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Abstract 

This contribution addresses the quest for a framework for a comprehensive theory of „informatics“ 
as a formal theory of discrete dynamic systems, in analogy to the model of natural sciences.  A 
variety of examples show that this endeavor is promising indeed, and that (detached) parts of it 
exists already. In the long run, informatics may evolve as a self-contained science, more 
comprehensive than nowadays “computer science”, by complementing its strong technological 
aspects with a consistent theoretical, mathematical basis, on an equal footing with natural sciences.  
 

Introduction 
Background 

Computer Science is frequently told as a success story, driven by Moore’s law: during the last six 
decades; computation-, information- and communication technology became exponentially cheaper, 
quicker and smaller [4]. Accordingly, new application areas evolved. Systemic malfunction of devices, 
failed projects, unmanageable behavior of computer embedded systems, violation of privacy etc., are 
accepted as unavoidable side effects and justified as the price to be paid for the rapid evolution of 
the area. 
 
Whether matters might – or should – have evolved differently, is rarely discussed and hardly 
suspected. The quest for alternatives to the factual evolution of computer science is annoying in 
particular for young scientists, who eagerly learned facts, and want to build on this presumed solid 
and steadfast basis. They are squeezed in systems of promotion and reward, that don’t support 
fundamental questions on the nature of informatics. [ Footnote: by “Computer science” we refer to 
the traditional approach, whereas “informatics” denotes the to-be-developed science]    
 
In this situation it appears nevertheless interesting to pose some fundamental questions and to 
discuss aspects that could unify the diverging subdomains of Computer Science. As a basis for a 
science of Informatics, this may render future developments quicker and better comprehensible.  
 
 

Informatics as a science: historical development  

The emerging computing technology of the 1950ies covered essentially two problem domains: 
numerical problems as they occur in classical engineering sciences, and searching-and-sorting 
problems in large data sets, as they occur in a population census. The two programming languages 
FORTRAN and COBOL had been tailored to those problems; the steps from a problem to an 
algorithmic idea and to a program were usually manageable. This changed in the 1960ies: increasing 
computer power made problems solvable that required more complex algorithmic ideas and more 
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elaborate programs. This rendered programs increasingly error prone and incomprehensible, and 
finally a “software crisis” had been identified at a famous conference in Garmisch-Partenkirchen [1], 
to be tackled by the new discipline of “Software Engineering”. This in turn caused new programming 
languages (PL/1, Pascal, Ada), new program paradigms (structured programming, object orientation) 
and later on new software architectures (components, service-orientation, micro-services). 
Furthermore, software design methodologies emerged, such as systematic refinement, softwa2re 
architectures, and the specification of interfaces.  
 
Looking back, it is obvious that the Garmisch-Partenkirchen conference raised important questions 
and initiated constructive answers. However, on the long way from a problem via an algorithmic idea 
up to a software, only the last step, i.e. writing down programs, has been framed more convenient by 
the concepts suggested there.  
 
This way of thinking about „Computer Science“ as a science is visible at the memorial lecture for 
famous Edsger W. Dijkstra in 2010, where likewise famous computer scientist Tony Hoare 
emphasizes four criteria for sciences in general, and the issue of Computer science in particular [5]:  

- Description: Science describes properties and behavior of systems; in Computer Science, such 
a “description of properties and behavior can serve as a specification, describing an 
appropriately precise interface between its purchaser and its supplier.” Hoare suggests logic 
based description methods, with weakest preconditions as an example. 

- Analysis: The central items and their conceptual relation of a science are detailed here. 
Central items of Computer science are programs. They are analyzed with pre-/postconditions 
such as Microsoft Contracts. 

- Explanation: The behavior of systems is substantiated. For Computer Science, the semantics 
of programming languages provides this substantiation. 

- Prediction: Good science can predict the evolution of processes. In computer science, this 
means to predict the behavior of programs, i.e. to verify them. 

 
Summing up, a program is conceived as a mathematical item; its decisive properties should be 
formulated in a logical language, its semantics should be formally captured, and its correctness 
should be proved. These are scientific concepts, indeed. In this spirit, also David Gries in [20] 
conceives the activity of programming as a scientific activity.  
 

