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Testing of Multi-threaded Programs

Description

Multi-threaded programs are usually error prune due to data races. However, testing of real-world concurrent
programs can be both time- and space-consuming, since the exploration space can increase exponentially during
execution [1]. To tackle this problem, existing approaches have been proposed to efficiently detect concurrency
bugs [1, 2, 3, 4], where techniques such as bounded sampling, fuzzing, and dynamic slicing are usually involved.

The student should examine and discuss the current state of the art approaches for testing multithreaded
programs.
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