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Abstract
The paper presents an approach for reconstructing head-and-shoulder portraits of people from calibrated stereo
images with a high level of geometric detail. In contrast to many existing systems, our reconstructions cover
the full head, including hair. This is achieved using a global intensity-based optimization approach which is
stated as a parametric warp estimation problem and solved in a robust Gauss-Newton framework. We formulate
a computationally efficient warp function for mesh-based estimation of depth which is based on a well known
image-registration approach and adapted to the problem of 3D reconstruction. We address the use of sparse
correspondence estimates for initializing the optimization as well as a coarse-to-fine scheme for reconstructing
without specific initialization. We discuss issues of regularization and brightness constancy violations and show
various results to demonstrate the effectiveness of the approach.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction and related work

In this paper we describe an image based approach to 3D re-
construction of the human head from calibrated stereo image
pairs without markers or projections. In contrast to the ma-
jority of methods in the literature, our approach is designed
to reconstruct the complete head including the approximate
shape of the subject’s hair, as well as head-and-shoulder por-
traits that include some clothing. Our method does not em-
ploy a statistical model of the head and could, in principle,
be used to reconstruct other types of objects. It has been op-
timized, however, for the human head and we have not yet

Figure 1: Details of some reconstructions computed with the
proposed approach.

evaluated it otherwise. The head is an easy subject for re-
construction with respect to topology and depth discontinu-
ities. It is challenging, however, with respect to the textures
that have to be matched: Many “materials” are either smooth
(e.g. skin at low image resolutions), highly self-similar (e.g.
hair or skin with pore structure at high image resolutions) or
geometrically complex (again, hair).

The images we use are captured with consumer-grade
high resolution SLR cameras (Canon EOS 550D, Tokina
35mm fixed focal lens, 18 megapixels) under diffused studio
flash lighting (Hensel). The extrinsic and intrinsic camera
parameters are computed with help of a calibration object.
The background is neutral and the images are masked with
an automatic procedure such that the portrait appears on a
perfectly white background.

We formulate our reconstruction approach as a global
mesh-based nonlinear optimization problem. The following
discussion of related work aims at positioning the proposed
method in relation to some of the many existing approaches
to 3D reconstruction. Is is not and cannot be comprehensive.

By mesh-based we mean that we do not estimate an in-
dependent depth at every pixel in a stereo pair as many
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Figure 2: Very high detail reconstructions (rendered depth maps), computed with the coarse-to-fine scheme without initial
shape estimate. Mesh spacing is 3 pixels, other parameters as in figure 5. Fine structures become visible on the face as well as
on clothing.

depth-map techniques do [SS02], but at discrete vertices of
a triangle mesh. The projection of the mesh, however, is
fixed in one image of the stereo pair. In 3D the scene is
assumed to be planar between the vertices. Therefore, our
approach could be regarded as patch based with an a pri-
ori assumption of patch connectivity. While depth is esti-
mated only at discrete vertices of a mesh, we use differen-
tial image information at every pixel in order to compute
vertex depth. Our problem formulation is therewith related
to triangulation based optical flow estimation techniques
[GHN∗10, CSM05]. It also shares several computational
strategies with modern flow approaches such as a “data term
plus regularizer” formulation, coarse-to-fine warping to im-
prove convergence [PBB∗06] or the use of robust error func-
tions in the data term (e.g. [WTP∗09, GBBS10]). Similar
to [BBB∗10, BHPS10] we rely on high image resolutions
to recover facial details.

Our approach is global as, for a pair of views, we solve
for the unknown depth of all vertices simultaneously. This
is, for example, kin to graph-cut methods [SS02] for depth-
map computation or the expectation maximization approach
of [SFG04]. We use, however, a classic continuous optimiza-
tion algorithm, namely a robust variant of Gauss-Newton
[MN98]. Local approaches, on the other hand, first recon-
struct or optimize over parts of the scene, e.g. feature points
or oriented patches [FP08]. These are combined later using
meshing techniques such as [KBH06]. We see the primary
advantage of the global approach in the fact that smoothness
assumptions can easily be built into the reconstruction pro-
cess in the form of regularization energies.

