Can Statistical Language Models be used to improve Spectrum Based Fault Localization Rankings? (Reduced Spectra - Additional Material)

Anonymous Author(s)

SBFL ranking metric	$\overline{\mathcal{R}}_{\lambda}\left(\Omega_{f}\right)$				$\begin{gathered} \text { max } \\ \text { improv. } \end{gathered}$	$\overline{\mathcal{R}}_{\lambda}^{*}\left(\Omega_{f}\right)$				max improv.
	$\lambda=1$	$\lambda=0.7$	$\lambda=0.5$	$\lambda=0.3$		$\lambda=1$	$\lambda=0.7$	$\lambda=0.5$	$\lambda=0.3$	
Ample	900.6	819.5	807.8	804.9	10.6\%	504.3	252.0	216.4	200.4	60.3\%
Anderberg	750.9	689.5	694.3	714.1	8.2\%	238.9	180.3	171.5	170.0	28.9\%
Arithmetic Mean	703.6	666.2	678.8	704.4	5.3\%	238.7	178.7	169.6	168.5	29.4\%
Cohen	746.1	688.4	693.7	713.9	7.7\%	239.0	180.1	171.2	169.9	28.9\%
Dice	750.5	689.2	694.2	714.1	8.2\%	239.0	180.3	171.5	170.0	28.9\%
Euclid	699.6	670.2	687.9	718.0	4.2\%	246.3	179.4	170.9	171.8	30.6\%
Fleiss	698.6	667.9	686.5	718.5	4.4\%	273.8	189.8	177.9	174.1	36.4\%
Geometric Mean	701.1	665.7	679.6	705.7	5.1\%	236.9	180.4	172.4	170.8	27.9\%
Goodman	750.4	689.3	694.3	714.1	8.1\%	238.8	180.1	171.3	169.9	28.8\%
GP13	1019.1	902.1	878.6	860.5	15.6\%	538.0	260.6	224.3	201.2	62.6\%
Hamann	699.6	670.2	687.9	718.0	4.2\%	246.3	179.4	170.9	171.8	30.6\%
Hamming etc.	699.6	670.2	687.9	718.0	4.2\%	246.3	179.4	170.9	171.8	30.6\%
Harmonic Mean	699.4	665.1	679.2	705.3	4.9\%	243.7	186.5	179.6	174.7	28.3\%
Jaccard	750.7	689.4	694.3	714.1	8.2\%	239.0	180.3	171.5	170.0	28.9\%
Kulczynski1	750.8	689.3	694.3	714.1	8.2\%	239.0	180.3	171.5	170.0	28.9\%
Kulczynski2	969.5	858.5	837.9	823.9	15.0\%	392.4	218.4	194.9	181.4	53.8\%
M1	699.6	670.2	687.9	718.0	4.2\%	246.3	179.4	170.9	171.8	30.6\%
M2	975.6	861.6	839.2	825.9	15.3\%	482.6	241.9	212.1	194.9	59.6\%
Ochiai	816.2	736.6	731.0	739.5	10.4\%	252.5	183.6	174.9	172.5	31.7\%
Ochiai2	704.2	667.1	680.5	706.4	5.3\%	236.1	180.1	172.4	170.7	27.7\%
Naish2 (Op2)	1018.9	902.6	879.3	861.4	15.5\%	537.5	261.5	226.3	202.3	62.4\%
Overlap	1096.8	972.1	961.0	951.3	13.3\%	720.8	255.6	242.6	236.1	67.2\%
Rogers \& Tanimoto	699.6	670.2	687.9	718.0	4.2\%	246.3	179.4	170.9	171.8	30.6\%
Rogot1	690.1	657.1	673.9	703.9	4.8\%	249.6	178.6	169.6	168.4	32.5\%
Rogot2	699.2	665.0	679.2	705.3	4.9\%	243.7	186.5	179.6	174.7	28.3\%
Russell d̛ Rao	1187.1	1022.5	1002.0	982.2	17.3\%	854.2	293.2	264.8	248.3	70.9\%
Scott	690.1	657.1	673.9	703.9	4.8\%	249.6	178.6	169.6	168.4	32.5\%
Simple Matching	699.6	670.2	687.9	718.0	4.2\%	246.3	179.4	170.9	171.8	30.6\%
Sokal	699.6	670.2	687.9	718.0	4.2\%	246.3	179.4	170.9	171.8	30.6\%
Sørensen-Dice	750.8	689.4	694.3	714.1	8.2\%	239.0	180.3	171.5	170.0	28.9\%
Tarantula	724.1	676.5	685.0	708.8	6.6\%	227.4	177.6	168.7	168.9	25.8\%
Wong1	1187.1	1022.5	1002.0	982.2	17.3\%	854.2	293.2	264.8	248.3	70.9\%
Wong 3	800.6	752.9	758.1	769.4	6.0\%	307.4	212.7	197.2	187.5	39.0\%
Wong2	699.6	670.2	687.9	718.0	4.2\%	246.3	179.4	170.9	171.8	30.6\%
Zoltar	877.4	783.6	773.3	774.2	11.9\%	330.1	197.5	183.8	173.2	47.5\%

Table 1: Overview of all examined SBFL metrics with $\overline{\mathcal{R}}_{\lambda}\left(\Omega_{f}\right)$ and $\overline{\mathcal{R}}_{\lambda}^{*}\left(\Omega_{f}\right)$ For $\lambda \in\{1.0,0.7,0.5,0.3\}$ and the maximum improvements for the highest values with regard to $\lambda=1$. Highest rankings are printed with a bold font for each set of values.

