HuMBOLDT-UNIVERSITAT ZU BERLIN
MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTAT
INSTITUT FUR INFORMATIK

Analyzing the Language of
Data Analysis Workflows

Bachelorarbeit

zur Erlangung des akademischen Grades
Bachelor of Science (B. Sc.)

eingereicht von: Thomas Gasteiger
geboren am: 22.08.1988
geboren in: Ebersberg

Gutachter/innen: Prof. Dr. Lars Grunske
Dr. Marcus Hilbrich

eingereicht am: verteidigt am:

Abstract

In data-driven research disciplines, data analysis workflows (DAWs) are widely
used. By managing and organizing data-driven analysis, they enable reuse,
reproducibility, and traceability of analysis results and are therefore important
for big data analysis. The variety of DAW specification languages and their
integration into complex and heterogeneous computing environments result in
limited portability of DAWSs. In this thesis, certain DAW-expressing domain-
specific languages (DSLs) are analyzed. Models of these languages are mapped to
an established metamodel of DAW languages. All mappings of the selected DSLs
are feasible and thus form the basis for future comparability across the languages
studied. The textual description of each DAW specification DSL is complemented
by mappings of the designed language models to the given metamodel in the
form of UML 2 class diagrams.

Contents

Abstract

1

2

Introduction

Foundations

2.1 Domain-Specific Languages
2.2 Data Analysis Workflows
2.3 Metamodel
2.4 Metamodel of Data Analysis Workflow Languages
2.5 Glossary

Methodology

Analysis of DAW Languages

4.1 Common Workflow Language
4.2 Airflow
4.3 Nextflow
4.4 StackStorm
4.5 Argo Workflows
4.6 Evaluation

Lessons Learned
Threats to Validity

Future Work and Conclusion

1 Introduction

According to Atkinson et al. [1] and Liu et al. [2], computational science is confronted
with ever increasing amounts of data. Both Atkinson et al. [1] and Liew et al. [2] point
out that computer software helps to harness, integrate, and analyze these data sets. In
the field of data-driven research disciplines, Liu et al. [3] state that scientific workflows,
also referred to as data analysis workflows (DAWs), as explained by Elfaramawy [4],
are used to model data operations. Barker and van Hemert [5] explain that DAWSs
define a set of analytical activities. It is described by Elfaramawy [4] and Miura and
Sladoje [6] that DAWSs organize and manage data-driven analysis. DAWSs enable reuse,
reproducibility, and traceability of analysis results, as Leser et al. [7] explain. Dransch
et al. [8] claim that DAWSs are essential for big data analysis. Stoudt et al. [9] assert
that systematic and traceable DAWs should be fundamental in any academic discipline
that engages in data-intensive research.

Based on the aforementioned capabilities of DAWSs, Atkinson et al. [1] and Liew et al.
[2] describe the prevalence of DAWs in virtually all scientific fields. According to Liew et
al. [2], they enable the automation and formalization of scientific methods, resulting in
increased productivity and improved scientific methods. Liew et al. [2] also explain that
the ubiquity of DAWs comes with the complexity and heterogeneity of the computing
infrastructures that process such DAWs. In the absence of standardization, Schiefer et
al. [10] note that DAWs often do not run in more than one specific environment.
Fowler [11] and Gronback [12] mention that domain-specific languages (DSLs) cover
a wide range of applications. Within this domain, there is a subset of scientific and
business-related DSLs with the ability to specify DAWSs, as Hilbrich et al. explain [13].
According to Crusoe et al. [14], the large number of these DAW specification DSLs
limits the portability of workflows between different systems.

To overcome the hurdle of limited portability and translate from one language to
another, a generalized model of these DSLs, a metamodel, is needed, as Hilbrich et
al. proclaim [13]. Hilbrich et al. [13] and Liew et al. [15] also state that the abstract
structure of a metamodel ensures independence from any system running a DAW
specification DSL.

In [13], Hilbrich et al. created such a metamodel for DAW specification DSLs by
filtering out similarities and differences between multiple DSLs. The motivation for the
work in [13] can be traced to the problem of applying software engineering practices
across DSLs. Currently, the metamodel is assumed to provide a common foundation
for several DAW specification languages.

The purpose of this paper is to investigate whether a number of scientific and business
DSLs can be mapped to the existing metamodel in [13]. To achieve this, the given
metamodel and its generalized elements are analyzed. Subsequently, selected DSLs
are analyzed with respect to inherent elements. With the knowledge of the existing
elements in the metamodel and the individual DSLs, it is possible to determine a
potential mapping between specialized elements of the given DAW specification DSLs
and generalized elements of the metamodel in [13]. The goals of the work relate to a
number of DAW specification languages, from which a selection is made.

These languages are listed below.
o Common Workflow Language [16]
o Airflow [17]
o Nextflow [18]
o StackStorm [19]
o Argo [20]

With the aim mentioned above, the following research questions are formulated:
RQ 1: Do DAW specification languages correspond to the metamodel in [13]?
RQ 1.1: Which generalized elements are modeled in the metamodel?

RQ 1.2: Which language elements are contained in the individual DSLs?

RQ 1.3: Is it possible to map all language elements of each DSL to the general-
ized elements of the metamodel?

A content analysis will be conducted to answer these questions. Specific definitions of
basic terms will be noted. In addition, a detailed analysis and mapping of the above
DAW specification DSLs will be conducted to answer the research questions. In doing
so, the listed languages can be considered as potential instances of the established
metamodel of Hilbrich et al. in [13]. The thesis provides a detailed analysis, description,
and mapping of DAW languages.It can be considered as a basis for the comparability
of elements in different languages.

Chapter 2 establishes the basic concepts for the work. The approach of the analysis
and mapping method from DAW specification languages to the metamodel is explained
in Chapter 3. This is followed by a detailed analysis and mapping of each of the listed
languages in Chapter 4. The lessons learned are recorded in Chapter 5. A discussion
of the validity of the results is provided in Chapter 6. Finally, Chapter 7 addresses
possible future work and concludes all previous steps.

2 Foundations

The following chapters introduce basic concepts related to DAWs, their design, mapping,
and implementation. Four concepts are described in more detail.

2.1 Domain-Specific Languages

DSLs can be described as computer programming languages that focus on specific
domains [11]. A domain can be defined as a particular class of problems, and a DSL
represents an optimized language for that class [21]. In other words, a DSL is a "very
specific tool for very specific conditions" [21].

There are few sharp boundaries for defining DSLs [11]. The boundaries are not clearly
defined, not black and white, but incremental [21]. Nevertheless, there are a number of
key elements and classifications that provide an approximation to a definition.

A DSL is a computer programming language that can be simultaneously understood by
humans and executed by computers [11]. The meaning of the notation is comprehensible
to both [22]. As mentioned earlier, focusing on a particular domain is another feature
of DSLs [23]. Thus, they target specific classes of problems [23]. Moreover, the sense of
fluency is elementary [11]. It is not just the individual expression, but the composition
of expressions that makes these languages [11]. Limited expressiveness, i.e., a minimum
set of language features required to support a particular domain, is also a central aspect
of DSLs and characterises the difference between DSLs and general-purpose languages
(GPLs) [11]. This limitation reduces flexibility [21], but prevents the possibility of
making mistakes [11].

DSLs can be classified according to various criteria. A subset of these languages is
called internal DSLs. These languages are embedded in GPLs [21] and therefore use
only a subset of the features available in GPLs [11]. In contrast, there is a group
of external DSLs [11]. These are stand-alone languages that are separate from the
respective application language [11].

Since DSLs are specialized languages, a wide range of languages exists for a variety of
domains [11, 12].

2.2 Data Analysis Workflows

DAWs, also known as scientific workflows [4], can be defined as a set of data processing
tasks with the intent to manage and organize data-driven analysis [10, 24]. They
provide a systematic method for specifying data analysis [1, 8]. Workflows consist
of three basic components - tasks, dependencies, and data resources [2]. Tasks are
fundamental to DAWs [24] and are connected by input-output dependencies [10]. They
consume input data and produce output data in a prescribed execution order. [4, 24].
Like all other workflows, DAWs can be defined through the use of a workflow definition
language [25], in this case a DAW specificaton DSL.

Workflows are often described as graphs, with vertices depicting both tasks and data,
and edges depicting control and data flow [2, 24, 26]. DAWs represented as directed

cyclic graphs (DCGs), unlike DAWSs represented as directed acyclic graphs (DAGs),
have the ability to represent iterations [2, 26].

Scientific workflows can be assigned to different levels of abstraction [27, 26]. At the
conceptual level, the workflows are formulated in the language of scientists [26]. It
is the most notional level, followed by the so-called abstract level [26]. At this level
are workflow graphs called abstract workflows that specify tasks, dependencies, data
flow, and control flow [2, 24]. At the concrete or physical level, the actual execution
takes place [24]. Tasks from the abstract level are mapped to executable software and
produce a concrete workflow [2, 24, 26].

