
S o f t w a r e
Engineering

Software Engineering Seminar

State-Based Fault Localization

Description

Automated fault localization techniques assist developers with the task of pointing out program elements that
are most probable to be responsible for a detected error. Over the years, many different techniques have been
developed [7].

State-based fault localization techniques comprise several different strategies to locate software bugs by
monitoring and manipulating the state of a program at various points in its executions, and to then draw
conclusions about the cause of the error from the executions’ results. Notable techniques in this category include,
e.g., the delta debugging approach [8] and its extension – the cause transition technique [1, 2]. There also exist
techniques that alter the outcome of decisions during program execution [9, 6, 5, 4]. A very recent approach
uses a decision tree learner to learn input features that are responsible for a specific program behavior [3].

The goal of this topic is to examine and discuss the current state of the art of state-based fault localiza-
tion techniques, to evaluate their relevancy and to analyze/estimate their capabilities compared to other fault
localization techniques.

References

[1] Holger Cleve and Andreas Zeller. Locating causes of program failures. In Proceedings of the 27th international
conference on Software engineering - ICSE '05, Proceedings of the 27th International Conference on Software
Engineering, pages 342–351, New York, NY, USA, 2005. IEEE, ACM Press.

[2] Neelam Gupta, Haifeng He, Xiangyu Zhang, and Rajiv Gupta. Locating faulty code using failure-inducing
chops. In Proceedings of the 20th IEEE/ACM international Conference on Automated software engineering,
pages 263–272, 2005.

[3] Alexander Kampmann, Nikolas Havrikov, Soremekun Ezekiel, and Andreas Zeller. When does my program
do this? learning circumstances of software behavior. 2020.

[4] Feng Li, Wei Huo, Congming Chen, Lujie Zhong, Xiaobing Feng, and Zhiyuan Li. Effective fault localization
based on minimum debugging frontier set. In Proceedings of the 2013 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO), pages 1–10. IEEE, 2013.

[5] Tao Wang and Abhik Roychoudhury. Automated path generation for software fault localization. In Pro-
ceedings of the 20th IEEE/ACM int. Conference on Automated software engineering, pages 347–351, 2005.

[6] Xiaoyan Wang and Yongmei Liu. Automated fault localization via hierarchical multiple predicate switching.
Journal of Systems and Software, 104:69–81, 2015.

[7] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. A survey on software fault localization.
IEEE Transactions on Software Engineering, 42(8):707–740, 2016.

[8] Andreas Zeller. Isolating cause-effect chains from computer programs. ACM SIGSOFT Software Engineering
Notes, 27(6):1–10, 2002.

[9] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. Locating faults through automated predicate switching.
In Proceeding of the 28th int. conference on Softw. engineering - ICSE '06, pages 272–281. ACM Press, 2006.

Contacts

Simon Heiden (heiden@informatik.hu-berlin.de)
Software Engineering Group
Institut für Informatik
Humboldt-Universität zu Berlin