The warp estimation framework we use to formulate our
method has been widely used for 2D problems dealing with
non-rigid registration. Applications include image registra-
tion (e.g. [BZ04,ZL09,ZGH09]), 2D tracking of deformable

used for regularization

ignored for regularization

Figure 3: Topology of the mesh used for optimization. For
regularization, diagonal edges are ignored.

surfaces (e.g. [GBBS10, ZL09, HSE10]) and compensation
of camera jitter in video [SHE11]. Given the fact that regis-
tration, tracking and 3D reconstruction are ultimately based
on the problem of establishing correspondences between im-
ages it is no surprise that this framework is suitable for 3D
reconstruction. We have addressed this also in [SKHE11],
where we explored the use of an epipolar-agnostic warping
strategy for depth estimation.

While most applications of the framework rely on a
brightness constancy assumption we address a term for han-
dling luminance inconsistencies in section 2.2. Another ap-
proach to handling brightness constancy violations is de-
scribed in [HE09].

2. An optimization approach to reconstruction

We formulate the 3D reconstruction problem in an intensity-
based parametric warp estimation framework. In section 2.1
we describe this framework generically. The brightness con-
stancy assumption is discussed in section 2.2. In sections 2.3
and ?? the specific warps for 3D reconstruction are intro-
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duced and regularization is addressed in section 2.4. In sec-
tion 2.5 we cover initialization and computational issues and
discuss results.

2.1. Warp estimation framework

Let I, K denote a pair of single-channel images which we
regard as mappings of coordinates to intensities. For the ap-
plication discussed in this paper I and K are a pair of stereo
images. LetW :

(
R2,RK

)
→ R2 be a parametric warp, i.e.

a mapping of image coordinates depending on a parameter
vector θ ∈ RK , which is the quantity to be estimated. Two
different warp functions for stereo reconstruction are de-
scribed in the following sections. We define the pixel-wise
residual or error E ([x y] ,θ) as the intensity difference be-
tween the images under the warp:

E ([x y] ,θ) = I ([x y])−K (W ([x y] ,θ)) (1)

Estimating θ then amounts to solving

argmin
θ

∑
x

∑
y

ρ(E ([x y] ,θ))+R(θ) (2)

where ρ is a norm-like function which serves as a robust
error metric in the presence of luminance outliers. For all
results in the paper the Huber function [Hub81] was used.
R(θ) is a placeholder for regularization (or smoothness)
terms which will be addressed in section 2.4.

For arbitrary norm-like functions this energy can be mini-
mized with a robust Gauss-Newton scheme that differs only
slightly from the standard least squares case; details can be
found, for example, in [MN98]. This requires the Jacobian
of the energy function, whose rows are given by

∇ri = −∇KT
∣∣∣
W([xi yi],θ)

·JW . (3)

∇KT is the image gradient which is evaluated at the warped
coordinates. JW is the Jacobian of the warp to be optimized.

2.2. On brightness constancy

The above formulation of warp estimation relies on a bright-
ness constancy assumption, i.e. the assumption that differ-
ences between I and K can be explained by pixels of con-
stant brightness moving according the warp. Empirically,
this proves to be wrong for head reconstruction due to non-
Lambertian properties of the materials, even if the scene is
carefully lit from multiple sides with studio flashes and dif-
fusers. We therefore use a luminance correction term which
is motivated as follows. We assume that in the residual E
the non-Lambertian effects are of relatively large scale (or
low frequency, but see below for a caveat) while the ef-
fects of misalignment due to an imperfect estimate of the
warp parameter θ are of relatively small scale (or high fre-
quency). However, we want to allow the areas affected by

non-Lambertian effects to have sharp borders; this is re-
quired, for example, at borders between different materi-
als in the scene. Therefore the luminance correction term L
must reduce non-Lambertian effects in the residual but avoid
to eliminate misalignment effects as these are what drives the
optimization in the first place. These requirements are satis-
fied, for example, by the median filtered residual:

L([x y] ,θ) = median
i=−K...K
j=−K...K

E ([x y] ,θ) (4)

An alternative to the median filter which we will evaluate in
the future is the bilateral filter.