The sharp increase in the volume of data and the increased need for data analysis in
science has driven the importance and interest in DAWS [1, 28]. Workflow specification
offers a number of benefits [4]. Reuse, reproducibility, and traceability of analytical
results can be established through defined workflows [4]. DAWs are essential for big data
analysis [8]. Overall, DAWs have a significant impact on scientific analysis processes
and represent an accelerator for scientific progress [27].

2.3 Metamodel

In essence, a metamodel is a model of a model [29]. In other words, it outlines the
basis for the construction of another model [12]. Metamodels consist of statements
about models [30] and give details of the specification to which models must conform
[15]. Thus, a model is an instance of a metamodel and is expressed by the metamodel
[12]. By generalizing a metamodel, a metametamodel can be created.

Furthermore, a metamodel can be considered as a description of the model syntax [15]
or directly equated with the term abstract syntax. In the field of modeling languages,
a metamodel can be viewed as a model of the abstract syntax of a language [12].
Instances of languages require a metamodel description in order to be transformed
or extended [15, 30]. The metamodel provides support for finding differences and
similarities between different models [13, 30].

10

2.4 Metamodel of Data Analysis Workflow Languages

This chapter examines the metamodel of data analysis workflow languages established
by Hilbrich et al. in [13]. Its elements and the dependencies between these elements
are described. The goal of the analysis is to create an understanding of the given
metamodel. Figure 1 illustrates the structure of the metamodel with all its elements. In
chapters 4.1 to 4.5, specific instances of language models are mapped to the metamodel.
Therefore, a solid understanding of the metamodel forms the basis for understanding
the mappings performed from each of the selected DAW specification DSLs to the
metamodel by Hilbrich et al.

The metamodel represents the abstracted model of the DAW specification languages
and is notated as a UML 2 class diagram [13, ch. 3]. A DAW is modeled as a package
of generalized and specialized classes. There are three abstract classes that contain
several subtypes:

- Task
- Interconnection
- Storage

At an abstract level, a DAW can be viewed as a composite of the three elements
above. Briefly, data from the Storage element is manipulated by one or more Tasks,
with Interconnections coordinating the data flow and/or control flow [13, ch. 3]. This
basic principle is described by Hilbrich et al. from the analysis of various DAW specifi-
cation languages [13, ch. 3].

The abstract classes Task, Interconnection, and Storage and their subtypes, as well as
other metamodel elements, are explained in more detail below. In [13], a Task is defined
as "[...] solution or generic solution idea" [13, ch. 3]. The abstract class Task has the four
subtypes InlineDescription. Fxecutable, Monitor, and InterconnectionManipulation.
InlineDescription is defined as a script that is integrated into a Task using a program-
ming language to solve parts of the Task [13, ch. 3].

Executable describes a computer program that can be used to solve a particular problem
[13, ch. 3|. Therefore, an Ezecutable in the metamodel can be viewed as a self-contained
program that is invoked within a DAW. A reference to this external program is required
(13, ch. 3].

Monitor is a form of Task that connects to external services that '[...] usually monitor
some kind of data" [13, ch. 3].

InterconnectionManipulation is a construct for representing further subtypes of Tusk
with the intent of capturing a variety of tasks found in the DAW specification language
palette. Again, InterconnectionManipulation includes the three subtypes Skip Task,
RepeatTask, and FulllnterconnectionManipulation. As the two terms indicate, Skip Task
allows skipping a Task within a DAW, and RepeatTask allows repeating a Task within
a DAW.

11

class DAW J
DAWDModel

DAW
0.* 1
011 i
» manipulate o
m Interconnection
ExecutionContext
il 1] 1.% DataflowInterconnection ‘
» defines execution &
i Task 0= 7~{ StreamingInterconnection ‘
*
Interconn ectionManipulati }» 7+ SimpleSendDatalnterconnection ‘
0.*
SkipTask Storage

4{ ControlflowInterconnection

‘ FulllnterconnectionManipulation }7 W‘
m‘ FileStorage
InlineDescription DatabaseStorage

Executable

InteractiveStorage

I

Monitor |
I

I

I

I

I

I

N . <interface>> "
RealWorldConnection

<Luse> <Luse>>

Fig. 1: Illustration of the metamodel established by Hilbrich et al. in [13]. The

12

metamodel is expressed as a UML 2 class diagram and contains the three
generalized classes Task, Interconnection, and Storage, which can be considered
as crucial constructs of any DAW specification language. All UML 2 class
diagrams of the modeled languages that appear in the following chapters are
mapped to this diagram of the metamodel.

In addition, FulllnterconnectionManipulation expresses a construct of task processing
that is different from any of the other types mentioned. A combination of the above
subtypes of Tasks is conceivable.

Interconnections help define data flow, and/or control flow within a DAW [13, ch.
3]. They are divided into two main categories related to data flow and control flow:
ControlflowInterconnection and DataflowInterconnection.

ControlflowInterconnection specifies the order of Tusk executions within a workflow.
DataflowInterconnection is modeled as a package containing two concrete classes:
StreaminglInterconnection and SimpleSendDatalnterconnection.
StreaminglInterconnection describes how to handle a data stream in the course of
running Tasks [13, ch. 3]. In contrast, SimpleSendDatalnterconnection contains a data
object that is available only after the completion of a Task that created this object [13,
ch. 3J.

The Storage element unifies all types of data sources and data sinks under its class
[13, ch. 3]. It contains the subclasses of IntermediateStorage, InteractiveStorage, and
PersistentStorage

IntermediateStorage is the name for data sources and data sinks that can be described
as volatile in that they are deleted after a single pass of a DAW.

InteractiveStorage is an additional storage concept that deals with arbitrary data
from sources and sinks other than IntermediateStorage and PersistentStorage [13, ch.
3]. PersistentStorage is modeled as a package with two subtypes FileStorage and
DatabaseStorage.

FileStorage and DatabaseStorage cover data storage within a DAW in the form of files
and databases stored over the duration of a single DAW run. In a sense, they are the
counterpart of IntermediateStorage.

The EzxecutionContext and RealWorldConnection classes are elements within the DAW
metamodel that are not classified as subtypes of Task, Interconnection, or Storage.
FExecutionContext describes the possibility to pass data blocks that provide information
about concrete computation/execution environments for the execution of specific DAWs
(13, ch. 3]. RealWorldInterface is the concept that covers '[...] any interaction outside
of the DAW system [...]" [13, ch. 3].

Finally, the connections of the classes DAW, Interconnection, Task, Storage and
all other classes are briefly discussed. In the package DAWModel by Hilbrich et al.
the class DAW is directly connected to the class Interconnection [13, Figure 3]. From
there, the edges lead to the two abstract classes Task and Storage [13, Figure 3].
Besides that, the class FxecutionContext connects directly to the class Task, and the
class RealWorldConnection connects to the Task’s sub-type Monitor as well as to
the Storage’s sub-type InteractiveStorage [13, Figure 3]. All subclasses, which can
still be found in the metamodel, are connected to their main class via an inheritance
relationship.

13

2.5 Glossary

This chapter lists definitions of basic terms that relate to the intended mapping of
certain DAW specification DSLs to the metamodel.

DAW: Data analysis workflows can be defined as series of data processing tasks
with the intention of managing and organizing data-intensive analysis [10, 24].

DSL: Domain-specific languages can be described as computer programming lan-
guages focused on specific domains while having limited expressiveness [11].

Generalization: Generalization is a concept that expresses the hierarchy “[...] be-
tween a more general classifier and a more specific classifier” [31] in, inter alia, UML 2
class diagrams. “Thus, the specific classifier inherits the features of the more general
classifier” [31].

Mapping: Mapping may be defined as the assignment of a defined element to a
corresponding distinct element. The term mapping can be found across various fields
in computer science [32]. In this work, mapping associates a class integrated into a
UML 2 class diagram of a particular DSL with a distinct class in the UML 2 class
diagram of a given metamodel.

Metamodel: A metamodel is a generalized model of models [29]. In the field of
modeling languages, a metamodel can be regarded as a model of the abstract syntax
of a language [12].

Task: Task is a term to be found in the metamodel of Hilbrich et al. and out-
lines a solution or solution idea [13]. It conforms to the interchangeable terms CWL
Step in [16], Airflow Task in [17], Nextflow Process in [18], StackStorm Action in [19],
and Argo Template Definitions in [20].

UML 2 class diagram: An UML 2 class diagram is a concept displaying the structure
of a system to be modeled [31]. It describes the existence of classes inhering attributes
and operations, as well as association, generalization, and dependency relations across
distinct classes [31].

14

3 Methodology

This thesis investigated whether selected DAW specification languages conform to the
metamodel of [13]. The steps performed are:

- Analyzing the given metamodel

- Analyzing five selected DAW specification DSLs
- Creating models for the analyzed languages

- Mapping the created models to the metamodel

The term language elements was used to outline components of the languages under
study that are part of a DAW. To avoid misunderstandings due to name collisions
between languages and the metamodel, all language elements belonging to a particular
language have the language name as a prefix in the textual notation. These language
elements have been modeled as classes in the generated models.

The metamodel of Hilbrich et al. [13] provided guidance for the description and analysis
of each selected DAW specification language. Knowledge of all generalized elements
contained in the metamodel points the way to finding conforming elements in the
defined languages.

