
1

Unpublished manuscript

January, 2020

Informatics as a Science

W. Reisig
Humboldt-Universität zu Berlin

Abstract

This contribution addresses the quest for a framework for a comprehensive theory of „informatics“
as a formal theory of discrete dynamic systems, in analogy to the model of natural sciences. A
variety of examples show that this endeavor is promising indeed, and that (detached) parts of it
exists already. In the long run, informatics may evolve as a self-contained science, more
comprehensive than nowadays “computer science”, by complementing its strong technological
aspects with a consistent theoretical, mathematical basis, on an equal footing with natural sciences.

Introduction
Background

Computer Science is frequently told as a success story, driven by Moore’s law: during the last six
decades; computation-, information- and communication technology became exponentially cheaper,
quicker and smaller [4]. Accordingly, new application areas evolved. Systemic malfunction of devices,
failed projects, unmanageable behavior of computer embedded systems, violation of privacy etc., are
accepted as unavoidable side effects and justified as the price to be paid for the rapid evolution of
the area.

Whether matters might – or should – have evolved differently, is rarely discussed and hardly
suspected. The quest for alternatives to the factual evolution of computer science is annoying in
particular for young scientists, who eagerly learned facts, and want to build on this presumed solid
and steadfast basis. They are squeezed in systems of promotion and reward, that don’t support
fundamental questions on the nature of informatics. [Footnote: by “Computer science” we refer to
the traditional approach, whereas “informatics” denotes the to-be-developed science]

In this situation it appears nevertheless interesting to pose some fundamental questions and to
discuss aspects that could unify the diverging subdomains of Computer Science. As a basis for a
science of Informatics, this may render future developments quicker and better comprehensible.

Informatics as a science: historical development

The emerging computing technology of the 1950ies covered essentially two problem domains:
numerical problems as they occur in classical engineering sciences, and searching-and-sorting
problems in large data sets, as they occur in a population census. The two programming languages
FORTRAN and COBOL had been tailored to those problems; the steps from a problem to an
algorithmic idea and to a program were usually manageable. This changed in the 1960ies: increasing
computer power made problems solvable that required more complex algorithmic ideas and more

2

elaborate programs. This rendered programs increasingly error prone and incomprehensible, and
finally a “software crisis” had been identified at a famous conference in Garmisch-Partenkirchen [1],
to be tackled by the new discipline of “Software Engineering”. This in turn caused new programming
languages (PL/1, Pascal, Ada), new program paradigms (structured programming, object orientation)
and later on new software architectures (components, service-orientation, micro-services).
Furthermore, software design methodologies emerged, such as systematic refinement, softwa2re
architectures, and the specification of interfaces.

Looking back, it is obvious that the Garmisch-Partenkirchen conference raised important questions
and initiated constructive answers. However, on the long way from a problem via an algorithmic idea
up to a software, only the last step, i.e. writing down programs, has been framed more convenient by
the concepts suggested there.

This way of thinking about „Computer Science“ as a science is visible at the memorial lecture for
famous Edsger W. Dijkstra in 2010, where likewise famous computer scientist Tony Hoare
emphasizes four criteria for sciences in general, and the issue of Computer science in particular [5]:

- Description: Science describes properties and behavior of systems; in Computer Science, such
a “description of properties and behavior can serve as a specification, describing an
appropriately precise interface between its purchaser and its supplier.” Hoare suggests logic
based description methods, with weakest preconditions as an example.

- Analysis: The central items and their conceptual relation of a science are detailed here.
Central items of Computer science are programs. They are analyzed with pre-/postconditions
such as Microsoft Contracts.

- Explanation: The behavior of systems is substantiated. For Computer Science, the semantics
of programming languages provides this substantiation.

- Prediction: Good science can predict the evolution of processes. In computer science, this
means to predict the behavior of programs, i.e. to verify them.

Summing up, a program is conceived as a mathematical item; its decisive properties should be
formulated in a logical language, its semantics should be formally captured, and its correctness
should be proved. These are scientific concepts, indeed. In this spirit, also David Gries in [20]
conceives the activity of programming as a scientific activity.

This Contribution

In 14 sections we formulate some thoughts for a comprehensive Theory of Informatics as a formal
scientific theory of discrete dynamic systems. The subject of this science is intended much broader
than the above outlined traditional “Computer Science”, as suggested by Dijkstra, Hoare, Gries ,
Knuth and others. Nevertheless, the new, broader theory should be conceptualized as a formal
theory; not as classical computer science extended by informal aspects of social sciences. Examples
include formal concepts of information processing and algorithmic behavior that are not intended to
be implemented, as they occur in business informatics, in embedded systems, and generally in the
nowadays much discussed “internet of everything”.

