
S o f t w a r e
Engineering

Software Engineering Seminar

Testing of Multi-threaded Programs

Description

Multi-threaded programs are usually error prune due to data races. However, testing of real-world concurrent
programs can be both time- and space-consuming, since the exploration space can increase exponentially during
execution [1]. To tackle this problem, existing approaches have been proposed to efficiently detect concurrency
bugs [1, 2, 3, 4], where techniques such as bounded sampling, fuzzing, and dynamic slicing are usually involved.

The student should examine and discuss the current state of the art approaches for testing multithreaded
programs.

References

[1] Dongjie Chen, Yanyan Jiang, Chang Xu, Xiaoxing Ma, and Jian Lu. Testing multithreaded programs via
thread speed control. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2018, pages 15–25, New
York, NY, USA, 2018. ACM.

[2] Baris Kasikci, Weidong Cui, Xinyang Ge, and Ben Niu. Lazy diagnosis of in-production concurrency bugs.
In Proceedings of the 26th Symposium on Operating Systems Principles, SOSP ’17, pages 582–598, New
York, NY, USA, 2017. ACM.

[3] Koushik Sen. Race directed random testing of concurrent programs. SIGPLAN Not., 43(6):11–21, June
2008.

[4] Long Zheng, Xiaofei Liao, Hai Jin, Bingsheng He, Jingling Xue, and Haikun Liu. Towards concurrency
race debugging: An integrated approach for constraint solving and dynamic slicing. In Proceedings of
the 27th International Conference on Parallel Architectures and Compilation Techniques, PACT ’18, pages
26:1–26:13, New York, NY, USA, 2018. ACM.

Contacts

Minxing Tang (tanminxi@informatik.hu-berlin.de)
Software Engineering Group
Institut für Informatik
Humboldt-Universität zu Berlin