Information about such elements was found in the documentation of the five languages.
Documentation available on the websites of each language was consulted almost ex-
clusively. It is suspected that the information obtained from other sources was not
detailed and complete enough. Examples of existing workflows were only examined
when they appeared in the documentation. Looking at workflow examples alone was
avoided because it was likely that they would not capture the entirety of the language
elements. It is also believed that deriving overall concepts from specific workflow
examples is difficult. Therefore, the content analysis of each of the DAW specification
DSLs was based solely on documentation provided by the managing organizations of
each language.

The citations in the following chapters indicate the basic reference of the documentation
and also name the page, chapter, or path of the noted information within the reference.
The documentations were examined with the ulterior motive of filtering out only those
elements from a language description that correspond to generalized elements in the
metamodel. In order not to lose track, all information about these elements was noted
textually. After extracting the elements in question, a UML 2 class diagram [31] was
implemented, which linked all recognized elements of a given language.

In this process, the elements were modeled as classes and subclasses. They were related
by the UML 2 relation concepts dependency, aggregation, composition, and inheritance
[31].

It was obvious to develop all language models in the form of UML 2 class diagrams.
Since the metamodel was already modeled as a UML 2 class diagram, it made sense
to link the generated models to the metamodel by using the same modeling language.
A class diagram of workflow components is shown in [33]. Also, a workflow language
metamodel in the form of a UML 2 class diagram is shown in [34]. These examples

15

underline the suitability of UML 2 class diagrams.

Overall, the instantiated UML 2 class diagrams modeled all subtypes of DAW as
packages, as used in the metamodel in [13]. From there, a mapping was performed
from a single language diagram to the established metamodel. Since the language
diagrams only contain elements that were known to map to elements in the metamodel,
this step is a mere formality.

By creating UML 2 class diagrams to model the DAW specification DSLs and mapping
them to the metamodel, the correspondence between models and metamodel was
established. This approach made it possible to answer the research questions.

16

4 Analysis of DAW Languages

In the upcoming chapters, five selected DAW specifications DSLs are analyzed and
mapped to the previously mentioned metamodel of Hilbrich et al. Priorities of the lan-
guage descriptions are set on concepts and elements that correspond to the metamodel.
The following list names the five analyzed DAW specification DSLs:

- Common Workflow Language
- Airflow

- Nextflow

- StackStorm

- Argo

4.1 Common Workflow Language

The Common Workflow Language (CWL) is a set of standards for creating and porting
workflows [14, p. 2]. Because it is a specification rather than software, it can be ported
to any platform that supports CWL [16, ch. 1.3.1]. CWL Workflows are modeled as
DAGs [35, ch. 3.1], and they are notated in a syntax derived directly from YAML
syntax [14, p. 5]. Workflows that conform to the CWL standard must contain objects
or arrays of objects with the same syntax [35, ch. 2.2]. In addition, a CWL Workflow
must contain the elements CWL Input, CWL Step, and CWL Output [16, ch. 2.10].
CWL Workflow maps to directly to the DAW element in the metamodel.

A CWL Workflow, inherent elements, and a mapping to the metamodel are shown in
Figure 2.

In the CWL standard, a CWL Workflow is divided into CWL Steps, which are con-
nected by input and output dependencies (35, chs. 3.1, 4]. CWL Steps refer directly to
Tasks in the metamodel in [13]. There are three specifications of CWL Steps used in
CWL [16, ch. 2.10]:

- CWL Command-Line Tools
- CWL Ezxpression Tools
- CWL Sub-Workflows

CWL Command-Line Tools are tools that execute commands. They can be exe-
cuted individually or embedded in a series of CWL Steps [16, ch. 2.2]. Since commands
can be viewed as language elements, it is possible to map the CWL Command-Line
Tools to the metamodel’s Ezecutable. To work, the tools require CWL Input and CWL
Output [16, ch. 2.2].

17

class DAW in CWL J

DAWModel

DAW
0.% 1
0..1 il
» manipulate [
" Interconnection
{r \jxecutiunCuntext
0.1 1) 1% DataflowInterconnection ‘
» defines execution W
Task g 7+ StreamingInterconnection ‘
. A
Inter tionManipulati }» 7{ SimpleSendDatalnterconnection }:
*
% 0..
SkipTask Storage

4{ ControlflowIntercc ti
RepeatTask
<
‘ FullInterconnectionManipulation }7— PersistentStorage
IExecntion FileStorage

{r InlineDescription DatabaseStorage

Executable

> deployable IntermediateStorage < I

InteractiveStorage [<}———---—--f—
I
Monitor |
I
I
I
I
I
I

77777777 N <interface™> o
Kuse>> RealWorldConnection Kuse>

Source

CommandLineTool

ConditionalStep m

Fig. 2: Description of the class diagrams of the metamodel in [13] and a CWL Work-

18

flow including blue generalization arcs indicating the mapping of CWL Work-
flow elements to specific elements in the metamodel. Some language elements
of the CWL Workflow are omitted in the diagram because they have no corre-
sponding element in the metamodel.

CWL FEzxpression Tools are related to CWL Command-Line Tools in terms of the
need for CWL Input and CWL Output. In addition, they can be run alone or as
part of a CWL Workflow [16, ch. 2.9]. Unlike CWL Command-Line Tools, they
only execute JavaScript expressions [16, ch. 2.3]. CWL Ezpression Tools map to the
InlineDescription element in the metamodel due to their use of JavaScript.

In CWL, a CWL Sub-Workflow, or nested workflow, is a workflow that is embed-
ded in another CWL Workflow [16, ch. 2.10.2]. Therefore, it represents a CWL Step
to the primary CWL Workflow and is similar to the sub-DAWSs described in [13].

A CWL Operation is a special case of a CWL Step and is therefore not listed above. It
describes a CWL Step that has data links to CWL Input and CWL OQutput, but is not
specified to be executed [16, ch. 2.11]. Its purpose is to visualize a workflow during
development [16, ch. 2.11].

CWL Inputs describe the parameters of a CWL Workflow or a CWL Workflow’s
Step [16, ch. 2.4.1]. Within the design of CWL, it is possible to implement CWL Inputs
within CWL Steps or at the same level as CWL Steps [16, ch. 2.4.1]. They configure
the execution of a CWL Workflow [16, ch. 2.4.1], and they are compulsory elements in
CWL Workflows [16, ch. 2.10]. Thereby the input files are read-only [16, ch. 2.4.1].
By calling the optional parameter CWL Stdin, CWL Inputs can be obtained from the
standard input stream [36, ch. 5.1.8].

CWL Inputs unify several aspects of the metamodel such as DataflowInterconnec-
tion, ControlflowInterconnection as well as IntermediateStorage and InteractiveStorage.
Several data types are available for CWL Inputs. String, int, long, float, double,
and null are retrievable primitive types [16, ch. 2.4.1]. In addition, array and record
can be listed as complex types. Special types are File, Directory, and Any [16, ch. 2.4.1].

CWL Outputs are lists of output parameters that are returned when execution is
complete [16, ch. 2.7.1]. The CWL Output parameters are either output files or data
from the analysis of those output files [16, ch. 2.7.1]. They are compulsory in CWL
Workflows as CWL Steps and CWL Inputs [16, ch. 2.10]. It is possible to direct CWL
Output to standard output or standard error by setting the parameter of CWL Stdout
or CWL Stderr [36, chs. 5.2.1, 5.2.2]. CWL Outputs map to IntermediateStorage and
InteractiveStorage in the metamodel.

CWL Requirements change the semantics or the runtime environment of a CWL
Workflow or a CWL Step [35, ch. 3.3]. Different CWL Requirements can be integrated
[35, ch. 3.3]. For example, the CWL SoftwareRequirement provides information about
the configuration details of the software to be used [36, ch. 5.7]. The CWL Re-
sourceRequirement is notable because it specifies hardware resources such as CPU cores,
reserved RAM, and reserved filesystem-based memory [36, ch. 5.13]. Several types of
CWL Requirements are available [35, ch. 3.3] and refer directly to the EzecutionContext
in the metamodel.

19

CWL Hints are similar to CWL Requirements, but have one key difference [35, ch. 3.3].
A CWL Workflow can be executed even if the conditions for a CWL Hint are not met
[35, ch. 3.3].

CWL Arguments allow adding more arguments to the CWL Command Line Tool
[16, ch. 2.5]. This allows environmental information such as hardware and software
parameters to be injected into the CWL Workflow execution [16, ch. 2.5]. Consequently,
the CWL Arguments can also be mapped to the FEzecutionContext element in the
metamodel.

Dependencies between Tasks in the metamodel, known as Interconnections, can be
modeled in CWL by using the CWL Source parameter [35, ch. 3.1] [16, ch. 2.10.1],
which connects CWL Steps by cascading a CWL Qutput and a subsequent CWL Input.
CWL Steps in a CWL Workflow are not necessarily executed in the order in which
they are implemented [16, ch. 2.10.1]. If there are no dependencies between CWL
Steps and the CWL Inputs of each CWL Step are prepared [14, p. 7], a parallel run of
CWL Steps can take place [16, ch. 2.10.1].