We will pose questions and explain some mutually related concepts. Some of them are not
fundamentally new, but have frequently been studied in isolation. Properly combined, they support
the claim to contribute to a new Theory of Informatics.

3

However, we don’t present a fully-fledged theory of informatics. Obviously, a number of additional
ideas, concepts and insight is still missing. We just want to show that it is worth searching for a
fundamental theory of informatics, and to stimulate discussion.

1. Successful construction of scientific models

Good scientific theory is formulated in terms of models. A model is a system of notions and relations
among them, intended to better understand reality. “Reality” is either given as natural phenomena,
or – as in the case of informatics – constructed by man. Particularly impressive is the example of
physics: For centuries, physicists searched a unifying model for all branches of physics, setting up an
impressive body of scientific theory. Particularly impressive is the deep harmony between physics
and mathematics ([28]) with very abstract, yet exceedingly useful scientific concepts and models. A
typical example is the notion of energy. This notion allows to mutually relate and quantitatively fix
quite different phenomena that, for example, occur when a car is accelerated and crashed into a
wall: In this process, an amount of energy is involved. It is initially contained in petrol, then in
acceleration, and finally in reshaping metal. The notion of “energy” is useful because it provides a
quantifying invariance for dynamic processes. This kind of invariants, usually denoted as “laws of
nature”, are the scaffold of science. In recent years, systems biology likewise is searching for such
notions and invariants to better understand metabolic processes.

Informatics should learn from physics and other sciences how to establish a comprehensive
theoretical framework for all of its aspects. Already in 1963, John McCarthy in [6] encouraged
research into a mathematics-based „Science of Computation“, evolving its central items and
properties out of a few postulates.

2. Models in informatics

As modeling is the center of scientific theory building: what are the models of informatics? Just as
many (natural) sciences, informatics is about dynamic systems, however with a fundamental
difference: Physics describes behavior usually in continuous terms, with functions over the real
numbers. This allows to construct differential equations, integrals, etc. In contrast, informatics
describes behavior in discrete steps. This allows to describe entirely different properties, and
requires different analysis techniques.

Models in informatics are used for various different purposes:

- to describe domain-specific facts, for example a companies’ structure of the book keeping
and the accounting department (the “correctness” of this kind of descriptions remains
inevitably informal);

- to describe algorithmic behavior, for example how to apply for a claim settlement with an
insurance company;

- to describe a software’s effect, either in terms of properties or of its operational behavior.

A model is a symbolic description. It may be executable on the symbolic level, in which case its
behavior can be simulated on a computer. But it also may conceptually describe the behavior of a
system in a concrete domain, that is not intended to be implemented. With a really useful theory of
informatics it will be worthwhile to discuss correctness on the model level and then to systematically
derive correct software.
Seamless integration of computing technology with its technical or organizational environment is
inevitable for many computer integrating systems; not the least the internet of things: such systems
are manageable only with formal models that include computing technology as well as its

4

environment. This includes organizational or technical components that are not intended to be
implemented.
Various modeling techniques support this view, in particular the UML [11] and – primarily for
business informatics – BPMN [12]. These techniques suggest various graphical means to express
particular, subtle, domain specific aspects. Both these techniques (and some more, e.g. Harel’s
statecharts) are widely applied, in deed. But they offer only rare specific means to prove properties
of the modeled systems. Even if systems are modeled by means of those techniques before
implementation, correctness is usually studied (tested) on the software level.

Modeling is a central issue of formal methods such as, besides many others, ALLOY, B, Focus, Live
Sequence Charts, RAISE, TLA, VDM and Z. The main concern of these methods is a systematic way to
construct correct software [23]. These methods, however, insist in implementability, at the price of
convenience and adequacy of modeling the reality. This problem is, to some extent only, tempered
by domain specific methods [22]. General modeling methods with their focus on the realm to be
modeled, include ASM [25] and Petri nets [10]. This focus supports, for example, business
informatics: there, behavior of components are modeled, that are not intended to be implemented
[24]. The term “conceptual modeling” refers to models, mainly for business applications, including
components that are formally described, but not necessarily implemented. A typical example is the
“Open Models initiative” [44]. The quote “Computer science is no more about computers than
astronomy is about telescopes”, attributed to E.W. Dijkstra, may apply here.

The idea of system models that focus application areas more than implementation, is rarely
addressed. A typical example of this narrow view is the Dagstuhl seminar on the history of Software
Engineering in 1996 [2].