This Contribution 

In 14 sections we formulate some thoughts for a comprehensive Theory of Informatics as a formal 
scientific theory of discrete dynamic systems.  The subject of this science is intended much broader 
than the above outlined traditional “Computer Science”, as suggested by Dijkstra, Hoare, Gries , 
Knuth and others. Nevertheless, the new, broader theory should be conceptualized as a formal 
theory; not as classical computer science extended by informal aspects of social sciences. Examples 
include formal concepts of information processing and algorithmic behavior that are not intended to 
be implemented, as they occur in business informatics, in embedded systems, and generally in the 
nowadays much discussed “internet of everything”. 
 
 
We will pose questions and explain some mutually related concepts. Some of them are not 
fundamentally new, but have frequently been studied in isolation. Properly combined, they support 
the claim to contribute to a new Theory of Informatics. 
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However, we don’t present a fully-fledged theory of informatics. Obviously, a number of additional 
ideas, concepts and insight is still missing. We just want to show that it is worth searching for a 
fundamental theory of informatics, and to stimulate discussion. 
 

1. Successful construction of scientific models 

Good scientific theory is formulated in terms of models. A model is a system of notions and relations 
among them, intended to better understand reality. “Reality” is either given as natural phenomena, 
or – as in the case of informatics – constructed by man. Particularly impressive is the example of 
physics: For centuries, physicists searched a unifying model for all branches of physics, setting up an 
impressive body of scientific theory. Particularly impressive is the deep harmony between physics 
and mathematics ([28]) with very abstract, yet exceedingly useful scientific concepts and models. A 
typical example is the notion of energy. This notion allows to mutually relate and quantitatively fix 
quite different phenomena that, for example, occur when a car is accelerated and crashed into a 
wall: In this process, an amount of energy is involved. It is initially contained in petrol, then in 
acceleration, and finally in reshaping metal. The notion of “energy” is useful because it provides a 
quantifying invariance for dynamic processes. This kind of invariants, usually denoted as “laws of 
nature”, are the scaffold of science. In recent years, systems biology likewise is searching for such 
notions and invariants to better understand metabolic processes.    
 
Informatics should learn from physics and other sciences how to establish a comprehensive 
theoretical framework for all of its aspects. Already in 1963, John McCarthy in [6] encouraged 
research into a mathematics-based „Science of Computation“, evolving its central items and 
properties out of a few postulates. 
 
 

2. Models in informatics  

As modeling is the center of scientific theory building: what are the models of informatics? Just as 
many (natural) sciences, informatics is about dynamic systems, however with a fundamental 
difference: Physics describes behavior usually in continuous terms, with functions over the real 
numbers. This allows to construct differential equations, integrals, etc. In contrast, informatics 
describes behavior in discrete steps. This allows to describe entirely different properties, and 
requires different analysis techniques.  
 
Models in informatics are used for various different purposes:  

- to describe domain-specific facts, for example a companies’ structure of the book keeping 
and the accounting department (the “correctness” of this kind of descriptions remains 
inevitably informal);  

- to describe algorithmic behavior, for example how to apply for a claim settlement with an 
insurance company; 

- to describe a software’s effect, either in terms of properties or of its operational behavior.  
 
 
A model is a symbolic description. It may be executable on the symbolic level, in which case its 
behavior can be simulated on a computer. But it also may conceptually describe the behavior of a 
system in a concrete domain, that is not intended to be implemented. With a really useful theory of 
informatics it will be worthwhile to discuss correctness on the model level and then to systematically 
derive correct software.   
Seamless integration of computing technology with its technical or organizational environment is 
inevitable for many computer integrating systems; not the least the internet of things: such systems 
are manageable only with formal models that include computing technology as well as its 
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environment. This includes organizational or technical components that are not intended to be 
implemented.  
Various modeling techniques support this view, in particular the UML [11] and – primarily for 
business informatics – BPMN [12]. These techniques suggest various graphical means to express 
particular, subtle, domain specific aspects. Both these techniques (and some more, e.g. Harel’s 
statecharts) are widely applied, in deed. But they offer only rare specific means to prove properties 
of the modeled systems. Even if systems are modeled by means of those techniques before 
implementation, correctness is usually studied (tested) on the software level.   
 