Can Statistical Language Models be used to improve Spectrum Based Fault Localization Rankings?
(Reduced Spectra - Additional Material)
ISSTA, 2017, Santa Barbara

SBFL ranking metric	$\widetilde{\mathcal{R}}_{\lambda}\left(\Omega_{f}\right)$				$\begin{gathered} \max \\ \text { improv. } \end{gathered}$	$\widetilde{\mathcal{R}}_{\lambda}^{*}\left(\Omega_{f}\right)$				max improv.
	$\lambda=1$	$\lambda=0.7$	$\lambda=0.5$	$\lambda=0.3$		$\lambda=1$	$\lambda=0.7$	$\lambda=0.5$	$\lambda=0.3$	
Ample	218.0	230.0	224.0	232.0	0.0\%	33.0	15.0	16.0	19.0	54.5\%
Anderberg	200.0	215.0	213.0	222.0	0.0\%	25.0	13.0	14.0	17.0	48.0\%
Arithmetic Mean	218.0	228.0	222.0	226.5	0.0\%	25.0	13.0	14.0	17.0	48.0\%
Cohen	200.5	222.0	219.0	224.0	0.0\%	25.0	13.0	14.0	17.0	48.0\%
Dice	200.0	215.0	213.0	222.0	0.0\%	25.0	13.0	14.0	17.0	48.0\%
Euclid	200.0	213.5	215.5	218.0	0.0\%	27.0	14.0	15.0	17.0	48.1\%
Fleiss	201.0	222.0	222.0	235.0	0.0\%	32.0	13.0	14.0	17.0	59.4\%
Geometric Mean	220.0	228.0	223.5	229.0	0.0\%	26.0	12.0	13.0	17.0	53.8\%
Goodman	200.0	215.0	213.0	222.0	0.0\%	25.0	13.0	14.0	17.0	48.0\%
GP13	259.0	234.0	229.0	232.5	11.6\%	31.0	14.0	16.0	19.0	54.8\%
Hamann	200.0	213.5	215.5	218.0	0.0\%	27.0	14.0	15.0	17.0	48.1\%
Hamming etc.	200.0	213.5	215.5	218.0	0.0\%	27.0	14.0	15.0	17.0	48.1\%
Harmonic Mean	215.0	219.0	215.0	220.0	0.0\%	26.0	12.0	14.0	17.0	53.8\%
Jaccard	200.0	215.0	213.0	222.0	0.0\%	25.0	13.0	14.0	17.0	48.0\%
Kulczynski1	200.0	215.0	213.0	222.0	0.0\%	25.0	13.0	14.0	17.0	48.0\%
Kulczynski2	239.0	232.0	226.0	230.5	5.4\%	24.0	12.0	13.0	17.0	50.0\%
M1	200.0	213.5	215.5	218.0	0.0\%	27.0	14.0	15.0	17.0	48.1\%
M2	235.0	227.0	220.5	226.0	6.2\%	32.0	14.0	17.0	19.0	56.3\%
Ochiai	200.0	222.5	221.0	229.5	0.0\%	26.0	12.0	14.0	17.0	53.8\%
Ochiai2	210.0	220.5	219.0	225.0	0.0\%	26.0	12.0	13.0	17.0	53.8\%
NAISH2 (Op2)	259.0	234.0	229.0	233.0	11.6\%	31.0	14.0	16.0	19.0	54.8\%
Overlap	584.0	302.0	283.0	279.0	52.2\%	142.0	24.0	26.0	27.0	83.1\%
Rogers \&f Tanimoto	200.0	213.5	215.5	218.0	0.0\%	27.0	14.0	15.0	17.0	48.1\%
Rogot1	200.0	217.0	216.0	222.0	0.0\%	26.0	13.0	14.0	17.0	50.0\%
Rogot2	215.0	219.0	215.0	220.0	0.0\%	26.0	12.0	14.0	17.0	53.8\%
Russell \& RaO	465.0	311.0	289.5	283.0	39.1\%	190.0	29.0	28.0	28.0	85.3\%
Scott	200.0	217.0	216.0	222.0	0.0\%	26.0	13.0	14.0	17.0	50.0\%
Simple Matching	200.0	213.5	215.5	218.0	0.0\%	27.0	14.0	15.0	17.0	48.1\%
Sokal	200.0	213.5	215.5	218.0	0.0\%	27.0	14.0	15.0	17.0	48.1\%
Sørensen-Dice	200.0	215.0	213.0	222.0	0.0\%	25.0	13.0	14.0	17.0	48.0\%
Tarantula	200.0	216.5	215.5	223.0	0.0\%	27.0	13.0	14.0	19.0	51.9\%
Wong1	465.0	311.0	289.5	283.0	39.1\%	190.0	29.0	28.0	28.0	85.3\%
Wong 3	200.0	224.0	214.0	224.0	0.0\%	33.0	15.0	14.0	17.0	57.6\%
Wong2	200.0	213.5	215.5	218.0	0.0\%	27.0	14.0	15.0	17.0	48.1\%
Zoltar	215.0	231.5	228.0	230.0	0.0\%	25.0	14.0	14.0	17.0	44.0\%

Table 2: Overview of all examined SBFL metrics with $\widetilde{\mathcal{R}}_{\lambda}\left(\Omega_{f}\right)$ and $\widetilde{\mathcal{R}}_{\lambda}^{*}\left(\Omega_{f}\right)$ for $\lambda \in\{1.0,0.7,0.5,0.3\}$ and the maximum improvements FOR THE HIGHEST VALUES WITH REGARD to $\lambda=1$. Highest rankings are printed with a bold font for each set of values.

