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Description

Memory leaks that cause software aging are latent defects triggering memory depletion during runtime. They
are usually caused by forgetting to free allocated heap space (C/C++) or to remove all references to obsolete
objects (Java). Even if software is known to contain memory leaks, identifying their root causes (so-called defect
localization) can be tricky. Causes for this are manifold: leaks manifest slowly (i.e. they need prolonged execu-
tion time to surface); data structures like caches can keep allocated memory for legitimate reasons. It requires
a variety of data to decide whether an object/memory fragment is obsolete or needed. Several approaches and
tools for localization of memory leaks exist [1, 2, 3, 4, 5]. While some suffer significant performance issues [1],
other require sophisticated static analysis [3] or are proprietary (e.g., LeakBot from IBM). A simpler approach
[2, 4, 5] using dynamic analysis exploits regression testing and statistical analysis.

The goal of this seminar topic is to compare and evaluate several approaches for localization of memory
leaks based on runtime analysis, and attempt to improve their performance and possibly also accuracy. This
requires reproduction of the original research and application to a benchmark set. The work might be optionally
extended for a MS Thesis if novel feature selection algorithms can be engineered.

Prerequisites

A basic knowledge of Software Engineering I/II and Requirements Engineering and Software Architectures.
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