From a scientific perspective, in the long run, modeling techniques with adequate more expressivity
for application domains, combined with strong analysis techniques, are urgently needed. They may
look quite different from what is available now.

3. Trustworthy Models

In a general, systematic buildup of modeling principles, it should be possible to find a – formal –
modeling technique that allows to describe a system trustworthy, comprehensible, and
unambiguously. For a given instance we usually have an intuitively clear understanding of what an
appropriate description of a system is about: It contains all aspects that the modeler considers
relevant, and it does not enforce aspects that the modeler wants to ignore. More concretely
formulated, a trustworthy model M of a discrete system S describes

- each elementary item of S as an elementary item of M,
- each elementary operation of S as an elementary operation of M,
- each composed item of S as a composed item of M,
- each composed operation of S as a composed operation of M,
- each – local – state of S as a state of M,
- each – local – step of S as a step of M.

Summing up: elementary and composed items and operations, as well as states and steps of S and M
should correspond bijectively. Intuitive and formally represented behavior should conform as tightly
as possible.
This rises the quest for a modeling technique that would meet these requirements, at least for a
large and interesting class of systems. Obviously, such items, operations, states and steps do not fit
into the classical scheme of computability theory. This has been observed and discussed many times,
beginning perhaps with Donald Knuth’s fundamental The Art of Computer Programming [26], where
the notion of computational methods (nowadays: transition systems) is suggested as a general
framework for the notion of algorithms. A computational method consists of a set S of states and a

5

next-state function F on S, where “F might involve operations that mortal man can’t always perform."
[26, p.8]. Knuth denotes a computational method effective, in case F is a computable function. Robin
Milner in his EATCS award lecture [27] declared: “…we should have achieved a mathematical model
of computation, perhaps highly abstract in contrast with the concrete nature of paper and register
machines, but such that programming languages are merely executable fragments of the theory ….”
It remains open, which kind of non-executable fragments Milner has in mind.

The classical framework of computation with variables and operations over strings of symbols, as
well as programs with sequences of assignment statements, alternatives, and conditional loops has
frequently been generalized to cover freely chosen mathematical objects and operations, as in [29]
and [47]. Shepherdson in [30] devises a similar idea, based on Turing Machines. In a slightly different
style, and from a purely logical perspective, Gurevich in [25] suggests Abstract State Machines as
programs over a signature (a sorted alphabet). The user of this formalism may freely chose his
signature as well as its interpretation (a structure), and systematically manipulate the structure by
help of terms generated from the signature.
Summing up, a good model employs symbols that in the modeled realm are interpreted as items or
operations. This fundamentally differs from programming: A programming language fixes the
interpretation of the employed symbols.

4. Invariants in informatics

As outlined in Sec. 1, invariance is a pillar of scientific theories. This solicits the quest for notions of
invariance in informatics. The best known such notion is certainly Hoare's invariant calculus [31] with
the concept of loop invariants for classical programs. According to [32], loop invariance is one of the
fundamental ideas of software design. This may be true if the notion of correctness of software
design is bound to its very end, i.e. the coding in a classical programming language. A theory of
informatics should however focus the correctness of models. In fact, many modeling techniques
employ particular versions of invariants: for example, [33] suggests special invariants for distributed
processes, distributed algorithms, and communication protocols. The invariant calculus for Petri nets
is exceedingly expressive (because Petri net transitions are reversible) [10].
Each such invariant declares a relationship among the variables of the model that holds in each
reachable state. Those notions stick close to the items of the given model. As shown by the example
of the notion of energy in Sec. 1, physics knows much deeper, less obvious but nevertheless (or
therefore) useful invariants. Informatics should strive at comparatively deep invariants. Such
invariants might make precise what remains invariant in the case of

- a bank client, withdrawing cash at a cash machine;
- a life insurance, transferring a client’s policy to a new hardware;
- a car insurance, regulating a damage;
- a computing center, simulating tomorrow’s weather;
- an operating system, executing garbage collection;
- a compiler, translating a program.
- a travel agent, booking a journey;

There are presently no modeling techniques with such invariants. Nevertheless, it is useful to
systematically search such techniques that, compared to so far existing concepts, evolve much more
abstract and less obvious, yet useful notions of invariants.

6

5. A fundamental notion of „information“

The above example of the notion of „energy“ shows that invariance can be based on a very abstract,
yet intuitively conceivable notion. Are there similar such notions for informatics? In the sequel I try
to outline a notion of “information”, with the central invariant of information preservation in local
steps: in a given state, a system contains a distinguished amount of “information”. As long as the
system does not communicate with its environment, this information can be converted in different
ways; it can be newly combined; something can be derived (computed) from it; parts of it can be
made inaccessible, etc. But the amount of information as a whole remains invariant. A computation,
i.e. a sequence of steps, then models a strictly organized flow of information.