SBFL ranking metric	$\widetilde{\lambda_{p}},\left(\overline{\lambda_{p}}\right),[\min , \max]$	$\widetilde{R I}_{\overline{\mathcal{R}}}^{S B F L},\left(\overline{R I}_{\overline{\mathcal{R}}}^{S B F L}\right),[$ min, max]	$\widetilde{\widetilde{R I}}_{\overline{\mathcal{R}}}^{L M},\left(\overline{R I}_{\overline{\mathcal{R}}}^{L M}\right),[\mathrm{min}, \mathrm{max}]$
Ample	0.34, (0.33), [0.2,0.44]	7.0\%, (-2.1\%), [-62.1\%,33.8\%]	13.4\%, (15.0\%), [-16.0\%,57.7\%]
Anderberg	0.67, (0.67), [0.6,0.74]	7.6\%, (4.0\%), [-23.9\%,31.8\%]	23.8\%, (27.8\%), [-16.9\%,73.8\%]
Arithmetic Mean	0.82, (0.81), [0.7,0.86]	2.1\%, (5.4\%), [-8.9\%,27.6\%]	25.7\%, (28.8\%), [-21.2\%,77.0\%]
Cohen	0.66, (0.67), [0.62,0.76]	6.4\%, (4.4\%), [-22.8\%,31.0\%]	24.7\%, (28.1\%), [-17.5\%,74.1\%]
Dice	0.67, (0.67), [0.6,0.74]	7.6\%, (4.1\%), [-22.1\%,31.8\%]	23.8\%, (27.9\%), [-16.9\%,74.2\%]
Euclid	0.85, (0.84), [0.76,0.9]	2.8\%, (5.3\%), [-8.8\%,26.7\%]	27.4\%, (27.7\%), [-24.5\%,66.0\%]
Fleiss	0.85, (0.84), [0.76,0.88]	3.0\%, (5.3\%), [-8.0\%,25.3\%]	28.2\%, (28.1\%), [-24.2\%,74.6\%]
Geometric Mean	0.84, (0.83), [0.7,0.88]	2.8\%, (5.6\%), [-5.2\%,26.1\%]	27.8\%, (29.1\%), [-16.8\%,77.1\%]
Goodman	0.67, (0.67), [0.6,0.74]	7.6\%, (3.9\%), [-23.9\%,31.8\%]	23.8\%, (27.9\%), [-16.9\%,73.8\%]
GP13	0.14, (0.15), [0.08,0.26]	17.2\%, (4.3\%), [-84.2\%,41.0\%]	9.2\%, (9.1\%), [-17.4\%,39.8\%]
Hamann	0.85, (0.84), [0.76,0.9]	2.8\%, (5.3\%), [-8.8\%,26.7\%]	27.4\%, (27.7\%), [-24.5\%,66.0\%]
Hamming etc.	0.85, (0.84), [0.76,0.9]	2.8\%, (5.3\%), [-8.8\%,26.7\%]	27.4\%, (27.7\%), [-24.5\%,66.0\%]
Harmonic Mean	0.84, (0.85), [0.8,0.92]	2.3\%, (5.1\%), [-4.9\%,23.1\%]	32.8\%, (29.7\%), [-3.6\%,76.6\%]
Jaccard	0.67, (0.67), [0.6,0.74]	7.6\%, (3.9\%), [-23.9\%,31.8\%]	23.8\%, (27.8\%), [-16.9\%,73.8\%]
Kulczynski1	0.67, (0.67), [0.6,0.74]	7.7\%, (4.1\%), [-22.1\%,31.8\%]	23.8\%, (27.9\%), [-16.9\%,74.2\%]
Kulczynski2	0.22, (0.22), [0.1,0.4]	12.7\%, (2.3\%), [-90.7\%,38.2\%]	9.9\%, (11.6\%), [-19.0\%,42.5\%]
M1	0.85, (0.84), [0.76,0.9]	2.8\%, (5.3\%), [-8.8\%,26.7\%]	27.4\%, (27.7\%), [-24.5\%,66.0\%]
M2	0.24, (0.23), [0.14,0.4]	14.9\%, (4.5\%), [-72.1\%,39.6\%]	10.5\%, (12.1\%), [-19.9\%,48.4\%]
Ochiai	0.5, (0.52), [0.42,0.64]	5.8\%, (1.5\%), [-35.6\%,35.6\%]	19.1\%, (23.7\%), [-15.1\%,69.1\%]
Ochiai2	0.84, (0.83), [0.7,0.86]	3.1\%, (5.4\%), [-6.6\%,26.5\%]	29.8\%, (29.3\%), [-18.1\%,76.8\%]
Naish2 (Op2)	0.14, (0.15), [0.08,0.26]	17.0\%, (4.1\%), [-84.4\%,40.9\%]	9.2\%, (9.1\%), [-17.6\%,39.7\%]
Overlap	0.0, (0.03), [0.0,0.24]	16.0\%, (12.7\%), [-18.1\%,31.9\%]	0.0\%, (-1.1\%), [-9.6\%,0.0\%]
Rogers \& Tanimoto	0.85, (0.84), [0.76,0.9]	2.8\%, (5.3\%), [-8.8\%,26.7\%]	27.4\%, (27.7\%), [-24.5\%,66.0\%]
Rogot1	0.84, (0.83), [0.72,0.88]	3.3\%, (5.3\%), [-9.5\%,26.5\%]	27.6\%, (29.1\%), [-23.5\%,73.8\%]
Rogot2	0.84, (0.85), [0.8,0.92]	2.3\%, (5.1\%), [-5.0\%,23.1\%]	32.8%, (29.7\%), [-3.6\%,76.6\%]
Russell d RaO	0.0, (0.0), [0.0,0.0]	18.5\%, (17.9\%), [-4.7\%,45.9\%]	0.0\%, (0.0\%), [0.0\%,0.0\%]
Scott	0.84, (0.83), [0.72,0.88]	3.3\%, (5.3\%), [-9.5\%,26.5\%]	27.6\%, (29.1\%), [-23.5\%,73.8\%]
Simple Matching	0.85, (0.84), [0.76,0.9]	2.8\%, (5.3\%), [-8.8\%,26.7\%]	27.4\%, (27.7\%), [-24.5\%,66.0\%]
Sokal	0.85, (0.84), [0.76,0.9]	2.8\%, (5.3\%), [-8.8\%,26.7\%]	27.4\%, (27.7\%), [-24.5\%,66.0\%]
Sørensen-Dice	0.68, (0.67), [0.6,0.74]	7.6\%, (3.9\%), [-23.9\%,31.8\%]	23.8\%, (27.8\%), [-16.9\%,73.8\%]
Tarantula	0.76, (0.74), [0.66,0.8]	6.4\%, (4.1\%), [-20.9\%,26.3\%]	36.8\%, (30.1\%), [-20.4\%,73.9\%]
Wong1	0.0, (0.0), [0.0,0.0]	18.5\%, (17.9\%), [-4.7\%,45.9\%]	0.0\%, (0.0\%), [0.0\%,0.0\%]
Wong3	0.73, (0.73), [0.6,0.84]	3.2\%, (3.1\%), [-14.9\%,26.6\%]	14.6\%, (19.1\%), [-12.4\%,73.8\%]
Wong2	0.85, (0.84), [0.76,0.9]	2.8\%, (5.3\%), [-8.8\%,26.7\%]	27.4\%, (27.7\%), [-24.5\%,66.0\%]
Zoltar	0.42, (0.4), [0.26,0.46]	10.2\%, (6.8\%), [-44.6\%,35.1\%]	15.2\%, (17.6\%), [-10.3\%,61.4\%]

