

Stefan Krauß, Juliane Hüttl SE Visual Computing, SoSe 2011, HU-Berlin

PERFORMANCE CAPTURE FROM SPARSE MULTI-VIEW VIDEO

1 Stefan Krauß, Juliane Hüttl: Performance Capture from Sparse Multi-view Video

Uses of Motion/Performance Capture

- movies
- games, virtual environments
- biomechanics, sports science, medicine
- robot control
- human-computer interaction

2 Stefan Krauß, Juliane Hüttl: Performance Capture from Sparse Multi-view Video

Types of Motion/Performance Capture

3 Stefan Krauß, Juliane Hüttl: Performance Capture from Sparse Multi-view Video

4 Stefan Krauß, Juliane Hüttl: Performance Capture from Sparse Multi-view Video

Data Retrieval

- full body laser scan
- 8 cameras , 24fps , 1004x1004 pixels , placed in circular configuration

5 Stefan Krauß, Juliane Hüttl: Performance Capture from Sparse Multi-view Video

Pre-Processing

- color-based background subtraction for silhouette of model
- generate triangle mesh via Poisson surface reconstruction
- create tetrahedral version of surface scan

7 Stefan Krauß, Juliane Hüttl: Performance Capture from Sparse Multi-view Video

Deformation Problem on Triangle Meshes

8 Stefan Krauß, Juliane Hüttl: Performance Capture from Sparse Multi-view Video

9 Stefan Krauß, Juliane Hüttl: Performance Capture from Sparse Multi-view Video

Capturing the Global Model Pose

- recover global pose of tetrahedral mesh for each time step of video
- subdivide surface of model into 100-200 regions
- compute deformation constraints from each pair of subsequent time steps
 - 1. Pose Initialization from Image Features
 - 2. Refining the Pose using Silhouette Rims
 - 3. Optimizing Key Handle positions

10 Stefan Krauß, Juliane Hüttl: Performance Capture from Sparse Multi-view Video

Pose Initialization from Image Features

- SIFT scale-invariant feature transform
- features largely invariant under
 - illumination
 - out-of-plane rotation
 - image noise
 - small changes in viewpoint
 - scaling
- reliable correspondence finding for fast scene motion

Pose Initialization from Image Features

- associate vertices of tetrahedral mesh with descriptors at time t
- compare intersection point of reprojected rays with vertex
- find corresponding association at time t + 1

12 Stefan Krauß, Juliane Hüttl: Performance Capture from Sparse Multi-view Video

Pose Initialization from Image Features

- each vertex found is candidate for deformation handle
- find one best handle for each region: normal n of vertex v most collinear with difference vector of intersection point p and vertex v
- define intermediate target position
- step-wise deformation until silhouette overlap error is minimal

14 Stefan Krauß, Juliane Hüttl: Performance Capture from Sparse Multi-view Video

Volumetric Deformation

15 Stefan Krauß, Juliane Hüttl: Performance Capture from Sparse Multi-view Video

Linear Laplacian Deformation

- calculate gradient operator matrix G for each vertex of every tetrahedron
- construct Laplacian operator from G and volumina D (and constraints)
- solve Laplacian System:
- $Lv = \delta$ with $L = G^T D G$ and $\delta = G^T D g$
- calculate new vertex-positions

Rotation Extraction and Update

- extract transformation matrix for each tetrahedron
- split transformation matrix in rigid and non-rigid part
- iterate until non-rigid-part is minimum
- update differential

Capturing the Global Model Pose

- recover global pose of tetrahedral mesh for each time step of video
- subdivide surface of model into 100-200 regions
- compute deformation constraints from each pair of subsequent time steps
 - 1. Pose Initialization from Image Features
 - 2. Refining the Pose using Silhouette Rims
 - 3. Optimizing Key Handle positions

Refining the Pose using Silhouette Rims

- find rim vertices
- compute distance field
- value from distance field at projected location defines displacement length