A constructive definition of such a notion of information is not in sight. Nevertheless, such a notion
would be quite useful; for example to construct invariants according to Sec.4. With such a notion it
might be possible to formulate precisely what changes and what remains when documents are
copied, deleted, or combined. Protection of data and privacy as well as related notions might gain a
much more precise meaning.

A further interesting aspect of such a notion are information preserving operations: Such an
operation, f, retains all information when applied to an argument a. Hence, a can be re-computed
from the result f(a). Examples of such operations include the negation if propositional logic, and the
positive square root of positive real numbers. Reversible functions occur frequently in the context of
electric circuits [34]. The consequent application of reversible computing may decisively boost IT
security: An attacker can retrospectively be identified.

It might become realistic to define particular notions of “information” in terms of operations that are
feasible or acceptable in specific contexts.

6. Interactive components

Classical Theoretical computer science abstracts information-technological processes in terms of
functions over symbol chains. With deep results on complexity theory and relations between logic
and automata theory, this framework has been established as theoretical basis of computer science.
In this context, Turing machines are the best-known model. A Turing machine, including a store and a
processor, can be conceived as an adequate abstraction of computing technology of the 1960ies. A
multiprocessor architecture, using more than one processor to increase computing speed, may more
or less adequately be abstracted to an architecture with a single processor. In fact, a system
consisting of many cooperating components where communication is the central issue, may be
simulated on a single processor. This, however, would spoil the purport of the system.

Systems consisting of many cooperating components have been suggested in the 1980ies; for
instance the Actor formalism of Agha und Hewitt [35]. Similar ideas are the basis of languages such as
LINDA [7] and the Chemical Abstract Machine (CHAM) [36]. In this Metaphor, active elements are
conceived as a kind of molecules, that are “swimming” in a – metaphorical – chemical solution that
react with each other whenever two of them meet. A further example is Broy’s FOCUS formalism [13]
with components that realize stream processing functions. Finally, also Petri nets [10] belong to this
kind of modeling techniques: consider each transition as an elementary active unit. These and many
other similar modeling techniques and programming primitives rise the question for a theory that is a
proper basis and abstraction for such systems; in analogy to the computable functions, that are a
proper abstraction for any kind of sequential input/output algorithms.

7

In a series of contributions (among them [37] and [8]), Wegner generalizes Turing machines for this
purpose. [9] challenges the correctness of Wegner’s arguments.

My point here is not the limitations of capabilities of computers, but a quest for system modeling:
Which techniques are adequate to model and analyze systems that proceed in discrete steps and
interact with their environment?

7. Independent steps

The concept of discrete steps is based on states: A step starts at a state and ends at a state. The
classical framework of system descriptions assumes global states: Each step updates a global state. A
single behavior, a run, is then a sequence s0-t1-s1-t2-s2 ... of states si und steps si-1-ti-si (i = 1,2, …). The
state space of a system C, composed from components C1, … ,Cn , is usually constructed as the
Cartesian product S1 × … × Sn of the state spaces Sk of the components Ck . Each step occurrence of a
component Ck thus implies many step occurrences of the composed system C: independent steps in
different components are interleaved, i.e. represented in arbitrary order, thus yielding a
nondeterministic system model.

Fig.1 shows a small example: A and B are two independent components with three (resp. two) states.
The steps of each component form a cycle. Each of the two components has exactly one infinite
behavior (run). The composition A|B of A and B is a component with six states. In three of them, two
steps start, yielding an infinite number of infinite runs. This perception of ”behavior” is intuitively
plausible, and is employed in many analysis techniques. In particular, it is the base of model checking
composed systems.

However, this perception comes with disadvantages: In the above example, the two steps starting in
a state of A|B look like alternatives; but in fact, they occur independently. The aspect of alternative
refers to an alternative temporal sequence as measured on clocks outside A|B. Lamport in [38]
discusses details of this kind of assumptions on temporal orders of events; to do so he requires clocks
with perfect precision. This kind of assumptions can be avoided, taking advantage of the observation
that independent steps start and stop in disjoint local states. As a consequence, independence of
steps is identifiable, and can be covered by representing the two steps without any order. A single
run then is no longer a sequence of steps with global states, but a partial order of steps with local
states. Order then no longer represents progress of time, but the (causal) “before-after” relation.
With this perception, the system A|B of Fig. 1 has only one (infinite) run, joining the order of A and B.
More illustrating may be the behavior of A|B with the additional requirement that B never executed
more local steps than A. This results in just one run, as shown in Fig.2. Petri nets support this
proposal with the concept of “distributed runs” ([10]).