It is possible to repeat CWL Steps in CWL Workflows using CWL Scattering Steps
[14, p. 7]. Through this feature, a complete CWL Workflow or a single CWL Step can
be executed over a list of CWL Inputs, which are understood as arrays [16, ch. 2.10.3].
Here, the number of elements in the arrays determines the number of repetitions [14, p.
8]. It should be noted that the CWL syntax is not appropriate for noting the number
of cycles in a CWL Workflow, and it is not appropriate to specify conditions to stop a
repetition of a cycle [14, p. 8]. The element RepeatTask, a sub-subtype of Tasks in the
metamodel, refers directly to the CWL ScatterFeature Requirement, which is passed as
an optional parameter [16, ch. 2.10.3].

Skip Task, another feature in the metamodel, corresponds to the element CWL Condi-
tional Workflow [16, ch. 2.10.4]. This construct has been available since CWL version
1.2 [14, p. 7]. Using this feature allows a CWL Step in a CWL Workflow to be skipped
by co-signed input parameters [16, ch. 2.10.4]. It is not explicitly documented whether
a CWL Sub-Workflow can be skipped.

20

4.2 Airflow

Airflow is an language, in which Airflow Workflows are specified in Python code
[17, Overview| and represented as DAGs [17, Core Concepts/Architecture Overview].
Each DAG consists of Airflow Tasks, which are basic execution elements of a Airflow
Workflow, and they are connected by dependencies, that control the execution order
of each Airflow Task [17, Core Concepts/Architecture Overview|. Airflow Workflow
corresponds to the element DAW in the metamodel. All this is illustrated in Figure 3,
which shows a Airflow Workflow and its mapping to the metamodel.

Airflow Tasks correspond directly to Tasks in the metamodel and can be subdivided
into three general types [17, Core Concepts/Architecture Overview]:

- Airflow Operators
- Airflow Sensors
- Airflow TaskFlow-Decorated Tasks

Airflow Operators are templates of Airflow Tasks, the with the purpose of direct
usage [17, Core Concepts/Operators]. They are reusable and require only a few argu-
ments [17, Core Concepts/Operators|. A wide range of these predefined Airflow Tasks is
provided [17, Core Concepts/Operators|. Examples include a bash command executor,
an operator to call arbitrary Python functions, or an operator to send emails [17, Core
Concepts/Operators]. Since it is possible to execute Python functions inside Airflow
Operators, the mapping to InlineDescription is given in the metamodel. The mapping
from Airflow Operators to the Ezrecutable element in the metamodel results from the
option of Airflow Operators to execute bash scripts. In addition, various Airflow
Operators perform the function of Monitor, for example, by enabling communication
with external services [17, Core Concepts/Operators].

Airflow Sensors are subtypes of Airflow Tasks that are triggered by events [17, Core
Concepts/Sensors|. Thus, Airflow Sensor evaluate whether a condition is met and
potentialy start interacting [17, Core Concepts/Sensors]. A variety of pre-built Airflow
Sensors is provided by Airflow [17, Core Concepts/Sensors]. Here, the triggers can
be based on time, an external event, or file availability [17, Core Concepts/Sensors].
Airflow Sensors correspond to Monitor and InlineDescription in the metamodel.

Airflow TaskFlow-Decorated Tasks are versatile Airflow Tasks implemented in simple
Python code [17, Core Concepts/Architecture Overview]. They can be individual Air-
flow Tasks [17, Core Concepts/TaskFlow|. Likewise, they can be composed of Airflow
Operators or Airflow Sensors [17, Core Concepts/TaskFlow]. For this reason, Airflow
TaskFlow-Decorated Tasks can execute the Task specifications of InlineDecription,
Ezecutable, and Monitor in the metamodel.

21

class DAW in Airﬂnw“'orkﬂo“)

DAWModel

» manipulate

ExecutionContext

0..1

» defines execution 1 Task 0..*
as

*

A

‘ InterconnectionManipulation }»
A

SkipTask

‘ FullInterconnectionManipulation }7

Execution

:} InlineDescription }

£

Executable

> deployable

{> Monitor

A

<Luse>

DAW

0..* 1

0.1 il

" Interconnection
1] 1.% DataflowInterconnection ‘

7~{ StreamingInterconnection ‘
7+ SimpleSendDatalnterconnection ‘

0.*

Storage

4{ ControlflowInterconnection k
PersistentStorage

FileStorage

DatabaseStorage

IntermediateStorage (<]

InteractiveStorage

il

<interface>>
RealWorldConnection

AirflowWorkflow

Hook

Connection

i

Operator

Sensor

o T 1

TaskflowDecoratedTask

ControlFlow

Variables
XCom

Bitshift
SetUpDownStream

‘ Task

Chain ‘

0..*

‘Workflow

CrossDownstream

Fig. 3: Description of the class diagrams of the metamodel in [13] and a Airflow
Workflow including blue generalization arcs indicating the mapping of Airflow
Workflow elements to specific elements in the metamodel. Some language
elements of the Airflow Workflow are omitted in the diagram because they

22

have no corresponding element in the metamodel.

To create a Airflow Workflow, Airflow Operators, Airflow Sensors, and Airflow TaskFlow-
Decorated Tasks must be linked together [17, Core Concepts/Architecture Overview].
Therefore, dependencies between each Airflow Tasks are required [17, Core Con-
cepts/Architecture Overview|. In a Airflow DAG, dependencies can be viewed as edges
[17, Controlflow]. The control flow that determines the execution order of each Airflow
Task is achieved through various methods mentioned below.

First, Airflow Tasks can be combined by bit-shift-composition in the form of the opera-
tors "<<" and ">>" [17, Core Concepts/Architecture Overview|. The methods known
as set__upstream() and set_downstream() also allow Airflow Tasks to be combined [17,
Core Concepts/Architecture Overview]. Another option is to use the chain() method,
where tasks can be easily listed in execution order. Cross_downstream() describes
the method to pair each element of a list with each element of another list [17, Core
Concepts/DAGs]. All of the above methods handle control flow in Airflow and can be
mapped to Controlflowlnterconnection in the metamodel.

Airflow XComs enable communication between Airflow Tasks by applying the methods
of zcom__pull() and zcom__push() [17, Core Concepts/XComs]. However, the data
transferred by Airflow XComs is preserved only for the duration of a single DAG run
[17, Core Concepts/XComs|. Therefore, Airflow XComs is equivalent to Intermedi-
ateStorage specified in the metamodel.

Airflow Variables form the concept of runtime configuration within Airflow [17, Core
Concepts/Variables], and it is related to Airflow XComs [17, Core Concepts/XComs].
Yet, the stored global key/value pairs of Airflow Variables are for an overall configura-
tion [17, Core Concepts/Variables|, not for the connection between individual Airflow
Tasks as in Airflow XComs [17, Core Concepts/XComs, Core Concepts/Variables]. It is
recommended to use Airflow Variables only for values that are runtime dependent [17,
Core Concepts/Variables|. Since Airflow Variables contains variables that are stored
for a single DAW execution, it can be mapped to IntermediateStorage of the metamodel.

In Airflow there are constructs that make connections to external systems [17, Author-
ing and Scheduling/Connections & Hooks|. Airflow Connections is such a construct
and contains a set of parameters [17, Authoring and Scheduling/Connections & Hooks].
These parameters specify, among other things, the type of system that Airflow connects
to [17, Authoring and Scheduling/Connections & Hooks]. Airflow Hooks represents
another instance of the above construct. It is a high-level interface for interacting with
a system outside of DAW [17, Authoring and Scheduling/Connections & Hooks/Hooks].
Both Airflow Connections and Airflow Hooks map to Monitor of the metamodel.

23

4.3 Nextflow

Nextflow is a DAW specification DSL. It uses Linux’s built-in command-line and
scripting tools [18, Basic concepts|. In Neztflow, workflows called Nextflow Pipeline
Scripts [18, Basic concepts/Processes and channels|] are defined as DAGs [18, Tracing
& visualisation/DAG visualisation|, and they consist of Neztflow Processes (nodes)
containing Neztflow Channels (edges) [18, Basic concepts/Processes and channels]. The
concepts of a workflow in Nextflow and its mapping to the metamodel are shown in
Figure 4. Nextflow Pipeline Script map to the element DAW in the metamodel. First,
Neztflow Processes are defined with Neztflow Channels [18, Basic concepts/Processes
and channels|. Then, a Nextflow PipelineScript is implemented with the composition
of the previously noted Nextflow Processes [18, Processes].

Nextflow Processes map to Tasks in the metamodel. Within each Nextflow Process,
there may be multiple definition blocks [18, Processes]. These blocks are:

- Neztflow Directives

- Neztflow Input

- Neztflow Output

- Neztflow When Clause
- Nextflow Script

Neztflow Directives can optionally configure various settings for the execution of one or
more Nextflow Processes [18, Processes/Directives|. Among other things, Neztflow Di-
rectives can configure the requirements of Nextflow Processes [18, Processes/Directives].
Consequently, a mapping from Nextflow Directives to FxecutionContext in the meta-
model is possible.