Modeling is a central issue of formal methods such as, besides many others, ALLOY, B, Focus, Live 
Sequence Charts, RAISE, TLA, VDM and Z. The main concern of these methods is a systematic way to 
construct correct software [23]. These methods, however, insist in implementability, at the price of 
convenience and adequacy of modeling the reality. This problem is, to some extent only, tempered 
by domain specific methods [22]. General modeling methods with their focus on the realm to be 
modeled, include ASM [25] and Petri nets [10]. This focus supports, for example, business 
informatics: there, behavior of components are modeled, that are not intended to be implemented 
[24]. The term “conceptual modeling” refers to models, mainly for business applications, including 
components that are formally described, but not necessarily implemented. A typical example is the 
“Open Models initiative” [44]. The quote “Computer science is no more about computers than 
astronomy is about telescopes”, attributed to E.W. Dijkstra, may apply here.   
 
The idea of system models that focus application areas more than implementation, is rarely 
addressed. A typical example of this narrow view is the Dagstuhl seminar on the history of Software 
Engineering in 1996 [2].  
 
From a scientific perspective, in the long run, modeling techniques with adequate more expressivity 
for application domains, combined with strong analysis techniques, are urgently needed. They may 
look quite different from what is available now. 
 

3. Trustworthy Models 

In a general, systematic buildup of modeling principles, it should be possible to find a – formal –   
modeling technique that allows to describe a system trustworthy, comprehensible, and 
unambiguously. For a given instance we usually have an intuitively clear understanding of what an 
appropriate description of a system is about: It contains all aspects that the modeler considers 
relevant, and it does not enforce aspects that the modeler wants to ignore. More concretely 
formulated, a trustworthy model M of a discrete system S describes 

- each elementary item of S as an elementary item of M, 
- each elementary operation of S as an elementary operation of M, 
- each composed item of S as a composed item of M, 
- each composed operation of S as a composed operation of M, 
- each – local – state of S as a state of M, 
- each – local – step of S as a step of M. 

    
Summing up: elementary and composed items and operations, as well as states and steps of S and M 
should correspond bijectively. Intuitive and formally represented behavior should conform as tightly 
as possible.  
This rises the quest for a modeling technique that would meet these requirements, at least for a 
large and interesting class of systems. Obviously, such items, operations, states and steps do not fit 
into the classical scheme of computability theory. This has been observed and discussed many times, 
beginning perhaps with Donald Knuth’s fundamental The Art of Computer Programming [26], where 
the notion of computational methods (nowadays: transition systems) is suggested as a general 
framework for the notion of algorithms. A computational method consists of a set S of states and a 
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next-state function F on S, where “F might involve operations that mortal man can’t always perform." 
[26, p.8].  Knuth denotes a computational method effective, in case F is a computable function. Robin 
Milner in his EATCS award lecture [27] declared: “…we should have achieved a mathematical model 
of computation, perhaps highly abstract in contrast with the concrete nature of paper and register 
machines, but such that programming languages are merely executable fragments of the theory ….” 
It remains open, which kind of non-executable fragments Milner has in mind.  
 
 
The classical framework of computation with variables and operations over strings of symbols, as 
well as programs with sequences of assignment statements, alternatives, and conditional loops has 
frequently been generalized to cover freely chosen mathematical objects and operations, as in [29] 
and [47]. Shepherdson in [30] devises a similar idea, based on Turing Machines. In a slightly different 
style, and from a purely logical perspective, Gurevich in [25] suggests Abstract State Machines as 
programs over a signature (a sorted alphabet). The user of this formalism may freely chose his 
signature as well as its interpretation (a structure), and systematically manipulate the structure by 
help of terms generated from the signature.  
Summing up, a good model employs symbols that in the modeled realm are interpreted as items or 
operations. This fundamentally differs from programming: A programming language fixes the 
interpretation of the employed symbols.  
 