The luminance-corrected residual is then:

EL ([x y] ,θ) = I ([x y])−L([x y] ,θ)−K (W ([x y] ,θ)) (5)

This is the error which we actually use for reconstruction.

2.3. A warp for 3D reconstruction

As stated in the introduction, we describe the 3D geometry
of the scene by a piecewise planar triangle mesh. We assume
that the projection of the mesh is regular and fixed in the
first image of the stereo pair. The fixed mesh projection is
illustrated in figure 3. This corresponds well with the above
formulation of the warp estimation problem where the warp
maps each pixel coordinate in the first image to one in the
second.

The relation between two perspective camera images of
a planar mesh triangle is a homography. For sufficiently
large grazing angles the homography can be approximated
with an affine transformation, which is a common strategy
in stereo algorithms. This is a significant reduction of com-
putational complexity as an affine transformation can be ex-
pressed as a linear function of its parameters with an ade-
quate parametrization (see below). The simplifies the com-
putation of the derivative in equation 3. In contrast, a ho-
mography requires a division by the homogeneous coordi-
nate component which results in a more complicated deriva-
tive.

Mesh-based piecewise affine warp functions have been
widely used for 2D vision and graphics applications, espe-
cially in conjunction with the warp estimation framework
described above; references are given in the related works
section. In the following we first recapitulate the piecewise
affine mesh warp used, for example in [SKHE11, SHE11,
HSE10], and then adjust it to the 3D reconstruction task.

Let K be the number of vertices in the mesh and assume
that the vertices are indexed in the range V = {1 . . .K} so
they can be identified by their indices. We denote the vertex
coordinates of the undeformed mesh by [uV vV ]

T ,V ∈V and
define two vectors containing all vertex coordinates:

uT =
[
u1 . . .uK

]
vT =

[
v1 . . .vK

]
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Now we consider a single pixel at coordinates [x y]T . Let
T ∈ V3 be the surrounding triangle of the pixel and let
c(1), c(2), c(3) be its barycentric coordinates with respect to
T in the undeformed control mesh. We define the sparse
barycentric coordinate vector bT =

[
b(1) . . .b(K)

]
as fol-

lows:

b(V ) =

{
c(i) if V is the ith vertex of triangle T
0 otherwise

(6)

The pixel coordinates x and y can be expressed in terms of
the mesh vertices: [

x
y

]
=

[
bT

bT

][
u
v

]
(7)

The sparsity pattern of b is construed to “select” the correct
vertex coordinates out of u and v.

Similar to the coordinates, the displacement of pixels un-
der a warp can be expressed in terms of vertex displacements
∆u and ∆v with the help of barycentric coordinates. This al-
lows the formulation of a warp parametrized by the vertex
displacements:

W
([ x

y
]
,
[

∆u
∆v
])

=

[
x
y

]
+

[
bT

bT

][
∆u
∆v

]
(8)

Note that in general the displacement of each pixel is gov-
erned by the displacement of its three surrounding mesh ver-
tices. This amounts to six degrees of freedom (two for each
vertex). Therefore, this warp is piecewise affine in the image
plane.

One of the advantages of this warp is its easy formulation
(and computation) for all pixels simultaneously as a single
matrix equation. Let xT =

[
x1 . . .xN

]
and yT =

[
y1 . . .yN

]
be vectors of all pixel coordinates considered. Further, let B
be a matrix of barycentric coordinates:

B =

bT
1
...

bT
N

 (9)

Then the warp for all coordinates can be expressed as:

W
([x

y
]
,
[

∆u
∆v
])

=

[
x
y

]
+

[
B

B

][
∆u
∆v

]
(10)

Note that the Jacobian of this warp is simply the matrix on
the right hand side.