Table 3: Results of the 10-fold cross validation of $\overline{\mathcal{R}}_{\lambda_{p}}\left(\Omega_{f}\right)$.

Can Statistical Language Models be used to improve Spectrum Based Fault Localization Rankings?
(Reduced Spectra - Additional Material)
ISSTA, 2017, Santa Barbara

SBFL ranking metric	$\widetilde{\lambda_{p}},\left(\overline{\lambda_{p}}\right),[\min , \max]$	$\widetilde{R I} \overline{\mathcal{R}}^{\text {SBFL }}$, $\left(\overline{R I}_{\overline{\mathcal{R}}^{*}}^{S B F L}\right),[\mathrm{min}, \mathrm{max}]$	$\widetilde{R I}_{\overline{\mathcal{R}}^{*}}^{L M},\left(\overline{R I}_{\overline{\mathcal{R}}^{*}}^{L M}\right),[\mathrm{min}, \max]$
Ample	0.14, (0.15), [0.12,0.2]	61.9\%, (60.1\%), [25.8\%,80.4\%]	17.6\%, (16.5\%), [-20.9\%,43.8\%]
Anderberg	0.32, (0.37), [0.26,0.52]	23.0\%, (22.3\%), [-21.4\%,65.7\%]	27.9\%, (20.8\%), [-30.0\%,58.4\%]
Arithmetic Mean	0.32, (0.37), [0.28,0.54]	29.0\%, (24.3\%), [-37.8\%,66.6\%]	27.4\%, (22.0\%), [-27.0\%,58.3\%]
Cohen	0.31, (0.37), [0.28,0.52]	25.4\%, (22.7\%), [-22.3\%,66.7\%]	27.9\%, (21.4\%), [-29.3\%,58.5\%]
Dice	0.32, (0.37), [0.26,0.52]	23.0\%, (22.3\%), [-21.4\%,65.9\%]	27.8\%, (20.8\%), [-30.0\%,58.4\%]
Euclid	0.4, (0.39), [0.26,0.4]	34.4\%, (23.8\%), [-51.6\%,68.9\%]	29.7\%, (23.0\%), [-21.2\%,65.9\%]
Fleiss	0.32, (0.33), [0.24,0.4]	39.2\%, (33.5\%), [-44.2\%,70.6\%]	22.8\%, (22.3\%), [-24.2\%,62.3\%]
Geometric Mean	0.36, (0.35), [0.2,0.4]	30.4\%, (26.6\%), [-44.6\%,59.7\%]	26.2\%, (24.2\%), [-24.6\%,60.6\%]
Goodman	0.32, (0.37), [0.26,0.52]	23.0\%, (22.3\%), [-21.4\%,65.7\%]	28.1\%, (20.9\%), [-29.2\%,58.4\%]
GP13	0.14, (0.13), [0.08,0.14]	68.7\%, (65.4\%), [34.1\%,79.1\%]	17.9\%, (17.8\%), [-11.4\%,53.3\%]
Hamann	0.4, (0.39), [0.26,0.4]	34.4\%, (23.8\%), [-51.6\%,68.9\%]	29.7\%, (23.0\%), [-21.2\%,65.9\%]
Hamming etc.	0.4, (0.39), [0.26,0.4]	34.4\%, (23.8\%), [-51.6\%,68.9\%]	29.7\%, (23.0\%), [-21.2\%,65.9\%]
Harmonic Mean	0.3, (0.3), [0.28,0.36]	29.0\%, (28.8\%), [-15.2\%,52.6\%]	26.9\%, (23.8\%), [-26.0\%,58.9\%]
Jaccard	0.32, (0.37), [0.26,0.52]	23.0\%, (22.3\%), [-21.4\%,65.9\%]	27.9\%, (20.9\%), [-30.0\%,58.4\%]
Kulczynski1	0.32, (0.37), [0.26,0.52]	23.0\%, (22.3\%), [-21.4\%,66.0\%]	27.8\%, (20.8\%), [-30.0\%,58.4\%]