  
 

4. Invariants in informatics 

 
As outlined in Sec. 1, invariance is a pillar of scientific theories. This solicits the quest for notions of 
invariance in informatics. The best known such notion is certainly Hoare's invariant calculus [31] with 
the concept of loop invariants for classical programs. According to [32], loop invariance is one of the 
fundamental ideas of software design. This may be true if the notion of correctness of software 
design is bound to its very end, i.e. the coding in a classical programming language. A theory of 
informatics should however focus the correctness of models. In fact, many modeling techniques 
employ particular versions of invariants: for example, [33] suggests special invariants for distributed 
processes, distributed algorithms, and communication protocols. The invariant calculus for Petri nets 
is exceedingly expressive (because Petri net transitions are reversible) [10].       
Each such invariant declares a relationship among the variables of the model that holds in each 
reachable state. Those notions stick close to the items of the given model. As shown by the example 
of the notion of energy in Sec. 1, physics knows much deeper, less obvious but nevertheless (or 
therefore) useful invariants. Informatics should strive at comparatively deep invariants. Such 
invariants might make precise what remains invariant in the case of  

- a bank client, withdrawing cash at a cash machine; 
- a life insurance, transferring a client’s policy  to a new hardware;  
- a car insurance, regulating a damage; 
- a computing center, simulating tomorrow’s weather; 
- an operating system, executing garbage collection; 
- a compiler, translating a program.  
- a travel agent, booking a journey; 

 
There are presently no modeling techniques with such invariants. Nevertheless, it is useful to 
systematically search such techniques that, compared to so far existing concepts, evolve much more 
abstract and less obvious, yet useful notions of invariants. 
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5. A fundamental notion of „information“   

The above example of the notion of „energy“ shows that invariance can be based on a very abstract, 
yet intuitively conceivable notion. Are there similar such notions for informatics?  In the sequel I try 
to outline a notion of “information”, with the central invariant of information preservation in local 
steps: in a given state, a system contains a distinguished amount of “information”. As long as the 
system does not communicate with its environment, this information can be converted in different 
ways; it can be newly combined; something can be derived (computed) from it; parts of it can be 
made inaccessible, etc. But the amount of information as a whole remains invariant. A computation, 
i.e. a sequence of steps, then models a strictly organized flow of information. 
     
 
A constructive definition of such a notion of information is not in sight. Nevertheless, such a notion 
would be quite useful; for example to construct invariants according to Sec.4. With such a notion it 
might be possible to formulate precisely what changes and what remains when documents are 
copied, deleted, or combined. Protection of data and privacy as well as related notions might gain a 
much more precise meaning. 
 
A further interesting aspect of such a notion are information preserving operations: Such an 
operation, f, retains all information when applied to an argument a. Hence, a can be re-computed 
from the result f(a). Examples of such operations include the negation if propositional logic, and the 
positive square root of positive real numbers. Reversible functions occur frequently in the context of 
electric  circuits [34]. The consequent application of reversible computing may decisively boost IT 
security: An attacker can retrospectively be identified.      
 
It might become realistic to define particular notions of “information” in terms of operations that are 
feasible or acceptable in specific contexts. 
 
 

6. Interactive components 

Classical Theoretical computer science abstracts information-technological processes in terms of 
functions over symbol chains. With deep results on complexity theory and relations between logic 
and automata theory, this framework has been established as theoretical basis of computer science. 
In this context, Turing machines are the best-known model. A Turing machine, including a store and a 
processor, can be conceived as an adequate abstraction of computing technology of the 1960ies. A 
multiprocessor architecture, using more than one processor to increase computing speed, may more 
or less adequately be abstracted to an architecture with a single processor. In fact, a system 
consisting of many cooperating components where communication is the central issue, may be 
simulated on a single processor. This, however, would spoil the purport of the system.   
 