Neztflow Processes may contain Nextflow Channels that enable communication between
Neatflow Processes under the data flow programming paradigm [18, Channels]. Due
to this fact, Nextflow Channels map to Streaminglnterconnection in the metamodel.
Neztflow Input and Nextflow Output are specifications of Nextflow Channels [18, Pro-
cesses/Inputs, Processes/Outputs|. Nextflow Stdin and Nextflow Stdout can be used
by Nextflow Input and Nextflow Output [18, Processes/Inputs, Processes/Outputs],
resulting in a further mapping to InteractiveStorage.

Nezxtflow When Clauses are mechanisms for controlling the execution of a Nextflow
Process by defining functions that have a boolean return value [18, Processes/When)].
They are therefore suitable for skipping the execution of Nextflow Process, and conse-
quently correspond to Skip Task in the metamodel. However, it must be emphasised
that it is better to avoid Nextflow When Clauses in Neztflow Process blocks and
instead use if-statements in the Neztflow PipelineScript to increase portability [18,
Processes/When].

24

class DAW in NextflowWorkflow)

DAWDModel

DAW
0.5 1
0..1 il
» manipulate ——
" Inter i
:>{ ExecutionContext
il b e DataflowInterconnection ‘
» defines execution X
xecution 1 Task g 7~{ StreamingInterconnection k
% \—RX—I
Inter tionManipulati }», 7+ SimpleSendDatalnterconnection
0.%
SkipTask Storage
4{ ControlflowInterconnection ‘

RepeatTask
‘ FullInterconnectionManipulation }7 PersistentStorage
Execution FileStorage
InlineDescription DatabaseStorage

Executable

> deployable Intermedi

rage

InteractiveStorage

N N <interface» | 1
Kuse> RealWorldConnection Kuses>

‘WhenClause

Process

PipelineScript

IfStatement

Fig. 4: Description of the class diagrams of the metamodel in [13] and a Neztflow
Workflow including blue generalization arcs indicating the mapping of Neztflow
Workflow elements to specific elements in the metamodel. Some language
elements of the Neztflow Workflow are omitted in the diagram because they
have no corresponding element in the metamodel.

25

In Nezxtflow, Nextflow Processes can be repeated by using the qualifier Nextflow Fach in
a Nextflow Input block [18, Processes/Inputs/Input repeaters|. As long as a new value
is received, the Neztflow Process including the Nextflow Input with the Neztflow Fach
qualifier will be executed repeatedly [18, Processes/Inputs/Input repeaters]. Thus, a
Nextflow Process containing a Neztflow Each qualifier is mapped to the metamodel’s
RepeatTask.

Nextflow Scripts determine the blocks in which commands of scripting languages
are implemented [18, Basic concepts/Processes and channels]. Within each Neztflow
Process, any scripting language running on the Linux platform can be executed [18,
Basic concepts/Processes and channels]. Scripting languages can also be mixed [18,
Processes/Script]. The Nextflow Script block in a Nextflow Process corresponds to the
Ezecutable in the metamodel.

26

4.4 StackStorm

StackStorm is DAW specification DSL for event-driven workflow automation [19,
Getting Started/StackStorm Overview|. It works on the principle of "if an event
happens, then respond to that event' [37]. A StackStorm Workflow is defined in a
YAML file. [19, Automation Basics/Workflows/Orquesta/Orquesta Overview]. In
Orquesta, the latest and recommended workflow engine available for StackStorm [19,
Automation Basics/Workflows], StackStorm Workflows can be expressed as directed
graphs or DCGs and and consists of one or more StackStorm Tasks [19, Automation
Basics/Workflows/Orquesta/Orquesta Overview|. The element Orquesta Workflow
corresponds to the element DAW in the metamodel. An illustration of an Orquesta
Workflow, its elements, and its mapping to the metamodel can be seen in Figure 5.

Among others, StackStorm describes three basic elements [19, Automation Basics/
Actions, Automation Basics/Sensors and Triggers/Sensors, Automation Basics/Rules:

- StackStorm Actions
- StackStorm Sensors
- StackStorm Rules

StackStorm Actions are language elements within StackStorm [19, Getting Started/
StackStorm Overview| that can perform various automation and remediation tasks
[19, Automation Basics/Actions]. Notably, StackStorm Actions can be written in any
programming language [19, Automation Basics/Actions|. They are mapped in the
metamodel to Tasks, more specifically, to the Tasks’ specialization InlineDescription.

StackStorm Sensors are constructs within StackStorm that capture and process events
from external systems [37, Automation Basics/Sensors and Triggers/Sensors]. They are
written in the Python language [19, Automation Basics/Sensors and Triggers/Sensors].
Collectively, they monitor external systems or respond to incoming events in a de-
fined way and then output StackStorm Triggers to StackStorm [19, Automation Ba-
sics/Sensors and Triggers/Sensors|. In the metamodel, StackStorm Sensors correspond
to Monitor and InlineDescription.

StackStorm Triggers are compositions of types and optional parameters to identify
external events [19, Automation Basics/Sensors and Triggers/Triggers|. StackStorm
Sensors activate StackStorm Triggers that initiate StackStorm Rules [19, Automation
Basics/Sensors and Triggers/Triggers| to determine StackStorm Actions to be invoked
[19, Automation Basics/Rules]. Other than that, StackStorm Timers are a subset of
StackStorm Triggers [19, Automation Basics/Rules/Timers|. Their implementation
makes it possible to re-execute or skip StackStorm Actions based on time intervals or
dates and times [19, Automation Basics/Rules/Timers|. Therefore, StackStorm Timers
correspond to SkipTask, RepeatTask, and EzecutionContext in the metamodel.

27

class DAW in OrquestaWorkflow)

DAWModel

DAW
0.% 1
11 il
» manipulate [
" Intercor tion
{r \jxecutionCDntext
i 1] 1.% DataflowInterconnection ‘
» defines execution i
L Task 0= 7~{ StreamingInterconnection ‘
*
A
‘ InterconnectionManipulation }» 7+ SimpleSendDatalnterconnection ‘
*
7 0..
SkipTask Storage

4{ ControlflowInterconnection }4——
o eyt |

‘ FulllnterconnectionManipulation }7 PersistentStorage
eanien FileStorage b<
InlineDescription } DatabaseStorage ‘

A

AL

Executable

deployable IntermediateStorage (<] I—

InteractiveStorage [<}——————-—-—
I
Monitor |
I
I
I
I
I
I

Al

! . <interface» | 1
Kuse> RealWorldConnection Kuse>>

OrquestaWorkflow

Stdout
—

ensor tderr
R

0..1
Datastore
Audit
0.1
1 1
1
Output
1 0.1 P
i, 1
1 1

| ‘Workflow

Fig. 5: Description of the class diagrams of the metamodel in [13] and a Orquesta

28

Workflow including blue generalization arcs indicating the mapping of Orquesta
Workflow elements to specific elements in the metamodel. Some language
elements of the Orquesta Workflow are omitted in the diagram because they
have no corresponding element in the metamodel.

StackStorm Rules are defined in YAML [19, Automations Basics/Rules/Rule Struc-
ture] and describe the links between StackStorm Sensors and StackStorm Actions [37,
Automation Basics/Rules]. They map StackStorm Triggers injected by StackStorm
Sensors to StackStorm Actions [37, Automation Basics/Rules]. StackStorm Criteria,
elements injected into StackStorm Rules [19, Automation Basics/Rules/Criterial, filter
StackStorm Triggers [19, Automation Basics/Rules/Trigger|, to specify an StackStorm
Action to be executed [19, Automation Basics/Actions|. StackStorm Rules contain
StackStorm Criteria, StackStorm Triggers, and associated StackStorm Actions [19, Au-
tomation Basics/Rules]. They are assigned to the EzecutionContext in the metamodel.

StackStorm Workflows map to the DAW element in the metamodel. In StackStorm,
a distinction is made between two types of StackStorm Workflows [19, Automation
Basics/Workflows]. An Orquesta Workflow can describe complex sequences, while
an ActionChain Workflow can only notate linear sequences [19, Automation Ba-
sics/Workflows]. It is recommended to use the newer and more powerful Orquesta
Workflow [19, Automation Basics/Workflows|. In the following, all analysis and de-
scriptions refer to Orquesta Workflows for the reasons stated above.

StackStorm Workflows are constructs of one or more StackStorm Tasks chained together
[19, Automation Basics/Workflows]. StackStorm Tasks are constructs that define which
StackStorm Actions should be executed with which associated inputs [19, Automation
Basics/Workflows|. In addition, they provide instructions about the upcoming sequence
after a StackStorm Task completes. Consequently, they define the execution sequence in
a StackStorm Workflow by integrating the attribute StackStorm Next [19, Automation
Basics/Workflows/Orquesta/Workflow Definition/Task Model].

The StackStorm Join attribute can set up a barrier to parallel StackStorm Task branches
[19, Automation Basics/Workflows/Orquesta/Workflow Definition/Task Model].
Besides, the StackStorm Delay attribute allows delaying the execution of a StackStorm
Task. [19, Automation Basics/Workflows/Orquesta/Workflow Definition/Task Model].
StackStorm Next can be extended with the attributes StackStorm When and StackStorm
Do [19, Automation Basics/Workflows/Orquesta/Workflow Definition/Task Model]
which attach a condition to the invocation of a task and therefore can be skipped if a
condition is not met.