For 3D reconstruction the piecewise affine warp is an
over-parametrization, as it ignores the camera calibration.
In order to involve the calibration without complicating the
warp, we restrict the vertex displacement to the epipolar
lines as follows. For each vertex V , the direction of the con-
straint line is given by a vector

[
eX

V eY
V
]

which we assume
to be of norm 1. For a displacement by dV pixels along the
line, the vertex coordinate offsets are ∆uV = dV · eX

V and

∆vV = dV ·eY
V . With all displacement parameters dV in a vec-

tor dT =
[
d1 . . .dK

]
the displacement ∆x, ∆y of a single pixel

can be expressed as:

∆x = bT
∆uV = bT diag

(
eX

1 . . .eX
K

)
d =: eT

Xd (11)

∆y = bT
∆vV = bT diag

(
eY

1 . . .eY
K

)
d =: eT

Yd (12)

Then we can formulate the constrained warp similar to the
unconstrained one as:

W
([ x

y
]
,d
)
=

[
x̂
ŷ

]
+

[
eT

X
eT

Y

]
d (13)

Note a subtle difference to the unconstrained case: The
epipolar constraint only makes sense if the epipolar consis-
tent displacement (the right side of the sum above) is added
to a pixel coordinate which is epipolar consistent itself. This
coordinate is in general not identical with [x y]T and there-
fore denoted as [x̂ ŷ]T . The choice of [x̂ ŷ]T determines which
disparities are assumed when d = 0 and is somewhat ar-
bitrary. We use the projection of [x y]T to its epipolar line.
Also note that the matrix here is not block-diagonal and the
number of parameters is halved in comparison to the uncon-
strained warp.

Again, the warp can be written in a single matrix equation
for all pixels. We define two diagonal matrices:

EX := diag
(

eX
1 . . .eX

K

)
(14)

EY := diag
(

eY
1 . . .eY

K

)
(15)

The all-pixel warp is given by:

W
([x

y
]
,d
)
=

[
x̂
ŷ

]
+

[
BEX
BEY

]
d (16)

Note that this is still only an approximation to the correct
3D mesh warp described in section 2.3: While the vertices
move consistently with epipolar geometry due to the con-
straint, the motion of the pixels in between is still described
by an affine transform rather than a homography.

2.4. Regularization

The affine epipolar warp is often regularized by an energy
term based on a mesh Laplacian L (e.g. [BZ04, HSE10]):

R
([

∆u
∆v
])

=

∥∥∥∥[L
L

][
∆u
∆v

]∥∥∥∥2

(17)

For regularizing the constrained warp there are several op-
tions: Either the displacement magnitudes d along the epipo-
lar lines are regularized directly. Alternatively, the compo-
nents of d are converted back to ∆u- and ∆v-displacements
and these are regularized in the same way as they are in the
unconstrained warp. ∆u and ∆v can be obtained from d by:

∆u = EXd (18)

∆v = EYd (19)
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Figure 4: Left: Initial depth estimate computed from SIFT
correspondences as described in section 2.5. Center, right:
Rendered low resolution reconstruction results, with and
without mesh (6 megapixels, 5 pixel mesh spacing, one
stereo pair). Note that the optimization was computed at a
single image scale with a fixed mesh resolution, i.e. without
coarse-to-fine strategies.

Therefore the regularization energy is given by:

R(d) =
∥∥∥∥[L

L

]([
EX
EY

]
d
)∥∥∥∥2

=

∥∥∥∥[LEX
LEY

]
d
∥∥∥∥2

(20)

Note that the matrix in the rightmost term can be precom-
puted. For regularization we only use horizontal and vertical
edges of the mesh as shown in figure 3.

2.5. Computational issues and results

The energy function we minimize for reconstruction is
highly non-convex and hence the optimization is prone to
local minima. Therefore, either an initial estimate of the
shape to reconstruct is required as a starting point for the
optimization, or a coarse-to-fine strategy needs to be used
which smooths the error function in early iterations. We have
implemented both strategies for the proposed approach. Re-
gardless of the chosen strategy we always iterate over sev-
eral, increasingly lower weights of the Laplacian smoothness
term.