Systems consisting of many cooperating components have been suggested in the 1980ies; for 
instance the Actor formalism of Agha und Hewitt [35]. Similar ideas are the basis of languages such as 
LINDA [7] and the Chemical Abstract Machine (CHAM) [36]. In this Metaphor, active elements are 
conceived as a kind of molecules, that are “swimming” in a – metaphorical – chemical solution that 
react with each other whenever two of them meet. A further example is Broy’s FOCUS formalism [13] 
with components that realize stream processing functions. Finally, also Petri nets [10] belong to this 
kind of modeling techniques:  consider each transition as an elementary active unit. These and many 
other similar modeling techniques and programming primitives rise the question for a theory that is a 
proper basis and abstraction for such systems; in analogy to the computable functions, that are a 
proper abstraction for any kind of sequential input/output algorithms. 
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In a series of contributions (among them [37] and [8]), Wegner generalizes Turing machines for this 
purpose. [9] challenges the correctness of Wegner’s arguments.  
 
My point here is not the limitations of capabilities of computers, but a quest for system modeling: 
Which techniques are adequate to model and analyze systems that proceed in discrete steps and 
interact with their environment?    
 

7. Independent steps 

 
The concept of discrete steps is based on states: A step starts at a state and ends at a state. The 
classical framework of system descriptions assumes global states: Each step updates a global state. A 
single behavior, a run, is then a sequence s0-t1-s1-t2-s2 ... of states si und steps si-1-ti-si  ( i = 1,2, …). The 
state space of a system C, composed from components C1, … ,Cn , is usually constructed as the 
Cartesian product S1 × … × Sn of the state spaces Sk of the components Ck  . Each step occurrence of a 
component Ck thus implies many step occurrences of the composed system C: independent steps in 
different components are interleaved, i.e. represented in arbitrary order, thus yielding a 
nondeterministic system model. 
 
Fig.1 shows a small example: A and B are two independent components with three (resp. two) states. 
The steps of each component form a cycle. Each of the two components has exactly one infinite 
behavior (run). The composition A|B of A and B is a component with six states. In three of them, two 
steps start, yielding an infinite number of infinite runs. This perception of ”behavior” is intuitively 
plausible, and is employed in many analysis techniques. In particular, it is the base of model checking 
composed systems.   
 
However, this perception comes with disadvantages: In the above example, the two steps starting in 
a state of A|B look like alternatives; but in fact, they occur independently. The aspect of alternative 
refers to an alternative temporal sequence as measured on clocks outside A|B. Lamport in [38] 
discusses details of this kind of assumptions on temporal orders of events; to do so he requires clocks 
with perfect precision. This kind of assumptions can be avoided, taking advantage of the observation 
that independent steps start and stop in disjoint local states. As a consequence, independence of 
steps is identifiable, and can be covered by representing the two steps without any order. A single 
run then is no longer a sequence of steps with global states, but a partial order of steps with local 
states. Order then no longer represents progress of time, but the (causal) “before-after” relation. 
With this perception, the system A|B of Fig. 1 has only one (infinite) run, joining the order of A and B. 
More illustrating may be the behavior of A|B with the additional requirement that B never executed 
more local steps than A. This results in just one run, as shown in Fig.2.  Petri nets support this 
proposal with the concept of “distributed runs” ([10]). 
 
Lamport’s example of an hour-clock, moving to the next state each full hour, illustrates a further 
disadvantage of the perception of a single run of a system as a sequence of steps: One would expect 
that an hour-and-minute-clock is an hour-clock as well. An hour-and-minute-clock, however, 
executes not one, but 60 steps each hour! Hence, it is not suitable as an hour clock! To overcome this 
problem, Lamport in [14] suggests a “stuttering” logic that conceptually equates a single step with 
“any number of steps”.  
 
Both examples show poor consequences of perceiving a single run as a sequence of global steps, 
whenever systems are composed or refined.  It is apparently useful to take independent events, i.e. 
local causes and local effects, seriously and to distinguish them from nondeterminism. This applies in 
particular to big systems, because they are usually composed or refined from smaller systems. [39] 
suggests a specific logic for such systems.      
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In a more general perspective, here we suggest to take concurrency as a fundamental phenomenon 
of the real world, to be respected and represented in models. Samson Abramsky in [49] contributes 
valuable insight into this question. This contrasts the view of concurrency as an implementation 
issue, assuming “sequential thinking” as the basis of computer science, as pleaded in [48].  
 