The StackStorm Retry attribute allows a StackStorm Task to be retried for specific times
or a specific StackStorm Criteria [19, Automation Basics/Workflows/Orquesta/Workflow
Definition /Task Model].

The StackStorm With attribute iterates a StackStorm Action for each item in a given
list [19, Automation Basics/Workflows/Orquesta/Workflow Definition/Task Model].

It must be emphasised that StackStorm Tasks do not map uniquely to Tasks in the
metamodel. Consequently, all of the above attributes map to ControlflowInterconnec-
tion, not to any form of the metamodel’s Tasks. For example, mappings to RepeatTask
or Skip Task would be associated with StackStorm Actions rather than StackStorm Tasks.

29

In StackStorm Audit, information about past StackStorm Action executions is stored
[37, Advanced Topics/References and Guides/History and Audit]. The context of
an event, its StackStorm Trigger, the associated StackStorm Rule and the resulting
StackStorm Action are contained [19, Advanced Topics/References and Guides/History
and Audit]. StackStorm Audit is stored as both a database and an audit log file [19,
Advanced Topics/References and Guides/History and Audit]. Therefore, StackStorm
Audit maps to FileStorage and DatabaseStorage in the metamodel.

StackStorm Datastore stores parameters and associated values in StackStorm for reuse
by StackStorm Sensors, StackStorm Rules, and StackStorm Actions [19, Automation
Basics/Datastore]. By default, all information is stored permanently [19, Automation
Basics/Datastore|. However, it is optional to implement a Time to Live (TTL) value
to instruct the deletion of items from the StackStorm Datastore [19, Automation
Basics/Datastore/Setting a Key-Value Pair TTL|. Thus, the StackStorm Datastore
can be mapped to the DatabaseStorage in the metamodel if no TTL is specified. If a
TTL is specified, the StackStorm Datastore can be mapped to the IntermediateStorage
in the metamodel, depending on the time frame specified by the TTL value.

30

4.5 Argo Workflows

Argo Workflows is an open-source workflow engine [20, Argo Workflows]. Within
Argo Workflows, it is possible to define each workflow section as a container [20, Argo
Workflows|. On the one hand, Argo Workflow can be described as a sequence of steps,
then again Argo Workflows can be modeled as DAGs to illustrate dependencies between
steps [20, Argo Workflows]. Figure 6 shows a diagram of a Argo Workflow and its
mapping to the metamodel.

In general, Argo Workflows are specified in the Argo Workflow.spec field, which mainly
contains lists of Argo Templates [20, User Guide/Core Concepts/Workflow Spec] with
optional input and output sections [20, Getting Started/Walk Through/The Structure
of Workflow Specs|. Argo Templates can be informally described as functions that
define instructions for execution [20, User Guide/Core Concepts/Workflow Spec]. Argo
Workflow.spec corresponds to the DAW element in the metamodel.

In contrast, the mapping of Argo Templates is more complex, as they are divided into
two categories [20, User Guide/Core Concepts/template Types|, and they map to a
wide variety of elements in the metamodel.

The following describes Argo Templates and their mappings. The first category of Argo
Templates, known as Argo Template Definitions, defines the work of each step in an
Argos Workflow [20, User Guide/Core Concepts/template Types|. Overall, this subset
of Argo Templates maps to the metamodel’s Task.

Next, a selection of specifications of Argo Template Definitions that are mapped to the
metamodel is described. The selected specifications are:

- Argo Container
- Argo Script

- Argo Suspend

- Argo Resource

Argo Container templates integrate containers into Argo Workflows [20, User Guide/Core
Concepts/Container|. Since Argo Workflows is designed to integrate containers, Argo
Container is most commonly used [20, User Guide/Core Concepts/Container|. The
purpose of a container suggests that the Argo Container template maps to the Eze-
cutable element in the metamodel.

Argo Script templates help include scripts by temporarily storing them in files [20,
Walk Through/Scripts And Results] and executing them [20, User Guide/Core Con-
cepts/Script]. They allow the use of programming languages and thus comply with the
metamodel’s InlineDescription.

31

class DAW in ArgoWorkflows)

DAWDModel

DAW
0.* 1
0..1 1o
» manipulate o
m Interc i
ExecutionContext
1] 1.%
0..1
» defines execution 1 0..%
*
‘ InterconnectionManipulation }»
0.*
SkipTask Storage
a

‘ FullInterconnectionManipulation }7

Execution

DataflowInterconnection ‘

7~{ StreamingInterconnection ‘

7~{ SimpleSendDatalnterconnection ‘

4{ ControlflowInterconnection ‘<

PersistentStorage

FileStorage

{r InlineDescription

DatabaseStorage

Executable

>

deployable

IntermediateStorage

InteractiveStorage

<interface>

<Luse>>

RealWorldConnection |

<use>

ArgoWorkflows

)
I Suspend ‘When
[

N .

Script }» 4 StepLevelMemoization }
1
I
ﬁ RetryStrategy ‘ Steps }
{ ; \
ﬁ LifecycleHook ‘ DAG ‘
Vv
‘ TemplateDefinitions ‘ TemplateLevel Features ‘ TemplateInvocators ‘
0.% @ 0.1
1
H Template H
1 u 1
0.%
1
} ‘WorkflowSpec ‘

Fig. 6: Description of the class diagrams of the metamodel in [13] and a Argo Workflow
including blue generalization arcs indicating the mapping of Argo Workflow
elements to specific elements in the metamodel. Some language elements of the
Argo Workflow are omitted in the diagram because they have no corresponding

element in the metamodel.

32

Argo Suspend templates allow a Argo Workflow to be suspended [20, User Guide/Core
Concepts/Suspend] at a specific node [20, User Guide/UI Features/Intermediate Pa-
rameters|. In this way, intermediate parameters can be passed during the run of a Argo
Workflow via human interaction [20, User Guide/UI Features/Intermediate Parameters].
Consequently, this construct can be mapped to the Monitor element in the metamodel.
Argo Resource templates create connections to cluster resources [20, User Guide/Core
Concepts/Resource]. Since these resources are outside of Argo Workflows and Argo
Resource can connect to this external service, it is mapped to the Monitor element of
the metamodel.

The second category of Argo Templates is known as Argo Template Invocators |20,
User Guide/Core Concepts/Template Invocators]. They facilitate the invocation of
other Argo Templates and therefore control the execution order [20, User Guide/Core
Concepts/Template Invocators]. The two specifications of Argo Template Invocators are:

- Argo Steps
- Argo DAG

The Argo Steps template and the Argo DAG template, explained in more detail
below, both map to the metamodel’s ControlflowInterconnection.

The Argo Steps template is a list of lists and defines the invocation of individual
steps containing Argo Template in a sequence [20, User Guide/Core Concepts/Steps| to
create multi-step Argo Workflows [20, User Guide/Core Concepts/Template Invocators,
Getting Started/Steps]. The steps can be sequential or parallel [20, User Guide/Core
Concepts/Steps]. All individual steps of a Argo Workflow are listed in the order they
are called in a sequential run. In a parallel run they are noted side by side in an inner
list [20, User Guide/Core Concepts/Steps].

As an additional feature, the template Argo Step may contain an optional attribute
known as Argo When that conditionally executes an Argo Step [20, User Guide/Core
Concepts/Steps|. Derived from this, the Argo When attribute maps to Skip Task in
the metamodel. In addition to the Argo When attribute, it is specified that "[...] a
wide array of options to control execution [...]" is accessible, next to the Argo When
attribute. [20, User Guide/Core Concepts/Steps|. However, further documentation of
these options is not apparent in the Argo documentation.

Argo DAG templates use the concept of DAGs to declare dependencies between different
tasks, which in turn contain Argo Templates [20, User Guide/Core Concepts/DAG].
This can be achieved by including a list of tasks that must be completed before starting
the current task [20, User Guide/Core Concepts/DAG]. If there is no dependency,
a specific task will be executed immediately [20, User Guide/Core Concepts/DAG].
The term step in the Argo Step templates is similar to the term task in the Argo
DAG template. However, both terms are not further specified in [20] and can only be

33

understood implicitly and refer roughly to the element Tusk in the metamodel.

Another subset of the language elements of Argo is called Argo Features [20, User
Guide/Features], which is explained below. The elements of Argo Features that can be
mapped to the metamodel are:

- Argo Template-level Lifecycle Hooks
- Argo Retry Strategy
- Argo Step Level Memoization

Argo Template-level Lifecycle Hooks initiate actions within Argo Workflows when
a defined expression is met [20, User Guide/Features/Lifecycle-Hook|. Therefore, a
Argo Template will not be invoked if an expression is not satisfied. Consequently, the
Argo Template-level Lifecycle Hooks can be mapped to the SkipTask element in the
metamodel.

Argo Retry Strategy is a construct for retrying failed tasks [20, User Guide/Features/
Retries|. Therefore, a mapping to the RepeatTask element in the metamodel is feasible.
However, an objection can be raised since it is not possible to repeat the entire set of
tasks, but only the subset of failed tasks.