Lamport’s example of an hour-clock, moving to the next state each full hour, illustrates a further
disadvantage of the perception of a single run of a system as a sequence of steps: One would expect
that an hour-and-minute-clock is an hour-clock as well. An hour-and-minute-clock, however,
executes not one, but 60 steps each hour! Hence, it is not suitable as an hour clock! To overcome this
problem, Lamport in [14] suggests a “stuttering” logic that conceptually equates a single step with
“any number of steps”.

Both examples show poor consequences of perceiving a single run as a sequence of global steps,
whenever systems are composed or refined. It is apparently useful to take independent events, i.e.
local causes and local effects, seriously and to distinguish them from nondeterminism. This applies in
particular to big systems, because they are usually composed or refined from smaller systems. [39]
suggests a specific logic for such systems.

8

In a more general perspective, here we suggest to take concurrency as a fundamental phenomenon
of the real world, to be respected and represented in models. Samson Abramsky in [49] contributes
valuable insight into this question. This contrasts the view of concurrency as an implementation
issue, assuming “sequential thinking” as the basis of computer science, as pleaded in [48].

8. Limited expressivity of assignment statements

Not only programming languages, but also modelling languages describe steps by help of assignment
statements. This is adequate, or at least acceptable, in many cases. But it also leads to less convincing
models. An example is the “pebble game” that Dijkstra describes in a video of an ambitious series of
videos of Stanford University [15]: assume an urn, containing finitely many black and white pebbles.
A step removes two pebbles a and b out of the urn and returns a pebble, c, according to the
following rule: c is white in case a and b are colored differently; c is black, otherwise (in case of two
white pebbles, one of them is colored black). In a sequence of such steps, all pebbles disappear until
only one remains. Fig. 3 shows Dijkstra’s model: a nondeterministic program with arithmetic
operations on four integer variables. Fig. 4 models the game as a Petri net: PEBBLE is a constant
symbol, to be initialized by a (multi)set of for sets of black and white pebbles. Each Transition shows
a step, with two pebbles removed and one pebble returned. Arc inscriptions show the color of the
involved pebbles. This model represents removal and return of pebbles straightly. It avoids Dijkstra’s
detour of counting and computing the number of involved pebbles. By help of an invariant, Dijkstra
shows that the remaining pebble is white if and only if the initial white pebbles are odd-numbered. A
corresponding invariant exists likewise for Petri nets [10].

Variables and assignment statements are also less favorable to model distributed systems such as
communication protocols, etc. An example is the TLA model of an asynchronous interface as in [14].
Ultimately, a scheduler is assumed, regulating access of many components to the variables they
share. The components are distributedly implementable only under far reaching assumptions.

A proper theory of informatics will eventually describe system steps not only by help of assignment
statements, but also by a variety of other, possibly more abstract concepts. Petri nets are an
example: The semantics of a step, i.e. a transition, is given by the updates of the marking of the
places in its local vicinity. [3] suggests a different approach refraining from assignment statements.

9. The metaphor of the living organism

New systems can be constructed by refining and composing given systems. Are there further
methods to systematically construct new systems from given ones? The few proposals include the
metaphor of a “3d-printer”, as well as the “living organism” metaphor [40]. According to this
metaphor, a set of “living cells” may create autonomous “creatures” with fundamentally new
properties. More generally, this rises the question for the principal limits of such constructs, in
analogy to the limits of computability (viz. symbol manipulation) in classical computation.

10. Correctness, and verification

Scientific theories live from models that bring about interesting consequences. A model is beneficial
only it yields interesting, non-trivial insights. The purely descriptive character of UML, BPMN, ASM

9

and other modeling techniques without specific analysis techniques considerably limits their usage. A
really good model of a system is trustworthy (cf. Sec.3) and can be analyzed, in particular by help of
non-trivial invariants (c.f. Sec.4).

 Many properties of systems are reducible to properties of single states and runs. Temporal logic has
reached a dominant position to describe such properties, with model checking and abstract
interpretation as efficient analysis techniques. The abstract distinction of liveness- and safety
properties according to [41] is very useful in this context. Nevertheless, a theory of informatics
should offer means to represent and to prove much deeper properties too, possibly based on non-
trivial invariants (Sec.4) and a specific notion of information flow (Sec.5).

