

Software Engineering Seminar (WS 2015)

Static Analysis for Estimating Memory Consumption of Applications

Description

Inferring the maximum and minimum amounts of irreclaimable objects in an application heap is critical to analyzing potential heap-memory consumption of stand-alone applications or libraries. An interesting approach is to estimate this resource consumption in a static manner [2], possibly by the introduction of contract-like annotations [4] and/or symbolic calculation [1]. Accurate memory consumption estimates would have an impact that extends beyond this introduction. In particular, accurate estimates for embedded and/or smartphones applications could impact hardware cost as well as energy consumption estimates [3].

References

- [1] Elvira Albert, Samir Genaim, and Miguel Gómez-Zamalloa. Parametric inference of memory requirements for garbage collected languages. In *ACM Sigplan Notices*, volume 45, pages 121–130. ACM, 2010.
- [2] Víctor Braberman, Diego Garbervetsky, Samuel Hym, and Sergio Yovine. Summary-based inference of quantitative bounds of live heap objects. *Science of Computer Programming*, 92:56–84, 2014.
- [3] Kolin Paul and Tapas Kumar Kundu. Android on mobile devices: An energy perspective. In *Computer and Information Technology (CIT)*, 2010 IEEE 10th International Conference on, pages 2421–2426. IEEE, 2010.
- [4] Jonathan Tapicer, Diego Garbervetsky, and Martin Rouaux. Resource usage contracts for net. In *Proceedings* of the 1st Workshop on Developing Tools as Plug-ins, pages 56–56. ACM, 2011.

Contacts

Lars Grunske (grunske@informatik.hu-berlin.de) Software Engineering Group Institut für Informatik Humboldt-Universität zu Berlin