Argo Step Level Memoization stores output from previous designated Argo Templates in
a special cache [20, User Guide/Features/Step Level Memoization|. With this strategy,
Argo Workflows can be optimized by avoiding repetitions of Argo Templates [20, User
Guide/Features/Step Level Memoization]. The caching concept of the Argo Step Level
Memoization allows it to be mapped to the IntermediateStorage of the metamodel.

34

4.6 Evaluation

In the previous chapters, CWL, Airflow, Nextflow, StackStorm, and Argo were analyzed.
Mappings to the designated metamodel of Hilbrich et al. were modeled. The different
approaches of these DAW specification DSLs and the knowledge of the existence of
another variety of such languages [14, 38] illustrate the effort of Hilbrich et al. to
establish an abstract, higher-level model in [13].

During the analysis, there was a confrontation with sometimes inconsistent, incomplete,
and poorly designed documentation that made it difficult to extract information about
the languages and build the resulting models. This problem seems to be more common
in the analysis of DAW expressing languages. It has been noted before: "The confusion
between workflow languages and enactors is such that the language is not always well
defined nor documented" [39].

Already included in the five languages listed above is a wide range of concepts. This
spectrum covers everything from data storage to data flow, control flow, and tasks. On
this basis, a diverse expression of each model representing a particular DAW specifi-
cation language is evident. In the sequel, all individual mappings to the metamodel
appear in various forms [fig. 2, fig. 3, fig. 4, fig. 5.fig. 6].

Despite all the diversity, it should be noted that the subtypes of the metamodel basic
principles Task, Inteconnection, and Storage are found in all five languages. Thus, the
language elements can be mapped to generalized elements of the metamodel. In other
words, the metamodel does not break, and it is able to handle CWL, Airflow, Nextflow,
StackStorm, and Argo. The fact that the selected DAW specification DSLs conform to
the metamodel is the answer to the research question.

35

5 Lessons Learned

In the previous chapters 4.1 to 4.5, five particular DAW specification DSLs were
analyzed. After applying the methodology proposed in Chapter 3, several lessons were
learned regarding the chosen approach.

Reviewing the documentation of the selected languages, the same pattern emerged.
The most important language elements were found in a simple way. It was possible
to note and link them. As soon as more specific language elements were analyzed,
the process of classifying, grouping, and noting them slowed down considerably. The
volume of language elements presented the challenge of keeping track of the individual
DAW specification DSLs.

To solve this problem, a rigorously structured approach to the analysis of language
documentation is proposed to be followed at all times. This includes a constant
comparison between the generalized elements of the metamodel and the specialized
elements of a given language. Precise annotations to the chapters of the documentations
are necessary to keep track of the relevant information, because problems with retrieving
information occurred.

It can be concluded that it is advisable to complete the analysis of each language in a
single coherent process. The concepts and structures of the languages analyzed are
very different, and it is difficult to keep track of them simultaneously. In some respects,
it is a challenge to follow this procedure, since findings in one language may clarify
aspects of another language. Nevertheless, it is beneficial to complete the analysis of
each language to the extent possible.

Analyzing the different languages improved the ability to evaluate the documents
provided. In the course of time, a firm opinion about the given documentations was
formed. It is considered that there is no perfect documentation in the field of the five
languages, but that different documentations or different documentation chapters are
more understandable and specific than others.

It was concluded that it is complex to write well-written documentation, especially
documentation that contains many elements and complex, flexible concepts. Overall,
there is the believe that coherent documentation is complete and consistent, and its
notation follows a well-thought-out concept. In addition, it contains both textual and
graphical representations, as well as concrete examples of the issues presented.

37

6 Threats to Validity

A variety of errors is suspected in the analysis, model generation, and mapping of
the selected DAW specification DSLs. Documentation from CWL, Airflow, Neztflow,
StackStorm, and Argo provided information for the analysis. It was decided to analyse
only this documentation and no other sources. Thus, only this documentation was
relied upon. This could have prevented the development of valid models, as there was
only a one-sided view of the facts.

It is likely that the interpretation of the information presented in the various language
documentation is prone to error. Consequently, the derived language models could be
flawed. As UML 2 class diagrams have been modeled, three main categories of diagram
elements may contain errors. These elements are:

- Classes
- Relationships
- Multiplicities

As for the modeled classes and packages, they may have been misnamed. It may
also be that there was a failure to include language elements in the form of classes. For
some classes, there was discussion whether classes could be described as abstract or
concrete classes. This was not always clear, and some room for error is suspected.
The relationships between different classes may have been chosen incorrectly and
therefore do not correspond to the facts. When the models were created, it was not
certain that all relationships between classes were modeled.

In addition, multiplicities attached to relationships in the models may describe incorrect
values. In several cases, it was not sure whether a multiplicity starts at zero or one. A
multiplicity that starts at zero would express that the associated class is optional and
a workflow could be invoked without it.

Aside from the deficiencies in the language models, the mapping between language
models and metamodels could also be flawed. The mapping of individual classes to
generalized classes of the metamodel could be incorrect due to a possible misunder-
standing of the concepts inherent in the languages and the metamodel.

Since this has occurred before, concerns can be raised about a possible discrepancy
between the textual notations and the models created. Despite efforts to reconcile
analysis and models, textual descriptions and diagrams may not match.

39

7 Future Work and Conclusion

Following this work, the language of DAWs was analyzed. At the beginning, basic
concepts about DAWSs, their design, mapping and implementation as well as the meta-
model of Hilbrich et al. were introduced to create a clear understanding. Then, the
steps of the applied methodology were mentioned. Five selected DAW specification
DSLs were analyzed in light of the given metamodel. The elements inherent in each
language were noted textually. Based on this, models were created in the form of
UML 2 class diagrams. Mappings of the elements of each language model to the
generalized elements of the metamodel were then performed. A brief evaluation of the
language analysis performed was made. Reflections on the knowledge gained regarding
the analysis approach were written down. In addition, the threats to validity of the
analysis, the resulting models, and mappings were considered.

Based on these listed steps, future work can improve and expand this thesis. Although
all models created were developed with care, future work should question model validity
and review listed sources. Information about the selected languages from other sources
could also be considered. In addition, uncertainties in language concepts should be
addressed by developing test workflows that approach misinterpreted or poorly docu-
mented concepts.

The layout quality of the class diagrams presented could be optimized. The language
models are currently constructed to provide largely planar mappings to the metamodel.
However, other layouts are conceivable and may contribute to a better readability of
the models and mappings.

The integration of visualizations in the form of further diagrams and concrete examples
of workflows expressed by the respective languages could clarify the language concepts
and provide for a broader understanding.

Since there are many more DAW specification DSLs, their analysis and mapping would
be conceivable and could be seen as a direct continuation and extension of the thesis.
The analysis performed in the thesis serves to provide an overview of the DAW specifi-
cation languages studied in regards to the metamodel. The mappings form a basis for
comparability between the selected languages amidst the established metamodel. In the
future, statements about the limitations and the power of the individual languages can
be derived from the existing mappings. They also provide a basis for future translations
between languages that have an existing mapping to the metamodel.

DAWs play an import role in the world of data-driven research as they guarantee reuse,
reproducibility, and traceability of analysis results. Hence, advancements in the fields
of DAWs and DAW specification languages are favorable. An increased portability
across individual DAW concepts and platforms is a preferring subject to work on.

It could be demonstrated that a mapping from any of the selected languages to the
metamodel is possible and that the basic principles inherent in the metamodel can
be found in all the languages studied. In summary, the individual DAW specification
DSLs correspond to the metamodel in [13] and thus answer the research questions posed.

41

References

1]

[10]

Malcolm Atkinson, Sandra Gesing, Johan Montagnat, and lan Taylor. “Scientific
workflows: Past, present and future”. In: Future Generation Computer Systems,
Volume 75, Pages 216-227. ISSN 0167-739X (2017).

Chee Sun Liew, Malcolm P. Atkinson, Michelle Galea, Tan Fong Ang, Paul Mar-
tin, and Jano I. Van Hemert. “Scientific Workflows: Moving Across Paradigms”.
In: ACM Comput. Surv. 49, 4, Article 66 (December 2017), 39 pages (2016).

Ji Liu, Esther Pacitti, Patrick Valduriez, and Marta Mattoso. “A Survey of Data-
Intensive Scientific Workflow Management”. In: Grid Comput 13(4): 457493
(2015).

Nourhan Elfaramawy. “Interactive Workflows for Exploratory Data Analy-
sis”. In: Bao, Zhifeng; Sellis, Timos (Ed.): Proceedings of the VLDB 2022
PhD Workshopco-located with the 48th International Conference on Very Large
Databases(VLDB2022), Sydney, Australia, September 5, 2022, CEUR-WS.org
(2022).

Adam Barker and Jano van Hemert. “Scientific Workflow: A Survey and Research
Directions”. In: In: Roman Wyrzykowski, , Jack Dongarra, Konrad Karczewsksi,
Jerzy Wasniewski (eds). Parallel Processing and Applied Mathematics. PPAM,
2007. Lecture Notes in Computer Science, vol 4967. Springer, Berlin, Heidelberg
(2008).