A user of a large system requires a modified notion of “correctness”: He is usually not interested in
the correctness of the entire system (many big systems are – at extreme situations – not correct
anyway). His only interest is the system’s correct functioning for his specific use case. Additionally, he
would love a plausible, intelligible, convincing argument why he can trust the result. Classical
verification misses both requirements: a flawed system may be useful in some cases, and the hint at
a formally verified property, formulated in terms of temporal logic, does not necessarily support trust
in the intended outcome of a single application. First ideas to overcome this include certifying
algorithms [42] and runtime verification [16]. A comprehensive theory of informatics must include
this flexible kind of correctness.

11. Time, causality, observation, etc.

For computer controlled real time systems, e. g. airbag control, classical real time models are
adequate. Many modeling techniques utilize a naive notion of time, as if actual time was available in
any degree of precision and without additional effort. Lamport [38] wakens this view to some extent,
without withdrawing it entirely. Some modeling techniques such as ESTEL, ESTEREL and statecharts
employ the hypothesis of “infinitely quick” digital systems, because such systems work much quicker
than the systems in their environment, e.g. their human users.

In fact, the notion of temporal “before – after” is frequently specified, where a “cause – effect“
relationship was more adequate. The relationship of (discrete) time, causality and observation is
fundamental for models in informatics, but not fully understood. A challenging example is a formal
model for Stein’s apple sort algorithm ([43]): apples role down a sloped plank with increasingly larger
holes. Each apple passes the first hole with a diameter greater than the apple’s diameter. With n
such holes, this algorithm sorts the apples into n size classes.

12. Refinement and composition

Large systems are in general refined from more abstract specifications, or composed from smaller
systems. There is a multitude of general methods, principles and formalisms (such as [18]) to
systematically refine a system from a specification. A fundamental principle for logical specifications
is refinement-implication: the specification of the refined system implies the specification of the
given system. Corresponding methods, principles and formalisms for the composition of logical
specifications have been suggested for the language Z [19], Lamport’s TLA [14] and Broy’s stream-
based FOCUS [13], together with the far-reaching idea of perceiving composition as logical
conjunction. On an operational level, [21] suggests a very general composition operator that is

10

associative and does not require any assumptions about the inner of the involved components. All
these methods, principles, and formalisms address the right questions. But none of them prevails.

13. Computability

For quite a while, the theory of computable functions has been conceived as the fundament of a
theory of informatics. All attempts to refute the Church/Turing thesis failed. However, this thesis has
frequently been stretched beyond recognition. In fact, it just describes the limitations of
systematically manipulating symbols sequences. Informatics, and particularly a comprehensive
theory of informatics, includes more fundamental aspects, to be covered by formal means. A theory
of informatics must include the interpretation of symbols in the real world. All this has clearly been
addressed in [17]. Further interesting aspects of this topic are discussed in [45], [46], [30] and [47].

In a comprehensive theory of informatics, the computable functions certainly will play a crucial role –
besides some other concepts. This likewise applies to formal logic.

14. Informatics as an engineering discipline

Each typical engineering disciplines such as electrical engineering or chemical process engineering, is
based on a science (such as physics and chemistry). Engineering makes scientific insight useful for
man’s interest. Software, however, is no such science. Software is the result of activities in the
framework of software engineering. So, what is the scientific base of software engineering? One may
try with “algorithms”; however, “algorithms” is usually perceived in a far too narrow sense. Most
adequate would be a comprehensive science of informatics, as a basis for several engineering
disciplines, one of which is “software engineering”.

Conclusion

This text is intended to solicit interest in the aim of a comprehensive theory of informatics. Physics is
a paradigm for such a theory. I outlined a series of ideas for formal concepts that span far beyond
computer technology and programming, reach far and should nevertheless start out with a nucleus
of basics, thus contributing to a science of informatics. This text provides some suggestions as how a
theory might be started. There exists already a lot of insight that would belong to this theory. But a
comprehensive view remains to be developed.

The envisaged theories would not render so-far principles of informatics obsolete; they rather should
be better and mutually related, together with forthcoming engineering concepts of informatics.

Acknowledgements
I owe many valuable comments to readers of a previous German version of this text: Dines Bjorner,
Peter Fettke, Christoph Freytag, and Otthein Herzog.

References

11

[1] Peter Naur, Brian Randell (Hrsg.): Software Engineering: Report of a conference sponsored by the
NATO Science Committee, Garmisch, Germany, 7-11 Oct. 1968. NATO Scientific Affairs Division,
Brüssel 1969

[2] Andreas Brennecke, Reinhard Keil-Slawik (editors)
Position Papers for Dagstuhl Seminar 9635 on History of Software Engineering

[3] Manfred Broy: A logical basis for modular software and systems engineering. SOFSEM 98 (1998)

[4] David C. Brock (ed): Understanding Moore's Law: Four Decades of Innovation. Philadelphia:
Chemical Heritage Foundation, 2006. ISBN 0-941901-41-6. OCLC 66463488

[5] Tony Hoare: What can we learn from Edsger W. Dijkstra? Edsger W. Dijkstra Memorial Lecture,
Austin Texas, October 12, 2010

[6] John McCarthy: Towards a mathematical science of computation, Proc. IFIP Congress 62
(Amsterdam: North-Holland,1963), 21.