 
 

8. Limited expressivity of assignment statements   

 

Not only programming languages, but also modelling languages describe steps by help of assignment 
statements. This is adequate, or at least acceptable, in many cases. But it also leads to less convincing 
models. An example is the “pebble game” that Dijkstra describes in a video of an ambitious series of 
videos of Stanford University [15]: assume an urn, containing finitely many black and white pebbles. 
A step removes two pebbles a and b out of the urn and returns a pebble, c, according to the 
following rule: c is white in case a and b are colored differently; c is black, otherwise (in case of two 
white pebbles, one of them is colored black). In a sequence of such steps, all pebbles disappear until 
only one remains. Fig. 3 shows Dijkstra’s model: a nondeterministic program with arithmetic 
operations on four integer variables. Fig. 4 models the game as a Petri net: PEBBLE is a constant 
symbol, to be initialized by a (multi)set of for sets of black and white pebbles. Each Transition shows 
a step, with two pebbles removed and one pebble returned. Arc inscriptions show the color of the 
involved pebbles. This model represents removal and return of pebbles straightly. It avoids Dijkstra’s 
detour of counting and computing the number of involved pebbles. By help of an invariant, Dijkstra 
shows that the remaining pebble is white if and only if the initial white pebbles are odd-numbered. A 
corresponding invariant exists likewise for Petri nets [10]. 

Variables and assignment statements are also less favorable to model distributed systems such as 
communication protocols, etc. An example is the TLA model of an asynchronous interface as in [14]. 
Ultimately, a scheduler is assumed, regulating access of many components to the variables they 
share. The components are distributedly implementable only under far reaching assumptions.  
 
A proper theory of informatics will eventually describe system steps not only by help of assignment 
statements, but also by a variety of other, possibly more abstract concepts. Petri nets are an 
example: The semantics of a step, i.e. a transition, is given by the updates of the marking of the 
places in its local vicinity. [3] suggests a different approach refraining from assignment statements.  
 

9. The metaphor of the living organism   

New systems can be constructed by refining and composing given systems. Are there further 
methods to systematically construct new systems from given ones? The few proposals include the 
metaphor of a “3d-printer”, as well as the “living organism” metaphor [40]. According to this 
metaphor, a set of “living cells” may create autonomous “creatures” with fundamentally new 
properties. More generally, this rises the question for the principal limits of such constructs, in 
analogy to the limits of computability (viz. symbol manipulation) in classical computation. 
 
 
 

10. Correctness, and verification 

 
Scientific theories live from models that bring about interesting consequences. A model is beneficial 
only it yields interesting, non-trivial insights. The purely descriptive character of UML, BPMN, ASM 
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and other modeling techniques without specific analysis techniques considerably limits their usage. A 
really good model of a system is trustworthy (cf. Sec.3) and can be analyzed, in particular by help of 
non-trivial invariants (c.f. Sec.4).   
 
 Many properties of systems are reducible to properties of single states and runs. Temporal logic has 
reached a dominant position to describe such properties, with model checking and abstract 
interpretation as efficient analysis techniques. The abstract distinction of liveness- and safety 
properties according to [41] is very useful in this context. Nevertheless, a theory of informatics 
should offer means to represent and to prove much deeper properties too, possibly based on non-
trivial invariants (Sec.4) and a specific notion of information flow (Sec.5).   
 
A user of a large system requires a modified notion of “correctness”: He is usually not interested in 
the correctness of the entire system (many big systems are – at extreme situations – not correct 
anyway). His only interest is the system’s correct functioning for his specific use case. Additionally, he 
would love a plausible, intelligible, convincing argument why he can trust the result. Classical 
verification misses both requirements: a flawed system may be useful in some cases, and the hint at 
a formally verified property, formulated in terms of temporal logic, does not necessarily support trust 
in the intended outcome of a single application. First ideas to overcome this include certifying 
algorithms [42] and runtime verification [16]. A comprehensive theory of informatics must include 
this flexible kind of correctness.  
 