Kota Miura and Natasa Sladoje. Bioimage Data Analysis Workflows. Springer
Cham, 2020.

Ulf Leser, Marcus Hilbrich, Claudia Draxl, Peter Eisert, Lars Grunske, Patrick
Hostert, Dagmar Kainmiiller, Odej Kao, Birte Kehr, Timo Kehrer, Christoph
Koch, Volker Markl, Henning Meyerhenke, Tilmann Rabl, Alexander Reinefeld,
Knut Reinert, Kerstin Ritter, Bjorn Scheuermann, Florian Schintke, Nicole
Schweikardt, and Matthias Weidlich. “The Collaborative Research Center
FONDA”. In: Datenbank Spektrum 21, 255-260 (2021).

Doris Dransch, Daniel Eggert, Nicola Abraham, Laurens M. Bouwer, Holger
Brix, Ulrich Callies, Thomas Kalbacher, Stefan Liidtke, Bruno Merz, Christine
Nam, Erik Nixdorf, Daniela Rabe, Diana Rechid, Kai Schroter, Bente Tiedje,
Dadiyorto Wendi, and Viktoria Wichert. “Data Analysis and Exploration with
Scientific Workflows”. In: In: Bouwer, L.M., Dransch, D., Ruhnke, R., Rechid,
D., Frickenhaus, S., Greinert, J. (eds) Integrating Data Science and Farth
Science. SpringerBriefs in Earth System Sciences. Springer, Cham (2022).

Sara Stoudt, Valeri N. Vasquez, and Ciera C. Martinez. “Principles for data
analysis workflows”. In: CoRR abs/2007.08708 (2020).

Christopher Schiefer, Marc Bux, Jorgen Brandt, Clemens Messerschmidt, Reinert
Knut, Dieter Beile, and Ulf Leser. Portability of Scientific Workflows in NGS
Data Analysis: A Case Study. 2020.

43

[14]

22]

23]

[24]

44

Martin Fowler. Domain-Specific Languages. Pearson Education, 2010.

Richard C. Gronback. FEclipse Modeling Project: A DomainSpecific Language
(DSL) Toolkit. Pearson Education, 2009.

Marcus Hilbrich, Sebastian Miiller, Svetlana Kulagina, Christopher Lazik, Ninon
De Mecquenem, and Lars Grunske. “A Consolidated View on Specification Lan-
guages for Data Analysis Workflows”. In: In Leveraging Applications of Formal
Methods, Verification and Validation. Software Engineering: 11th International
Symposium, ISoLA 2022, Rhodes, Greece, October 22-30, 2022, Proceedings,
Part II. Springer-Verlag, Berlin, Heidelberg, 201-215 (2022).

Michael R. Crusoe, Sanne Abeln, Alexandru Iosup, Peter Amstutz, John Chilton,
Nebojsa Tijani¢, Hervé Ménager, Stian Soiland-Reyes, Bogdan Gavrilovic, and
Carole Gobleand. “Methods Included: Standardizing Computational Reuse and
Portability with the Common Workflow Language”. In: Commun. ACM 65, 6
(June 2022), 5/-63 (2021).

Jonathan Sprinkle, Bernhard Rumpe, Hans Vangheluwe, and Gabor Karsai.
Metamodelling: State of the Art and Research Challenges. 2014.

CWL Project Team. CWL user guide. https://www.commonwl.org/user _guide/.
Last accessed: 22.2.2023.

The Apache Software Foundation. What is Airflow?
https://airflow.apache.org/docs/apache-airflow /stable/. Last accessed: 22.2.2023.

Seqera Labs. Neztflow’s documentation!
https://www.nextflow.io/docs/latest /index.html. Last accessed: 22.2.2023.

LF Projects. StackStorm 3.8.0 documentation. https://docs.stackstorm.com/.
Last accessed: 22.2.2023.

Argo Project Authors. Argo Workflows - The workflow engine for Kubernetes.
https://argoproj.github.io/argo-workflows/. Last accessed: 22.2.2023.

Markus Volter, Sebastian Benz, Christian J. Dietrich, Birgit Engelmann, Mats
Helander, Lennart C. L. Kats, Eelco Visser, and Guido Wachsmuth. DSL
Engineering - Designing, Implementing and Using Domain-Specific Languages.
2013.

Jason Agron. “Domain-Specific Language for HW/SW Co-design for FPGAs”.
In: Taha, W.M. (eds) Domain-Specific Languages. DSL 2009. Lecture Notes in
Computer Science, vol 5658. Springer, Berlin, Heidelberg (2009).

Diomidis D. Spinellis. “Notable design patterns for domain-specific languages”.
In: Journal of Systems and Software. 56 : 91-99 (2001).

Marc Bux and Ulf Leser. “Parallelization in Scientific Workflow Management
Systems. Distributed, Parallel, and Cluster Computing (cs.DC)”. In: FOS:
Computer and information sciences, FOS: Computer and information sciences,
C.1.4; D.1.3; D.3.2; J.3, 68N19 (2013).

[25]
[26]

[27]

28]

Paolo Romano. “Automation of in-silico data analysis processes through workflow
management systems”. In: Briefings in Bioinformatics 9.1, 57-68 (2007).

Nadia Cerezo, Johan Montagnat, and Mireille Blay-Fornarino. “Computer-
Assisted Scientific Workflow Design”. In: J Grid Computing 11, 585-612 (2013).

Yolanda Gil, Ewa Deelman, Mark Ellisman, Thomas Fahringer, Geoffrey Fox,
Dennis, Gannon, Carole Goble, Miron Livny, Luc Moreau, and Jim Myers.
“Examining the Challenges of Scientific Workflows”. In: Computer. 40. 24 - 32.
10.1109/MC.2007.421 (2008).

Bertram Ludéscher, Mathias Weske, Timothy McPhillips, and Shawn Bowers.
“Scientific Workflows: Business as Usual?” In: Dayal, U., Eder, J., Koehler, J.,
Retjers, H.A. (eds) Business Process Management. BPM 2009. Lecture Notes in
Computer Science, vol 5701. Springer, Berlin, Heidelberg (2009).

Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. Eclipse
Modeling Framework. Pearson Education, 2009.

Manfred A. Jeusfeld. “Metamodel”. In: LIU, L., OZSU, M.T. (eds) Encyclope-
dia of Database Systems. Springer, Boston (2009).

Chris Rupp, Stefan Queins, and Barbara Zengler. UML 2 glasklar: Praziswissen
fiir die UML-Modellierung. Hanser, 2007.

Peter Fischer and Peter Hofer. Lexikon der Informatik. Springer Berlin, Heidel-
berg, 2010.

Fazle Rabbi, Hao Wang, and Wendy MacCaull. “YAWL2DVE: An Automated
Translator for Workflow Verification, 53-59”. In: 2010 Fourth International
Conference on Secure Software Integration and Reliability Improvement. 2010.

Yuan Lin, Thérese Libourel, and Isabelle Mougenot. “A Workflow Language for
the Experimental Sciences”. In: 2009, pp. 372-375.

CWL Project Team. Common Workflow Language (CWL) Workflow Description,
v1.2. https://www.commonwl.org/v1.2/Workflow.html. Last accessed: 22.2.2023.

CWL Project Team. Common Workflow Language (CWL) Command Line Tool
Description, v1.2. https://www.commonwl.org/v1.2/CommandLineTool.html.
Last accessed: 22.2.2023.

LF Projects. StackStorm Features. https://stackstorm.com/features/. Last
accessed: 22.2.2023.

Peter Amstutz, Maxim Mikheev, Michael R. Crusoe, Nebojsa Tijani¢, Samuel
Lampa, et al. Fxisting Workflow systems. Common Workflow Language wiksi,
GitHub. https://s.apache.org/existing-workflow-systems. Last accessed: 25.1.2023.

Johan Montagnat, Benjamin Isnard, Tristan Glatard, Ketan Maheshwari, and
Mireille Blay Fornarino. “A Data-Driven Workflow Language for Grids Based on
Array Programming Principles”. In: WORKS ’09. Association for Computing
Machinery, 2009.

45

List of Figures

DO W N~

Metamodel by Hilbrichetal. 12
Mapping of CWL to DAW 18
Mapping of Airflow to DAW 22
Mapping of Nextflow to DAW 25
Mapping of StackStorm to DAW 28
Mapping of Argo to DAWo 32

47

Selbstandigkeitserklarung

Ich erklére hiermit, dass ich die vorliegende Arbeit selbstindig verfasst und noch nicht
fiir andere Priifungen eingereicht habe. Samtliche Quellen einschliefllich Internetquellen,
die unverandert oder abgewandelt wiedergegeben werden, insbesondere Quellen fiir
Texte, Grafiken, Tabellen und Bilder, sind als solche kenntlich gemacht. Mir ist bekannt,
dass bei Verstoflen gegen diese Grundsétze ein Verfahren wegen Téuschungsversuchs
bzw. Tauschung eingeleitet wird.

Berlin, den 22ten Februar, 2023

49

