � Transpose�Orthogonalize�NullSpace�Ep��;

M1 �� lambda C.C�;

�� Return M1 and d in triplet form ��
rules � Drop�ArrayRules�M1�, �1�;
rules�� ;; , 1�� �� cnt;
d � Table���cnt � j, ���j��� �� 1., �cnt � j, ���Mod�j, n� � 1��� �� �1.�

, �j, n��;

ret � �d, rules�;

cnt �� n;
ret
� & �� faces;

�� Assemble & return final matrix ��
dmat � SparseArray�Flatten�res�� ;; , 1��;
Return��dmat�.�SparseArray�Flatten�res�� ;; , 2���.dmat�;

�;

Listing (A.1): Implementation of the polygonal Laplace operator by Alexa and
Wardetzky [AW11] in Mathematica. The input arguments are assumed to be a
list of coordiate triples and a list of faces represented by indices into the vertex
list.
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dualMesh@file_StringD := Module@8mesh, v, f, edgeIndizes, cnt, faceCnt, b,

triplets, bary, sys, sol, ker, c<,

H∗ load mesh ∗L

mesh = Import@fileD;
v = mesh@@1, 2, 1DD;
f = mesh@@1, 2, 2, 1, 1DD;

H∗ choose an integer index per unoriented edge ∗L

edgeIndizes = Flatten@�, 1D &@HTable@8�@@iDD, �@@ Mod@i, Length@�DD + 1DD<,
8i, Length@�D<D & ê@ fL;

edgeIndizes = Select@edgeIndizes, �@@1DD > �@@2DD &D;
edgeIndizes = MapIndexed@�1 −> First@�2 &, edgeIndizesD;

H∗ build the system ∗L

cnt = 1;
faceCnt = 0;
b = Table@0, 8Length@Flatten@f<D;
triplets =

Flatten@
HModule@8ret<,

ret = Table@Module@8e, edgeInd, k, l<,
edgeInd = Sort@8�@@iDD, �@@ Mod@i, Length@�DD + 1DD<, GreaterD;
e = v@@edgeInd@@2DDDD − v@@edgeInd@@1DDDD;
b@@cntDD = v@@edgeInd@@1DDDD.e;
88cnt, 3 Length@fD + HedgeInd ê. edgeIndizesL< −> −Norm@eD,
8 cnt, 3 faceCnt + 1< −> e@@1DD,
8 cnt, 3 faceCnt + 2< −> e@@2DD,
8 cnt++, 3 faceCnt + 3< −> e@@3DD<

D, 8i, Length@�D<D;
++faceCnt;
ret

D & ê@ fL;

H∗ barycenters ∗L

bary = H1.ê Length@�D Plus @@ Extract@v, Partition@�, 1DDL & ê@ f;
sys = SparseArray@triplets;

H∗ solve system ∗L

sol = LeastSquares@sys, bD;
ker = NullSpace@sysD;

H∗ optimize dual vertex positions ∗L

c = LeastSquares@ker@@ ;; , 1 ;; 3 Length@fDDD�,
Flatten@bary − sol@@1 ;; 3 Length@fDDDD;

sol += ker�.c;
Return@solD;

D;

Listing (A.2): Implementation of the dual mesh computation for polygonal meshes
as described in section 4.1.
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