 
 

11.  Time, causality, observation, etc. 

 
For computer controlled real time systems, e. g. airbag control, classical real time models are 
adequate. Many modeling techniques utilize a naive notion of time, as if actual time was available in 
any degree of precision and without additional effort. Lamport [38] wakens this view to some extent, 
without withdrawing it entirely. Some modeling techniques such as ESTEL, ESTEREL and statecharts 
employ the hypothesis of “infinitely quick” digital systems, because such systems work much quicker 
than the systems in their environment, e.g. their human users. 
 
In fact, the notion of temporal “before – after” is frequently specified, where a “cause – effect“ 
relationship was more adequate. The relationship of (discrete) time, causality and observation is 
fundamental for models in informatics, but not fully understood. A challenging example is a formal 
model for Stein’s apple sort algorithm ([43]): apples role down a sloped plank with increasingly larger 
holes. Each apple passes the first hole with a diameter greater than the apple’s diameter. With n 
such holes, this algorithm sorts the apples into n size classes. 
 
 

12. Refinement and composition 

 
Large systems are in general refined from more abstract specifications, or composed from smaller 
systems. There is a multitude of general methods, principles and formalisms (such as [18]) to 
systematically refine a system from a specification. A fundamental principle for logical specifications 
is refinement-implication: the specification of the refined system implies the specification of the 
given system. Corresponding methods, principles and formalisms for the composition of logical 
specifications have been suggested for the language Z [19], Lamport’s TLA [14] and Broy’s stream-
based FOCUS [13], together with the far-reaching idea of perceiving composition as logical 
conjunction. On an operational level, [21] suggests a very general composition operator that is 
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associative and does not require any assumptions about the inner of the involved components. All 
these methods, principles, and formalisms address the right questions. But none of them prevails.   
 
 

13. Computability  

 
For quite a while, the theory of computable functions has been conceived as the fundament of a 
theory of informatics. All attempts to refute the Church/Turing thesis failed. However, this thesis has 
frequently been stretched beyond recognition. In fact, it just describes the limitations of 
systematically manipulating symbols sequences. Informatics, and particularly a comprehensive 
theory of informatics, includes more fundamental aspects, to be covered by formal means. A theory 
of informatics must include the interpretation of symbols in the real world. All this has clearly been 
addressed in [17]. Further interesting aspects of this topic are discussed in [45], [46], [30] and [47].  
 
 
In a comprehensive theory of informatics, the computable functions certainly will play a crucial role – 
besides some other concepts. This likewise applies to formal logic. 
 
 

14. Informatics as an engineering discipline 

 
Each typical engineering disciplines such as electrical engineering or chemical process engineering, is 
based on a science (such as physics and chemistry). Engineering makes scientific insight useful for 
man’s interest. Software, however, is no such science. Software is the result of activities in the 
framework of software engineering. So, what is the scientific base of software engineering? One may 
try with “algorithms”; however, “algorithms” is usually perceived in a far too narrow sense. Most 
adequate would be a comprehensive science of informatics, as a basis for several engineering 
disciplines, one of which is “software engineering”.    
 
 

Conclusion 

This text is intended to solicit interest in the aim of a comprehensive theory of informatics. Physics is 
a paradigm for such a theory. I outlined a series of ideas for formal concepts that span far beyond 
computer technology and programming, reach far and should nevertheless start out with a nucleus 
of basics, thus contributing to a science of informatics. This text provides some suggestions as how a 
theory might be started. There exists already a lot of insight that would belong to this theory. But a 
comprehensive view remains to be developed. 
 
The envisaged theories would not render so-far principles of informatics obsolete; they rather should 
be better and mutually related, together with forthcoming engineering concepts of informatics.  
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Fig. 1:  Cartesian product A|B of two components A and B 
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Fig. 2: Distributed run of A|B, with the requirement that B never has executed more local steps than 
A.   
 
 
 
 

 
 
Fig. 3: Dijkstra’s representation [15] of the Pebble game. 
 
 
 
 
 
 
 
 
Fig. 4 Petri net representation of the pebble game. 
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