[7] Carriero, Nicholas; Gelernter, David; Mattson, Timothy; Sherman, Andrew: The Linda Alternative
to Message-Passing systems. Parallel Computing. 20 (4): 633–655, (1994)

[8] Peter Wegner, and E. Eberbach, New Models of Computation: Computer Journal, Vol 47, No. 1,
pages 4-9, 2004.

[9] Paul Cockshott, Greg Michaelson: Are there new models of computation?: reply to Wegner and
Eberbach

[10] Wolfgang Reisig: Understanding Petri Nets. Springer-Verlag 2013

[11] Grady Booch, James Rumbaugh, Ivar Jacobson: The Unified Modeling Language User Guide. 2nd
edition, Addison Wesley, 2005

[12] https://www.omg.org/spec/BPMN/2.0/

[13] Manfred Broy, Ketil Stolen: Specification and Development of Interactive Systems. Springer-
Verlag, 2001

[14] Leslie Lamport: Specifying Systems. Addison-Wesley 2002

[15] Edsger W. Dijkstra: Reasoning about programs. University Video Communications, Stanford. The
Distinguished Lecture Series, Academic Leaders in Computer Science and Electrical Engineering, vol.
III (1990)

[16] Ezio Bartocci, Yliès Falcone, Adrian Francalanza, Giles Reger: Introduction to Runtime
Verification. In: Lectures on Runtime Verification. Introductory and Advanced Topics, Lecture Notes
in Computer Science 10457, Springer, pp.1-33, 2018

[17] Carol E. Cleland: Is the Church-Turing thesis true? Minds and Machines August 1993, Volume 3,
pp 283–312

[18] Ralph Back, Joakim Wright: Refinement Calculus. Springer-Verlag, 1998

https://de.wikipedia.org/wiki/Peter_Naur
https://de.wikipedia.org/wiki/Brian_Randell
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-941901-41-6
https://en.wikipedia.org/wiki/OCLC
https://www.worldcat.org/oclc/66463488
https://www.omg.org/spec/BPMN/2.0/
https://link.springer.com/journal/11023

12

[20] David Gries The science of programming. Springer-Verlag, 1981.

[21] Wolfgang Reisig: Associative composition of components with double-sided interfaces. Acta
Informatica 2019 Vol. 3.

[22] Dines Bjorner: Domain Analysis & Description. A Philosophy Basis. Unpublished manuscript,
Technical University of Denmark, Denmark

[23] Dines Bjorner, Klaus Havelund: 45 years of Formal Methods – Challenges and Trends.
Unpublished manuscript,

[24] Martin Bichler et al: Theories in Business and Information Systems Engineering. Bus Inf Syst Eng
2016

[25]Yuri Gurevich: Sequential Abstract State Machines Capture Sequential Algorithms. ACM
Transactions on Computational Logic (2000)

[26] Donald E. Knuth: The Art of Computer Programming, Volume 1. Addison-Wesley (1973)

[27] Robin Milner: Software Science: From Virtual to Reality. Bulletin of the EATCS, EATCS Award
Lecture (2005).

[28]M. Livio: Is God a Mathematician? Simon & Schuster 2009

[29] J.V. Tucker and J.I. Zucker (2000): Computable functions and semicomputable sets on many-
sorted algebras. Handbook of logic in computer science. Oxford University Press Oxford (2000)

[30] John C. Shepherdson: Mechanisms for Computing over Arbitrary Structures. The Universal
Turing-machine (1995)

[31] C.A.R. Hoare: An axiomatic basis for computer programming. CACM 12 (1969)

[32] C.A, Furia, B. Meyer, S. Velder: Loop Invariants: analysis, classification, and examples. ACM
Computing Suveys 46:3 (2014)

[33] Gerard Tel: Introduction to Distributed Algorithms. 2nd ed., Cambridge Univ. Press (2000)

[34] P.M.B. Vitanyi: Time, space, and energy in reversible computing. 2nd ACM conference on
Computing frontiers (2005)

[35] Gul Agha: Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press 1986

[36] Geard Berry, G. Boudol: The Chemical Abstract Machine. Proc. ACM-POPL 1990

[37] Peter Wegner: Why interaction is more powerful than algorithms. CACM 40 1997, p80-91