Kulczynski2	0.14, (0.15), [0.14,0.16]	57.9\%, (54.6\%), [26.9\%,76.5\%]	21.0\%, (23.1\%), [-14.0\%,52.7\%]
M1	0.4, (0.39), [0.26,0.4]	34.4\%, (23.8\%), [-51.6\%,68.9\%]	29.7\%, (23.0\%), [-21.2\%,65.9\%]
M2	0.16, (0.15), [0.12,0.16]	65.4\%, (61.8\%), [34.6\%,76.1\%]	19.4\%, (19.0\%), [-14.8\%,53.3\%]
Ochiai	0.34, (0.34), [0.2,0.4]	29.5\%, (26.6\%), [-28.8\%,64.1\%]	29.0\%, (22.5\%), [-29.5\%,60.3\%]
Ochiai2	0.36, (0.35), [0.2,0.4]	27.1\%, (25.3\%), [-53.7\%,61.5\%]	26.5\%, (23.6\%), [-23.7\%,60.6\%]
NAISH2 (Op2)	0.14, (0.13), [0.08,0.14]	68.5\%, (65.3\%), [33.8\%,79.0\%]	17.7\%, (17.7\%), [-11.6\%,52.9\%]
Overlap	0.08, (0.08), [0.0,0.16]	73.6\%, (67.3\%), [34.4\%,81.3\%]	-0.8\%, (-1.1\%), [-5.7\%,3.6\%]
Rogers \&ூ Tanimoto	0.4, (0.39), [0.26,0.4]	34.4\%, (23.8\%), [-51.6\%,68.9\%]	29.7\%, (23.0\%), [-21.2\%,65.9\%]
Rogot1	0.34, (0.38), [0.3,0.52]	33.9\%, (27.8\%), [-44.2\%,69.7\%]	27.3\%, (23.4\%), [-23.0\%,61.7\%]
Rogot2	0.3, (0.3), [0.28,0.36]	29.0\%, (28.8\%), [-15.2\%,52.6\%]	26.9\%, (23.8\%), [-26.0\%,58.9\%]
Russell ひ RaO	0.0, (0.01), [0.0,0.14]	78.0\%, (72.7\%), [55.7\%,84.8\%]	0.0\%, (-0.9\%), [-9.1\%,0.0\%]
Scott	0.34, (0.38), [0.3,0.52]	33.9\%, (27.8\%), [-44.2\%,69.7\%]	27.3\%, (23.4\%), [-23.0\%,61.7\%]
Simple Matching	0.4, (0.39), [0.26,0.4]	34.4\%, (23.8\%), [-51.6\%,68.9\%]	29.7\%, (23.0\%), [-21.2\%,65.9\%]
Sokal	0.4, (0.39), [0.26,0.4]	34.4\%, (23.8\%), [-51.6\%,68.9\%]	29.7\%, (23.0\%), [-21.2\%,65.9\%]
Sørensen-Dice	0.32, (0.36), [0.26,0.52]	23.5\%, (22.5\%), [-21.4\%,65.9\%]	27.8\%, (21.1\%), [-29.3\%,58.4\%]
Tarantula	0.34, (0.38), [0.26,0.5]	24.3\%, (18.2\%), [-23.1\%,65.4\%]	28.9\%, (21.0\%), [-31.8\%,60.7\%]
Wong1	0.0, (0.01), [0.0,0.14]	78.0\%, (72.7\%), [55.7\%,84.8\%]	0.0\%, (-0.9\%), [-9.1\%,0.0\%]
Wong3	0.18, (0.19), [0.16,0.26]	42.0\%, (40.1\%), [12.2\%,63.6\%]	25.8\%, (18.8\%), [-18.9\%,43.9\%]
Wong2	0.4, (0.39), [0.26,0.4]	34.4\%, (23.8\%), [-51.6\%,68.9\%]	29.7\%, (23.0\%), [-21.2\%,65.9\%]
Zoltar	0.15, (0.18), [0.14,0.3]	47.0\%, (43.3\%), [-9.1\%,80.1\%]	22.7\%, (23.0\%), [-21.9\%,53.2\%]

Table 4: Results of the 10-fold cross validation of $\overline{\mathcal{R}}_{\lambda_{p}}^{*}\left(\Omega_{f}\right)$.