19 Stefan Krauß, Juliane Hüttl: Performance Capture from Sparse Multi-view Video

Optimizing Key Handle positions

- find optimal multi-view silhouette overlap
- choose 15-25 key vertices manually
- optimize vertex positions until tetrahedral deformation produces optimal silhouette overlap (based on overlap error)

21 Stefan Krauß, Juliane Hüttl: Performance Capture from Sparse Multi-view Video

Deformation Transfer

- match vertices of input triangle mesh to input tetrahedral mesh
- vertices of triangle mesh are linear combination of tetrahedral mesh
- combine linear coefficients in matrix B

•
$$T'_{tri} = T'_{tet} * B$$

23 Stefan Krauß, Juliane Hüttl: Performance Capture from Sparse Multi-view Video

Capturing Surface Detail

- map tetrahedral mesh to triangle mesh
- capture shape detail at each time step
 - 1. Adaptation along Silhouette Contours
 - 2. Model-Guided Multi-View Stereo

24 Stefan Krauß, Juliane Hüttl: Performance Capture from Sparse Multi-view Video

Adaptation along Silhouette Contours

- calculate rim vertices
- find closest 2D point on silhouette boundary for each rim vertex
- compute image gradients at input silhouette points and reprojected model contour image
- if distance between gradients smaller threshold, add as constraint

Model-Guided Multi-View Stereo

- multi-view stereo method by [Goesele et al. 2006]
- project pixel p of view R into bounding box
- reproject point to neighbouring views N₀, N₁
- compute cross-correlation for window around p and corresponding window around q₀, q₁
- high score for valid depth d

26 Stefan Krauß, Juliane Hüttl: Performance Capture from Sparse Multi-view Video

Model-Guided Multi-View Stereo

- constrain correlation search to 3D points at most ±2cm away from triangle mesh
- merge depth maps into single point cloud
- project points from triangle mesh onto point cloud
- projected points provide additional position constraints

27 Stefan Krauß, Juliane Hüttl: Performance Capture from Sparse Multi-view Video

28 Stefan Krauß, Juliane Hüttl: Performance Capture from Sparse Multi-view Video

Surface-based Deformation

- calculate differential coordinates δ
- L is cotangent Laplacian matrix
- C is diagonal matrix, only entries for constrained vertices q

• minimize: { $||Lv - \delta||^2 + ||Cv - q||^2$ }

• new triangle mesh in v

29 Stefan Krauß, Juliane Hüttl: Performance Capture from Sparse Multi-view Video

Performance Capture from Sparse Multi-view Video

31 Stefan Krauß, Juliane Hüttl: Performance Capture from Sparse Multi-view Video

overlay between input image and model

32 Stefan Krauß, Juliane Hüttl: Performance Capture from Sparse Multi-view Video

- non-intrusive method
- all test input scenes were reconstructed fully automatically
- minimal user input:
 - mark head and foot regions to exclude from surface detail capture
 - mark 25 deformation handles for key handle optimization
- only few isolated pose errors due to motion blur or strong shadows

- limitations:
 - topological structure of input silhouette must be close to reprojected model silhouette (no outdoor scenes)
 - topology of input scanned model preserved (movement of hair cannot be captured)
 - deformation technique mimics elastic deformation \rightarrow rubbery look
 - resolution limit to deformation capture (high-frequency details "baked in")

34 Stefan Krauß, Juliane Hüttl: Performance Capture from Sparse Multi-view Video

- large application range of algorithm
 - tight and loose apparel
 - fabrics with prominent texture as well as plain colors
 - simple walks and different dance styles
 - complicated self-occlusions

35 Stefan Krauß, Juliane Hüttl: Performance Capture from Sparse Multi-view Video

References

- De Aguiar et al, 2008 "Performance Capture from Sparse Multi-view Video"
- Stoll et al, 2007, "A Volumetric Approach to Interactive Shape Editing"
- Goesele et al, 2006, "Multi-view stereo revisited"
- Taku Komura, http://homepages.inf.ed.ac.uk/tkomura/cav/index.html, access: 27.05.2011