[38] Leslie Lamport: Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21,7 (1978)

[39] J. Küster-Filipe: Fundamentals of a module logic for distributed object systems. Journal of
functional and logic Programming 200 (3) (2000)

https://dspace.mit.edu/handle/1721.1/6952

13

[40] Nachum Dershowitz, Evgenia Falkovich: Generic Parallel Algorithms. Proceedings of
Computability in Europe 2014 LNCS 8493

[41] B. Alpern, F. Schneider: Defining Liveness. IPL 21, (4) pp 181-185

[42] R.M. McConnell, K. Mehlhorn, S. Näher, P. Schweitzer: Certifying algorithms. Computer Science
Review (2011)

[43] Lynn Andrea Stein: Interaction, Computation, and Education. in D. Goldin et al (eds): Interactive
Computation - The New Paradigm Springer-Verlag (2005)

 [44] Dimitris Karagiannis: The open models initiative OMI. Vienna (2014)

 [45] Jan van Leuven, J. Wiedermann: Computation as an unbounded process. Theor. Computer Sci
429 (2012)

[46] Jan van Leuven, J. Wiedermann: Rethinking computation. in: M. Brown and Y. Erden (Eds), What
is computation Proc. 6th AISB Symp on Computing and Philosophy, AISB Convention 2013 (2013)

[47] Nachum Dershowitz: The Generic Model of Computation E. Kashefi, J. Krivine, F. van Raamsdonk
(Eds.) DCM 2011, EPTCS 88, pp. 59–71 (2012)

[48] Sergio Rajsbaum, Michel Raynal: Mastering Concurrent Computing through Sequential Thinking
Communications of the ACM 63, No 1, pp 78 – 87 (2020)

[49] Samson Abramsky: What are the Fundamental Structures of Concurrency? Electronic Notes in
Theoretical Computer Science 162(1):37-41 (2006)

Figures

1 2 3a b

c

component A

c
(1,4) a (2,4) (3,4)b

(1,5) a (2,5) (3,5)b

d d de e e

c

component A|B

4

5

de

component B

Fig. 1: Cartesian product A|B of two components A and B

http://dblp.kbs.uni-hannover.de/dblp/Search.action;jsessionid=55F2C3EE12C97A514B9E1AE1A97771C3?search=&q=by%3A%22Ross+M.+McConnell%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action;jsessionid=55F2C3EE12C97A514B9E1AE1A97771C3?search=&q=by%3A%22Kurt+Mehlhorn%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action;jsessionid=55F2C3EE12C97A514B9E1AE1A97771C3?search=&q=by%3A%22Stefan+N%C3%A4her%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action;jsessionid=55F2C3EE12C97A514B9E1AE1A97771C3?search=&q=by%3A%22Pascal+Schweitzer%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action;jsessionid=155A9C9832DA6CECF0D3909A353BF539?searchAddFilter=&filterToBeModified=by_facet|Stefan+N%C3%A4her&page=1&q=author%3APascal+Schweitzer&appliedFilters=source_facet|DBLP
http://dblp.kbs.uni-hannover.de/dblp/Search.action;jsessionid=55F2C3EE12C97A514B9E1AE1A97771C3?search=&q=in%3A%22Computer+Science+Review%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action;jsessionid=55F2C3EE12C97A514B9E1AE1A97771C3?search=&q=in%3A%22Computer+Science+Review%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action;jsessionid=55F2C3EE12C97A514B9E1AE1A97771C3?search=&q=in%3A%222011%22

14

a

d

b c a b

e d e d

...

...

Fig. 2: Distributed run of A|B, with the requirement that B never has executed more local steps than
A.

Fig. 3: Dijkstra’s representation [15] of the Pebble game.

Fig. 4 Petri net representation of the pebble game.

	Abstract
	Introduction
	Background
	Informatics as a science: historical development
	This Contribution
	1. Successful construction of scientific models
	2. Models in informatics
	3. Trustworthy Models
	4. Invariants in informatics
	5. A fundamental notion of „information“
	6. Interactive components
	7. Independent steps
	8. Limited expressivity of assignment statements
	Not only programming languages, but also modelling languages describe steps by help of assignment statements. This is adequate, or at least acceptable, in many cases. But it also leads to less convincing models. An example is the “pebble game” that Di...
	9. The metaphor of the living organism
	10. Correctness, and verification
	11. Time, causality, observation, etc.
	12. Refinement and composition
	13. Computability
	14. Informatics as an engineering discipline

	Conclusion
	References
	Figures