SBFL ranking metric	$\overline{\lambda_{p}},\left(\overline{\lambda_{p}}\right),[\min , \max]$	$\widetilde{R I}_{\widetilde{\mathcal{R}}}^{S B F L},\left(\overline{R I}_{\widetilde{\mathcal{R}}}^{S B F L}\right),[\mathrm{min}, \mathrm{max}]$	$\widetilde{R I}_{\widetilde{\mathcal{R}}}^{L M},\left(\overline{R I}_{\widetilde{\mathcal{R}}}^{L M}\right),[\min , \max]$
Ample	0.84, (0.76), [0.42,1.0]	0.3\%, (7.2\%), [-19.6\%,31.7\%]	17.0\%, (14.1\%), [-35.0\%,59.8\%]
Anderberg	1.0, (0.95), [0.5,1.0]	0.0\%, (0.6\%), [-8.6\%,12.4\%]	11.9\%, (7.5\%), [-168.7\%,77.0\%]
Arithmetic Mean	0.68, (0.71), [0.4,1.0]	0.0\%, (-6.1\%), [-60.8\%,9.5\%]	15.1\%, (-3.4\%), [-206.3\%,63.4\%]
Cohen	1.0, (0.83), [0.46,1.0]	0.0\%, (-1.5\%), [-8.8\%,2.5\%]	14.6\%, (-1.4\%), [-207.2\%,77.3\%]
Dice	1.0, (0.95), [0.5,1.0]	0.0\%, (0.6\%), [-8.6\%,12.4\%]	11.9\%, (7.5\%), [-168.7\%,77.0\%]
Euclid	1.0, (0.95), [0.52,1.0]	0.0\%, (4.5\%), [0.0\%,30.9\%]	21.0\%, (1.0\%), [-249.6\%,78.0\%]
Fleiss	1.0, (0.95), [0.46,1.0]	0.0\%, (2.8\%), [0.0\%,27.5\%]	9.5\%, (-9.9\%), [-247.0\%,76.7\%]
Geometric Mean	0.66, (0.71), [0.42,1.0]	0.0\%, (-5.6\%), [-64.2\%,11.7\%]	14.1\%, (-1.2\%), [-161.5\%,62.7\%]
Goodman	1.0, (0.95), [0.5,1.0]	0.0\%, (0.6\%), [-8.6\%,12.4\%]	11.9\%, (7.5\%), [-168.7\%,77.0\%]
GP13	0.44, (0.44), [0.4,0.48]	15.4\%, (10.7\%), [-39.2\%,50.7\%]	16.5\%, (17.4\%), [-28.4\%,59.9\%]
Hamann	1.0, (0.95), [0.52,1.0]	0.0\%, (4.5\%), [0.0\%,30.9\%]	21.0\%, (1.0\%), [-249.6\%,78.0\%]
Hamming etc.	1.0, (0.95), [0.52,1.0]	0.0\%, (4.5\%), [0.0\%,30.9\%]	21.0\%, (1.0\%), [-249.6\%,78.0\%]
Harmonic Mean	0.43, (0.56), [0.34,1.0]	0.0\%, (-2.8\%), [-75.0\%,22.5\%]	24.0\%, (17.5\%), [-38.8\%,58.4\%]
Jaccard	1.0, (0.95), [0.5,1.0]	0.0\%, (0.6\%), [-8.6\%,12.4\%]	11.9\%, (7.5\%), [-168.7\%,77.0\%]
Kulczynski1	1.0, (0.95), [0.5,1.0]	0.0\%, (0.6\%), [-8.6\%,12.4\%]	11.9\%, (7.5\%), [-168.7\%,77.0\%]
Kulczynski2	0.46, (0.55), [0.22,1.0]	0.0\%, (0.9\%), [-49.5\%,38.7\%]	13.5\%, (12.0\%), [-37.0\%,60.2\%]
M1	1.0, (0.95), [0.52,1.0]	0.0\%, (4.5\%), [0.0\%,30.9\%]	21.0\%, (1.0\%), [-249.6\%,78.0\%]
M2	0.44, (0.44), [0.4,0.46]	14.4\%, (11.1\%), [-37.1\%,50.8\%]	24.0\%, (21.1\%), [-23.7\%,60.1\%]
Ochiai	1.0, (0.92), [0.48,1.0]	0.0\%, (2.3\%), [-5.3\%,15.5\%]	11.5\%, (2.6\%), [-151.2\%,77.0\%]
Ochiai2	0.93, (0.77), [0.42,1.0]	0.0\%, (-4.9\%), [-60.2\%,12.2\%]	14.3\%, (3.2\%), [-155.1\%,63.6\%]
Naish2 (Op2)	0.44, (0.44), [0.4,0.48]	15.4\%, (10.7\%), [-41.4\%,50.7\%]	16.5\%, (17.5\%), [-28.4\%,59.9\%]
Overlap	0.06, (0.08), [0.0,0.34]	36.7\%, (34.3\%), [-16.5\%,76.4\%]	0.0\%, (-1.9\%), [-25.3\%,7.5\%]
Rogers \& Tanimoto	1.0, (0.95), [0.52,1.0]	0.0\%, (4.5\%), [0.0\%,30.9\%]	21.0\%, (1.0\%), [-249.6\%,78.0\%]
Rogot1	1.0, (0.95), [0.48,1.0]	0.0\%, (-0.6\%), [-6.0\%,0.0\%]	13.8\%, (-4.6\%), [-248.9\%,77.3\%]
Rogot2	0.44, (0.56), [0.34,1.0]	0.0\%, (-2.3\%), [-75.0\%,22.5\%]	23.5\%, (18.0\%), [-38.8\%,58.4\%]
Russell dூ Rao	0.05, (0.09), [0.02,0.3]	39.5%, (32.5\%), [-30.5\%,75.1\%]	-0.1\%, (-2.3\%), [-34.4\%,11.0\%]
Scott	1.0, (0.95), [0.48,1.0]	0.0\%, (-0.6\%), [-6.0\%,0.0\%]	13.8\%, (-4.6\%), [-248.9\%,77.3\%]
Simple Matching	1.0, (0.95), [0.52,1.0]	0.0\%, (4.5\%), [0.0\%,30.9\%]	21.0\%, (1.0\%), [-249.6\%,78.0\%]
Sokal	1.0, (0.95), [0.52,1.0]	0.0\%, (4.5\%), [0.0\%,30.9\%]	21.0\%, (1.0\%), [-249.6\%,78.0\%]
Sørensen-Dice	1.0, (0.95), [0.5,1.0]	0.0\%, (0.6\%), [-8.6\%,12.4\%]	11.9\%, (7.5\%), [-168.7\%,77.0\%]
Tarantula	1.0, (0.95), [0.5,1.0]	0.0\%, (1.3\%), [0.0\%,12.5\%]	13.4\%, (6.4\%), [-169.4\%,80.7\%]
Wong1	0.05, (0.09), [0.02,0.3]	39.5\%, (32.5\%), [-30.5\%,75.1\%]	-0.1\%, (-2.3\%), [-34.4\%,11.0\%]
Wong3	1.0, (0.84), [0.44,1.0]	0.0\%, (-0.5\%), [-29.3\%,20.0\%]	13.5\%, (10.9\%), [-47.9\%,73.1\%]
Wong2	1.0, (0.95), [0.52,1.0]	0.0\%, (4.5\%), [0.0\%,30.9\%]	21.0\%, (1.0\%), [-249.6\%,78.0\%]
Zoltar	1.0, (0.83), [0.4,1.0]	0.0\%, (-2.9\%), [-31.6\%,9.5\%]	16.2\%, (-4.3\%), [-216.0\%,73.4\%]

