SMT-Based Bisimulation and Verification of Markov Models

Description

Markov models are a popular mean for modeling and verification of a system’s non-functional properties. However, most of the verification procedures are based on heavy numerical routines and suffer of state space explosion issues. Bisimulation minimization is a state space reduction technique that can often reduce the impact of state space explosion. On the other hand, it usually requires an explicit representation of the state space, which might be unfeasible for large systems.

In [2] a bisimulation minimization approach has been proposed, which leverage an SMT solver to extract the minimized system from the extended specification.

The goal of this seminar is to study and reproduce the approach of [2] for bisimulation minimization, using the SMT solver Microsoft Z3. As an additional extension, the student may develop an SMT-based verification. This work might be optionally extended for a MS Thesis.

Prerequisites

A basic knowledge of SAT and SMT, and familiarity with automata and logics are required.

References


Contacts

Lars Grunske (grunske@informatik.hu-berlin.de)
Software Engineering Group
Institut für Informatik
Humboldt-Universität zu Berlin