For the coarse to fine strategy, we iterate over both image
scale and, implicitly, mesh resolution. We use a fine-grained
stepping in image scale space with a scale factor difference
of about 15 percent. The spacing of mesh vertices in the first
view is kept fixed at, typically, five pixels. Therefore the
mesh is recomputed at every scale and implicitly becomes
finer in relation to the image resolution. For very fine recon-
structions, as shown in figure 2, the vertex spacing is lowered
further down to three pixels when the full image resolution
is reached.

The meshes shown in figures 5 and 2 were computed from
two stereo pairs with cameras in a triangular configuration.
The left and right view were warped independently to the
center center view and correspondences over all three views

were used to compute the depth. The reconstruction in fig-
ure 4 was computed from a single stereo pair. Meshes shown
in figures 5 and 2 were computed with the coarse-to-fine ap-
proach, i.e. without an initial shape estimate. Convergence
is generally very good but failures do occur, especially on
large areas with very high frequency texture detail such as
smooth types of cloth and skin, e.g. in the second row of fig-
ure 5. Here, texture details only appear at very fine scales
and the correspondence estimate is too far off already when
these scales are reached.

Robustness and also computation speed can be improved
if an initialization for the optimization is provided, i.e. an es-
timate of the shape to reconstruct. Excellent reconstruction
results can be achieved with relatively coarse initializations,
even at a fixed image scale and mesh resolution. An example
is shown in figure 4. The initialization was computed from
a set of sparse feature correspondences found with the SIFT
algorithm [Low04]. In order to initialize the optimization, a
displacement along the epipolar line must be computed from
the sparse correspondences for each vertex of the optimiza-
tion mesh. Let

[xi yi]↔ [x̂i ŷi]

with i = 1 . . .N be a pair of corresponding feature points. For
each such pair we identify its enclosing mesh triangle in the
first view (where the mesh is fixed) as well as its barycentric
coordinates and create a sparse row vector b̂T

i as described
in equation (6). We then find initial vertex offsets ∆u and
∆v by solving the following linear system in a least squares
sense: 

b̂T
1
...

b̂T
N

γL

∆u =


x̂1− x1

...
x̂N − xN

0

 (21)

L is the Laplacian of the optimization mesh and γ controls
the smoothness of the result. ∆v can be found analogously.
Finally, the ∆u and ∆v offsets are mapped to the nearest
epipolar lines and converted to disparities as required for the
warp in equation (13). Figure 4 shows the initial shape esti-
mate obtained from this procedure as well as the optimiza-
tion result.

3. Conclusion and future work

In summary, we have described an approach to 3D recon-
struction of human head and shoulder portraits which is
stated in a nonlinear warp estimation framework and solved
as a global optimization problem. We have formulated a
computationally efficient warp function for depth estimation
which is based on a widely used piecewise affine warp. We
have addressed issues of luminance correction, regulariza-
tion and initialization as well as coarse-to-fine strategies for
reconstruction without initial depth estimate.
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Figure 5: Reconstruction results (rendered depth maps) with one source image. Reconstructions were computed with the coarse-
to-fine scheme without initial depth estimate from two stereo pairs (triangular camera setup, left and right view warped to the
center). Mesh spacing is 5 pixels, final image resolution is 18 megapixels. In the second row convergence failed on the plain
cloth of the shirts as the structure of the texture only appears at very high levels in scale space.

Regarding future work, we want to fuse meshes from mul-
tiple camera pairs in order to reconstruct a 180 degree model
of the person. We think that depth map fusion can be for-
mulated naturally in our optimization framework as a warp
estimation problem over a set of images. We also will in-
vestigate strategies to further improve the geometric quality
of our results, especially on hair. Finally, we plan to evaluate
the performance of our method on subjects other than human
heads.
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