TABLE 5: Results of the 10-fold cross validation of $\widetilde{\mathcal{R}}_{\lambda_{p}}\left(\Omega_{f}\right)$.

Can Statistical Language Models be used to improve Spectrum Based Fault Localization Rankings?
(Reduced Spectra - Additional Material)
ISSTA, 2017, Santa Barbara

SBFL ranking metric	$\widetilde{\lambda_{p}},\left(\overline{\lambda_{p}}\right),[\min , \max]$	$\widetilde{R I}_{\widetilde{\mathcal{R}}^{*}}^{S B F L},\left(\overline{R I}_{\widetilde{\mathcal{R}}^{*}}^{S B F L}\right),[$ min, max]	$\widetilde{R I}_{\widetilde{\mathcal{R}}^{*}}^{L M},\left(\overline{R I}_{\widetilde{\mathcal{R}}^{*}}^{L M}\right),[\mathrm{min}, \mathrm{max}]$
Ample	0.62, (0.61), [0.4,0.74]	34.0\%, (31.5\%), [-25.0\%,76.7\%]	51.3\%, (40.4\%), [-29.5\%,61.5\%]
Anderberg	0.66, (0.66), [0.62,0.76]	40.0\%, (38.7\%), [13.2\%,76.5\%]	59.5\%, (56.0\%), [38.5\%,70.8\%]
Arithmetic Mean	0.66, (0.66), [0.62,0.74]	38.4\%, (37.8\%), [9.5\%,76.2\%]	58.3\%, (55.4\%), [38.5\%,70.8\%]
Cohen	0.66, (0.66), [0.62,0.74]	39.1\%, (38.2\%), [9.5\%,76.7\%]	58.3\%, (55.8\%), [38.5\%,70.8\%]
Dice	0.66, (0.66), [0.62,0.76]	40.0\%, (38.7\%), [13.2\%,76.5\%]	59.5\%, (56.0\%), [38.5\%,70.8\%]
Euclid	0.61, (0.62), [0.58,0.7]	32.8\%, (29.4\%), [-21.9\%,73.1\%]	51.8\%, (48.8\%), [27.3\%,63.1\%]
Fleiss	0.74, (0.73), [0.66,0.78]	30.9\%, (32.3\%), [-1.4\%,71.3\%]	46.2\%, (42.1\%), [-11.4\%,63.6\%]
Geometric Mean	0.68, (0.68), [0.6,0.76]	33.6\%, (32.4\%), [-5.9\%,71.2\%]	51.5\%, (49.6\%), [9.1\%,70.8\%]
Goodman	0.66, (0.66), [0.62,0.76]	40.0\%, (38.7\%), [13.2\%,76.5\%]	59.5\%, (56.0\%), [38.5\%,70.8\%]
GP13	0.66, (0.65), [0.6,0.7]	36.9\%, (36.4\%), [0.0\%,76.3\%]	52.3\%, (46.6\%), [20.7\%,61.7\%]
Hamann	0.61, (0.62), [0.58,0.7]	32.8%, (29.4\%), [-21.9\%,73.1\%]	51.8\%, (48.8\%), [27.3\%,63.1\%]
Hamming etc.	0.61, (0.62), [0.58,0.7]	32.8\%, (29.4\%), [-21.9\%,73.1\%]	51.8\%, (48.8\%), [27.3\%,63.1\%]
Harmonic Mean	0.62, (0.64), [0.58,0.78]	24.4\%, (31.2\%), [3.1\%,78.9\%]	58.1\%, (51.1\%), [6.8\%,63.6\%]
Jaccard	0.66, (0.66), [0.62,0.76]	40.0\%, (38.7\%), [13.2\%,76.5\%]	59.5\%, (56.0\%), [38.5\%,70.8\%]
Kulczynski1	0.66, (0.66), [0.62,0.76]	40.0\%, (38.7\%), [13.2\%,76.5\%]	59.5\%, (56.0\%), [38.5\%,70.8\%]
Kulczynski2	0.62, (0.62), [0.58,0.66]	25.0\%, (28.8\%), [-11.8\%,79.1\%]	56.4\%, (52.8\%), [27.6\%,69.2\%]
M1	0.61, (0.62), [0.58,0.7]	32.8\%, (29.4\%), [-21.9\%,73.1\%]	51.8\%, (48.8\%), [27.3\%,63.1\%]
M2	0.66, (0.67), [0.62,0.76]	33.3\%, (27.4\%), [-21.9\%,74.2\%]	39.2\%, (40.5\%), [0.0\%,61.5\%]
Ochiai	0.66, (0.68), [0.62,0.74]	37.8\%, (37.1\%), [-7.4\%,72.6\%]	51.1\%, (52.1\%), [9.1\%,73.8\%]
Ochiai2	0.74, (0.7), [0.6,0.76]	31.7\%, (32.9\%), [-5.9\%,71.2\%]	50.0\%, (50.3\%), [13.6\%,70.8\%]
Naish2 (Op2)	0.66, (0.65), [0.6,0.7]	36.9\%, (36.4\%), [0.0\%,76.3\%]	52.3\%, (46.6\%), [20.7\%,61.7\%]
Overlap	0.65, (0.66), [0.52,0.82]	76.4\%, (77.7\%), [58.5\%,93.7\%]	7.9\%, (9.3\%), [-1.9\%,30.8\%]
Rogers ひூ Tanimoto	0.61, (0.62), [0.58,0.7]	32.8\%, (29.4\%), [-21.9\%,73.1\%]	51.8\%, (48.8\%), [27.3\%,63.1\%]
Rogot1	0.66, (0.66), [0.62,0.74]	39.1\%, (36.7\%), [4.8\%,76.7\%]	57.2\%, (54.8\%), [38.5\%,70.8\%]
Rogot2	0.62, (0.64), [0.58,0.78]	24.4\%, (31.2\%), [3.1\%,78.9\%]	58.1\%, (51.1\%), [6.8\%,63.6\%]
Russell ひ RaO	0.16, (0.38), [0.02,0.82]	86.4\%, (84.5\%), [69.8\%,91.1\%]	0.0\%, (-5.4\%), [-54.5\%,4.6\%]
Scott	0.66, (0.66), [0.62,0.74]	39.1\%, (36.7\%), [4.8\%,76.7\%]	57.2\%, (54.8\%), [38.5\%,70.8\%]
Simple Matching	0.61, (0.62), [0.58,0.7]	32.8\%, (29.4\%), [-21.9\%,73.1\%]	51.8\%, (48.8\%), [27.3\%,63.1\%]
Sokal	0.61, (0.62), [0.58,0.7]	32.8\%, (29.4\%), [-21.9\%,73.1\%]	51.8\%, (48.8\%), [27.3\%,63.1\%]
Sørensen-Dice	0.66, (0.66), [0.62,0.76]	40.0\%, (38.7\%), [13.2\%,76.5\%]	59.5\%, (56.0\%), [38.5\%,70.8\%]
Tarantula	0.78, (0.78), [0.78,0.8]	41.4\%, (36.3\%), [4.3\%,69.0\%]	52.6\%, (49.2\%), [0.0\%,71.8\%]
Wong1	0.16, (0.38), [0.02,0.82]	86.4\%, (84.5\%), [69.8\%,91.1\%]	0.0\%, (-5.4\%), [-54.5\%,4.6\%]
Wong3	0.52, (0.53), [0.4,0.7]	30.5\%, (30.7\%), [-13.5\%,76.0\%]	49.5\%, (42.7\%), [-34.1\%,63.6\%]
Wong2	0.61, (0.62), [0.58,0.7]	32.8\%, (29.4\%), [-21.9\%,73.1\%]	51.8\%, (48.8\%), [27.3\%,63.1\%]
Zoltar	0.66, (0.63), [0.5,0.66]	29.2\%, (33.4\%), [-13.2\%,77.4\%]	58.4\%, (53.4\%), [20.7\%,68.2\%]

TABLE 6: Results of the $10-$ FOLD cross validation of $\widetilde{\mathcal{R}}_{\lambda_{p}}^{*}\left(\Omega_{f}\right)$.

FIGURE 1: PLOTS of $\overline{\mathcal{R}}_{\lambda}\left(\Omega_{f}\right)$ (SOLID) AND $\widetilde{\mathcal{R}}_{\lambda}\left(\Omega_{f}\right)$ (DASHED) FOR DIFFERENT SBFL RANKING METRICS.

Can Statistical Language Models be used to improve Spectrum Based Fault Localization Rankings? (Reduced Spectra - Additional Material)

FIGURE 2: PLOTS of $\overline{\mathcal{R}}_{\lambda}\left(\Omega_{f}\right)$ (SOLID) AND $\widetilde{\mathcal{R}}_{\lambda}\left(\Omega_{f}\right)$ (DASHED) FOR DIFFERENT SBFL RANKING METRICS.

Figure 3: Plots of $\overline{\mathcal{R}}_{\lambda}\left(\Omega_{f}\right)$ (SOLId) and $\widetilde{\mathcal{R}}_{\lambda}\left(\Omega_{f}\right)$ (DASHEd) FOR different SBFL RANKING metrics.

Can Statistical Language Models be used to improve Spectrum Based Fault Localization Rankings? (Reduced Spectra - Additional Material)

FIGURE 4: PLOTS OF $\overline{\mathcal{R}}_{\lambda}^{*}\left(\Omega_{f}\right)$ (SOLID) $\widetilde{\mathcal{R}}_{\lambda}^{*}\left(\Omega_{f}\right)$ (DASHED) FOR DIFFERENT SBFL RANKING METRICS.

FIGURE 5: PLOTS OF $\overline{\mathcal{R}}_{\lambda}^{*}\left(\Omega_{f}\right)$ (SOLID) $\widetilde{\mathcal{R}}_{\lambda}^{*}\left(\Omega_{f}\right)$ (DASHED) FOR DIFFERENT SBFL RANKING METRICS.

Can Statistical Language Models be used to improve Spectrum Based Fault Localization Rankings? (Reduced Spectra - Additional Material)

Figure 6: Plots of $\overline{\mathcal{R}}_{\lambda}^{*}\left(\Omega_{f}\right)$ (solid) $\widetilde{\mathcal{R}}_{\lambda}^{*}\left(\Omega_{f}\right)$ (dashed) for different SbFL ranking metrics.

